
Abstract. A set of examples is presented to illustrate the prin-
ciples of quantum thermophysics, a theory in which systematic
quantum mechanical calculations are used to derive thermody-
namic relations.

Do not follow in the steps of the ancients,

but look for what they had been seeking.

Matsuo Basho {

1. Introduction

There are two traditional chapters of natural science where a
real understanding of the inner workings would have been
impossible without the concepts of contemporary quantum
theory. One of these is much older than the other Ð
chemistry. The other is thermodynamics. Both are based on
the peculiar laws of motion of particles in the microscopic
world that have been adequately described only in the 20th
century Ð and they still often defy the grasp of conventional
common sense.

Centuries of empirical studies of chemical transforma-
tions gave rise to wonderful technologies, laid the founda-
tions of ore processing and modern metallurgy. There were
epoch-making theoretical milestones on this way: Lavoisier's
law, Mendeleev's periodic table, formulas of spectral line
series. However, only the construction of a consistent
quantum theory of the simplest chemical element Ð an
atom of hydrogenÐ helped to produce a crystal clear picture
of the chemical world. Only then it was possible to identify the

number of element in the periodic table with the whole-
numbered charge of its nucleus, and to explain the physical
nature of the chemical bond.

The history of thermodynamics is much shorter. The
stumbling block in the way of its validation was the second
law of thermodynamics enunciated by the German mathe-
matical physicist Rudolf Julius Emanuel Clausius, which
states that heat cannot pass from a colder body to a warmer
body without external force. Ingenious and ever more
sophisticated attempts to harmonize this postulate with the
principles of classical dynamics invariably failed, shattering
the belief that it is at all possible. As a matter of fact, the
futility of such attempts follows from simple considerations
of dimensionality. Among other things, the classical laws of
motion imply self-similarity of things on any scaleÐ from the
music of the spheres in celestial mechanics to the laws of
motion of microscopic particles. Accordingly, from this
standpoint the direction of energy transfer is completely
determined by the microphysical initial conditions not
subject to any additional constraints not known in the
macroscopic mechanics.

The discovery in theoretical physics of a new dimensional
world constant Ð Planck's constant Ð completely revolutio-
nized the situation and called for radical revision of the laws
of motion as applied to the microscopic world. In the end, it
was for this reason that the mathematical methods of
quantum theory were capable of proving the unfortunate
second law. The physical assumptions of this proof are
already contained in the logical structure of the famous
Einstein ± Podolsky ±Rosen paradox, which has boggled
many minds for decades.

It has long been noted that confidence in formal
constructions and proofs is much reinforced by the avail-
ability of illustrative examples Ð exactly solvable models of
the theory. In classical mechanics such simple models are well
known: the elastic collision of massive spheres, motion in a
homogeneous field of gravity, Kepler's problem. In quantum
theory such examples used for the purposes of verification
and validation are the hydrogen atom, the quantumharmonic
oscillator, and the rigid rotator.

In this paper we attempt to construct a `survival kit' of
exactly solvable models for quantum thermophysics, which
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allow the expression of thermodynamic relations by the
consistent quantum calculation techniques.

The mathematical basis for this approach was laid before
World War II in the works of Otto Klein [1] and Walter
Elsasser [2]. Very useful philosophical considerations on this
matter can be found in the collection of papers by Werner
Heisenberg [3] published towards the end of his life.
Theoretical developments of the problem of quantum
stochasticity were necessary for the formulation of the
quantum theory of open systems [4], the physical theory of
information [5], and the quantum theory of relaxation [6].
Further treatment of various aspects of quantum thermo-
dynamics and kinetics can be found in Refs [7 ± 9].

2. Quantum heat exchange

We start by discussing the general principles of thermophy-
sics, which will then be illustrated with concrete models. ByH
we denote the Hamilton operator of an isolated physical
system with a discrete energy spectrum. The eigenvectors jni
and eigenvalues En of this operator are defined in the usual
way:

Hjni � Enjni ; �1�
where n numbers the steady states (not the energy levels). By
using such numeration we eliminate the necessity of addi-
tional indices in the case of degeneracy of energy levels.

By hnjrjmiwe denote the time-independent density matrix
of the state of the system in the Heisenberg energy representa-
tion. For the equilibrium (Gibbsian) state we must take

hnjrjmi � rndnm � Zÿ1 exp
�
ÿ En

T

�
dnm ; �2�

where T is the energy temperature, and the sum-over-states Z
is found from the normalization condition

Sp r �
X
n

rn � 1 : �3�

We denote by S the quantum entropy of state (see Ref. [5])

S � ÿSp r lnr � ÿ
X
n;m

hnjrjmihmj ln rjni ; �4�

without limiting a priori the validity of this formula to the
state of thermal equilibrium (2). The mean energy of the
system in an arbitrary state is found by plain averaging

hEi � Sp rH �
X
n

En hnjrjni : �5�

The equilibrium state (2) corresponds to the maximum
entropy for a fixed mean energy [2] and is the ultimate type of
mixed state that arises upon collision of initially independent
quantum systems [8].

Now let us describe the interaction of the system with its
physical environment. In this section we only consider such
impacts on the system that do not change its energy spectrum
fEng and the set of eigenvectors fjnig. As will be shown
below, this is equivalent to the convention of taking into
account only the energy processes of heat exchange type. As
far as adiabaticmacroprocesses are concerned, their quantum
description involves deformations of the energy spectrum,
and they will be discussed in Section 3.

Assume that the interaction of the system with the
environment gives small increments drn to the eigenvalues
rn of the equilibrium density matrix (2). Taking into account
the necessary condition of normalizationX

n

drn � 0 ; �6�

after substitution into Eqn (4) and (5) we get the known
Clausius relation

dS � dhEi
T

; �7�
that links the change in entropy to the amount of energy
transferred through heat exchange.

Now consider the collision of two quantum subsystems
(for example, two molecules, not necessarily identical). The
Hamiltonians of the discrete parts of the energy spectra of
these subsystems, interaction not included, we denote by HI,
HII. The initial mixed states of subsystems we select to be at
equilibrium at temperatures TI and TII and statistically
independent from each other. We assume that the interaction
Hint conserves the total energy �Hint;HI �HII� � 0, and only
exists within the time interval tc, constant throughout the
interval.

Observe that there is also a more consistent approach to
`switch-on' and `switch-off' of the interaction. These events
may be due, for example, to the quasiclassical free motion of
subsystems coming close to each other and retreating, which
is not included in the Hamiltonians with a discrete spectra of
eigenvalues. If desired, such an analysis could be performed
without much effort, but this would have encumbered our
treatment with unnecessary details.

By hnjr0jmi and hnjs0jmiwe denote the density matrices of
the initial thermal states of the form (2) of the first and second
subsystems at temperatures TI and TII. The initial state of the
total system that includes both subsystems is described by the
matrix product

hn; njR0jm; mi � hnjr0jmihnjs0jmi : �8�

Here and further we shall mark the base vectors of the first
system with Roman characters, and those of the second with
Greek. By S0I and S0II we denote the initial entropies of
subsystems calculated according to Eqn (4). The entropy S of
the total system in state (8) is the sum of these:

S � S0I � S0II : �9�
In the interaction representation we write the resulting

density matrix of the total system after collision of the
subsystems as

hn; njRjm; mi � hn; njU�r0s0Ujm; mi ; �10�
where

U � exp�iHinttc� �11�
(we use the system of units in which �h � 1). After the
interaction, the subsystems will generally no longer be
statistically independent, and their individual (local) states
will correspond to the density matrices [6]

hnjrjmi �
X
n

hn; njRjm; ni ; �12�

hnjsjmi �
X
n

hn; njRjn; mi : �13�
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Under our condition �Hint;HI �HII� � 0, these matrices are
again diagonal in the energy representation that diagonalizes
the Hamiltonian matrices hnjHIjmi and hnjHIIjmi.

We denote by SI and SII the entropies of states (12) and
(13) respectively, and find the change in the total entropy
resulting from the collision:

DS � SI � SII ÿ S : �14�
The following inequality is essential for the quantum

theoretical validation of thermodynamics (see Ref. [5])

DS5 0 ; �15�
which is worth discussing in greater detail.

First of all, inequality (15) holds for any initial states of
subsystems, and its validity only depends on one sufficient
condition: the initial statistical independence of the colliding
subsystems. It was the immanently quantum nature of the
occurrence of states of particles with indefinite energies upon
collision that made Einstein doubt the logical completeness of
quantum theory, and led to the formulation of the famous
paradox.

On the other hand, a similar inequality exists in the
classical theory of probabilities, where it ensures the non-
negativity of the correlation entropy of two statistically
bound random variables. The corresponding theorem was
proved by Claude Shannon [10] as part of the foundation of
the mathematical theory of information. This result is
ideologically closely related to the well-known Boltzmann's
theorem concerned with the behavior of classical entropies of
one-particle distribution functions in corpuscular kinetics. In
both these cases, however, the probability distributions are
`superimposed' on the laws that govern the behavior of
dynamic systems, whereas the genesis of primal stochasticity
remains behind the scene.

The key role in contemporary quantum thermodynamics
belongs to Klein's entropy lemma [1], which only attracted
the serious attention of physicists in the post-war years [11,
12]. It allows the direct extension of Shannon's theorem to
quantum entropies of the form (4), which proves inequality
(15). It is this inequality that provides for the theoretical
validation of the second law.

We assume that the change of the states of subsystems
caused by the interaction between them is small, and express
the asymptotic relation that links the magnitude of the quasi-
equilibrium energy transfer to the small increment of total
entropy dS. First we calculate the change of the mean energy
of the first subsystem dhEIi. Given that the resulting density
matrix hnjrjmi remains diagonal in the energy representation
as long as the total energy is conserved, we write

dhEIi �
X
n

E�I�n �rn ÿ r0n� �
X
n

E�I�n drn ; �16�

where r0n are the equilibrium values at temperature TI, rn are
the eigenvalues of matrix (12), and E

�I�
n are the eigenvalues of

operator HI. The change of the mean energy of the second
subsystem is dhEIIi � ÿ dhEIi, by virtue of the same condi-
tion �Hint;HI �HII� � 0.

In a similar way we write the change of entropies of
subsystems and the magnitude of the small total increment
dS from (14). Using (2) and (2), in the linear approximation
with respect to drn, dsn we get

dS � dhEIi
�

1

TI
ÿ 1

TII

�
: �17�

This expression is not exactÐ it only holds asymptotically on
condition that the perturbation introduced into the initial
equilibrium states of subsystems I and II at the time of
collision is small enough. According to inequality (15), the
quantity dS is always non-negative, which, together with
expression (17), gives a mathematical proof of the Clausius
postulate as applied to the physical conditions described
above.

Let us now consider concrete examples.

2.1 Spin-spin collision
Let us analyze the spontaneous heat transfer on the interac-
tion of two electron spins that occur in homogeneous
permanent magnetic field of strength H. In this model, each
partner of the collision is described by a Hamiltonian of the
form (see Ref. [13])

HI;II � ÿ eH
m0c

s�I;II�z ; �18�

where e andm0 are the charge andmass of electron at rest, c is
the velocity of light, and the z axis coincides with the direction
of the field. The symbol s�I;II�z denotes the conventional
operators of the spin z-components which act on the spinor
variables of the first and the second electrons respectively.
The energy spectra of these subsystems each contain just two
nondegenerate levels

E1;2 � � eH
2m0c

�19�

(numbered in the order of increasing energy). The nondis-
turbed Hamiltonian of the total systemHI �HII is character-
ized by three levels 2E1, E1 � E2, 2E2, of which the second is
doubly degenerate.

The Hamiltonian of interaction we express in antisymme-
trical form

Hint � g�s�I�x s�II�y ÿ s�I�y s�II�x � ; �20�
which ensures compliance with the condition
�Hint;HI �HII� � 0, and the real-valued matrix elements of
transform (11). Over the time of collision tc, the unitary
evolution operator U accomplishes a simple rotation in the
two-dimensional subspace of states j1; 2i (n � 1, n � 2), and
j2; 1i with equal energies [9]:


1; 2jUj1; 2� 

1; 2jUj2; 1�


2; 1jUj1; 2� 

2; 1jUj2; 1�

 !
� cosj ÿ sinj

sinj cosj

� �
;

�21�
where j � gtc=2. The nondegenerate symmetrical states j1; 1i
and j2; 2i do not change.

The initial equilibrium eigenvalues of the density matrix
of the first subsystem r01 and r02 are expressed in the compact
form

r01;2 �
�
2 cosh

�
o
2TI

��ÿ1
exp

�
� o
2TI

�
; �22�

where o � eH=m0c is the resonance frequency of the
paramagnetic quantum transition between levels 2 and 1.
The initial eigenvalues of the density matrix of the second
subsystem s01 and s02 are expressed by a similar formula,
where TI is replaced by TII.
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Unfolding transform (10) with the aid of matrix (21), we
calculate the trace of the matrix and use expression (12) to
find the resulting eigenvalue

r1 � r01 � 2 sin2 j
sinhX

ZIZII
; �23�

where

X � o
2

TI ÿ TII

TITII
; �24�

ZI;II � 2cosh

�
o

2TI;II

�
: �25�

Assuming that the collision parameter gtc 5 1 is small, we
get

dr1 �
1

2
�gtc�2 sinhX

ZIZII
: �26�

According to condition (6), we have, which allows us to
immediately calculate the change of energy of the first
subsystem:

dhE1i � ÿ 1

2
�gtc�2 o sinhX

ZIZII
: �27�

It is easy to see that this energy transfer is only positive when
TII > TI, and vice versa.

The change of total entropy dS (14) in the same
approximation is

dS � �gtc�2X sinhX

ZIZII
: �28�

Thus, dS is positive for all X 6� 0. Comparison of formulas
(28) and (27) reveals that the asymptotic relation (17) holds.

Observe that when further terms of expansion in powers
of gtc are taken into account in the formulas for energy
transfer and increase of total entropy, expression (17) is not
necessarily satisfied. The appropriate correction to the
formula for dS lacks universality, and depends on the
particular properties of the model in question (see Ref. [7]).

2.2 Dipole transitions in an atom
Let us describe the elementary heat exchange processes of
emission and absorption of light quanta when the atom
(subsystem I) is engaged in the interaction with quantum
oscillator of electromagnetic field (subsystem II). Consider
two nondegenerate atomic levels with energies E1 and E2,
and assume that the atom is at the crest of the electric field
of one of the modes of the optical resonator with the
frequency

o � E2 ÿ E1 : �29�

The operator of the field energy of this mode (quantum
oscillator), its eigenvectors and eigenvalues are represented
in the conventional manner [14]

HIIjni � o
�
a�a� 1

2

�
jni � o

�
n� 1

2

�
jni ; �30�

where a is the photon annihilation operator, and n � 0; 1; . . ..

The Hamiltonian of the electrodipole interaction between
the atom and the field oscillator is

Hint � D̂ Ê ; �31�

where D̂ is the operator of projection of the dipole moment
onto the direction of the electric field (for the sake of
simplicity and definiteness we assume plane polarization),
and Ê is the operator of field strength in the appropriate
region of space. The nondiagonalmatrix element of the dipole
moment we consider as a numerical constant for the quantum
transition in question. Since the steady states of optical
electron j1i and j2i in the atom display a definite (positive or
negative) parity, the diagonal matrix elements of the dipole
h1jDj1i and h2jDj2i are zero.

Expressing operator Ê in the standard way in terms of the
canonical variables of the field oscillator [14], we write down
the nonzero matrix elements of perturbation in the energy
representation

h1; njHintj2; nÿ 1i � g
���
n
p

;

h2; njHintj1; n� 1i � g
�����������
n� 1
p

; �32�
where g is the constant of interaction (assumed to be real-
valued), proportional to h1jDj2i. The duration of interaction
tc in this case ought to be interpreted as the characteristic
lifetime of a photon in the resonator, which depends on the
quality of the latter.

Now we again consider the initial thermal states of the
subsystems. Without violating the generality, we assume that
the lower energy level is E1 � 0, and the energy of oscillator is
o=2. Then the equilibrium eigenvalues of the density matrices
are

r01;2 � �1� eÿo=TI�ÿ1 exp

�
ÿ E1;2

TI

�
; �33�

s0n � �1ÿ eÿo=TII� exp
�
ÿ on
TII

�
: �34�

The exact solution describing the evolution of such an initial
state of the complete system under the action of perturbation
(32) can be found in Ref. [9]. Currently we are only interested
in the solution for small values of the parameter gtc, and so we
use the perturbation theory which adds clarity to our
reasoning.

Observe that for finding the magnitude of energy transfer
dhEIi we now only need to calculate the value of dr2. In the
first order of perturbation theory we use expressions (10) and
(12) to write

dr2 � �gtc�2
�
r01�nÿ r02��n� 1�� ; �35�

where

�n �
X
n

ns0n �
�
exp

�
o
TII

�
ÿ 1

�ÿ1
: �36�

After some straightforward algebra we find

dhEIi � ÿ 1

2
�gtc�2 o sinhX

cosh�o=2TI�sinh�o=2TII� : �37�

We see that the direction of spontaneous transfer of energy
once again satisfies the postulate of Clausius. Calculating the
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increase of total entropy dS, we come to the asymptotic
expression (17), as in our previous physical example.

2.3 Heat exchange between light beams
Let us consider the heat exchange associated with the linear
redistribution of energy between two monochromatic light
beams of thermal origin. Different possible forms of a such
process are discussed in book [5]: partial reflection of two
mutually perpendicular beams from a semitransparent skew
mirror, spontaneous pumping of optical energy caused by
scattering by a small inhomogeneity, etc. Here we shall
consider a somewhat refined but physically quite sound
simple model from this range.

Assume that two statistically independent light beams
(two running wave oscillators) travel in one and the same
direction, but have mutually perpendicular directions of
plane polarization. We shall be concerned with the statistical
properties of beams which are also polarized in two
perpendicular planes, but directed at some angle to the
original beams. It is known (see Ref. [5]) that the transition
to the new (rotated) polarizations is mathematically equiva-
lent to the transform of states of two-dimensional isotropic
oscillator with a unitary operator

U � exp

�
a
2
�a�bÿ b�a�

�
; �38�

where a and b are the operators of annihilation of quanta of
the first and the second oscillators (polarizations). Thematrix
elements of such a transform in the energy representation
hn; njUjm; mi for very profound reasons coincide with the
coefficients of the irreducible matrix representations of
unitary group SU�2�, which were known to mathematicians
long before the advent of specifically quantum problems. In
the contemporary language of mathematical physics they can
be readily expressed in terms of spinor algebra [15].

For our purposes, however, it will again suffice to analyze
the asymptotic solution at small a. Observe that angle a in this
model plays the same role as the collision parameter gtc in
previous examples. Expanding the exponential (38) and using
a linear approximation for the nondiagonal elements and a
second-order approximation for the diagonal elements based
on the standard matrix elements of operators a and a�, b and
b� [14], we write out the nonzero terms:

hn; njUjn; ni � 1ÿ a2

8
�2nn� n� n� ;

hn; njUjnÿ 1; n� 1i � a
2

�����������������
n�n� 1�

p
; �39�

hn; njUjn� 1; nÿ 1i � ÿ a
2

�����������������
�n� 1�n

p
:

As before, we consider the initial equilibrium states of
subsystems at temperatures TI and TII. Their oscillator
Hamiltonians HI, HII, eigenvectors jni, jni, and eigenvalues
are given by the usual expressions of the form (30) in terms of
operators a and b respectively. The initial eigenvalues of the
density matrix of the first subsystem are expressed by the
familiar formula

r0n � �1ÿ eÿo=TI� exp
�
ÿ on

TI

�
; �40�

and s0n of the second subsystem are expressed in exactly the
same way in terms of TII (34).

Now let us lookmore closely at the structure of the density
matrix of the complete system hn; njRjm; mi after transform
(10), performed with the approximately unitary matrix (39).
We calculate the diagonal elements up to the terms a2:

hn; njRjn; ni �
X
m;m

r0ms0mjhm; mjU jn; nij2

� r0ns0n

�
1� a2

2
sinhX �n�n� 1�eX ÿ n�n� 1�eÿX�

�
;�41�

where the variable X is once again given by Eqn (24). We see
that the resulting light beams are no longer statistically
independent. By simple summation of the last expression
with respect to n and n, we can prove that the matrix is
normalized.

In addition to the diagonal elements, matrix (10) also
contains elements of the type

hn; njRjnÿ 1; n� 1i ; hn; njRjn� 1; nÿ 1i ; �42�
which are nondiagonal with respect to both pairs of indices at
once. We are not going to write them out explicitly.

It is important that, according to Eqn (12) and (13),
elements of this type do not participate in the shaping of the
`local' matrices hnjrjmi and hnjsjmi, and therefore do not
affect any observable properties of the resulting beams.
Moreover, any direct physical measurement performed on
either of the beams will irreversibly destroy these elements. In
spite of this, it is the presence of these elements that ensures
general reversibility of the situation: using the inverse trans-
form to go back to the initial polarizations (on condition that
nomeasurements have beenmade in themeantime), we arrive
at two independent thermal beams. In other words, we
encounter a physical reality that is not observable in
principle in `local' experiments on both resulting beams but
is nevertheless real. As a matter of fact, the wave function
itself displays such peculiar properties.

It is sometimes said that matrix elements of type (42)
contain information on the mutual coherence of the beams,
although such a statement can hardly add anything to our
understanding. It is likely that this situation currently just
cannot be interpreted in any language except the language of
mathematics.

Unfortunately, such delicate circumstances are not always
fully realized by many physicists. The analysis often reduces
to a purely verbose interpretation of the results of quantum
mechanics. In his late publications W Heisenberg repeatedly
warned that verbal images of not only the lay language but
also of traditional science refer to a view of the world entirely
different from the concepts of quantum theory.

In fact, the foundations of quantum theory are self-
consistent and self-sufficient. Its results do not contradict
the experiments, and do not lead to formal inconsistencies Ð
as long as there is no attempt to interpret quantummechanics
in the language of classical physics, which is definitely not
suited for the purpose.

Now let us finish our calculations. From the structure of
expression (41) we see that the calculation of rn fromEqn (12)
in this case simply implies replacing the quantum number n
with its mean value �n, which in turn is expressed in terms ofTII

by the conventional Planck formula (36). Discarding the
unperturbed component r0n, we write

drn �
a2

2
sinhX

�
�n�n� 1�eX ÿ n��n� 1�eÿX�r0n : �43�
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Calculation of the energy transfer dhEIi reduces to
multiplying drn by on with subsequent summation. Given
that the mean squared number of quanta n2 is given by the
known formula for Bose distribution

n2 �
X
n

n2r0n � �n� 2�n2 ; �44�

after some algebra we get

dhEIi � ÿ a2o
8

sinhX

sinh�o=2TI� sinh�o=2TII� : �45�

Finally, calculating the increment of entropy

dS � ÿ
X
n

ln r0n drn ÿ
X
n

lns0n dsn �46�

with due account for Eqn (6) and a similar condition for dsn,
we prove that this quantity is positive for all X 6� 0, which for
the third time confirms the validity of asymptotic relation
(17).

Now let us briefly summarize the general features of
quantum heat transfer illustrated by the examples above.

(1) In all three examples the direction of spontaneous
energy transfer complies with Clausius' postulate.

(2) The change of total entropy dS is non-negative.

3. Adiabatic processes

Let us now discuss another type of energy action on physical
systems. Here we are dealing with such processes that do not
involve transitions from one level to another. This time we are
concerned with the changes in thermal states associated with
the deformation of the discrete spectrum itself Ð a certain
regular change in the distances between its energy levels.

Observe that the examples discussed in this section are
well known and have been published more than once in
textbooks on statistical thermodynamics. Nevertheless, we
believe that these examples ought to be discussed at least in
brief in the general context of the consistently quantum
approach to the problems of thermodynamics.

3.1 Cooling by demagnetization
Consider again the thermal distribution (22) of `relative
populations' of two energy levels of electron spin in a
permanent magnetic field. If we vary the field strength H
slowly enough without changing the eigenvalues of the
density matrix r01 and r02 (which implies the absence of
quantum transitions), then the temperature of the system will
vary according to the adiabatic law

H
T
� const : �47�

Quantum entropy S remains unchanged in the course of
this process, because the values of r01 and r02 remain the
same.

This simple example clearly illustrates the cause under-
lying the well-known effect of deep cooling resulting from
adiabatic demagnetization of a paramagnetic specimen
initially placed in a thermostat in a strong magnetic field.

3.2 Planck's adiabat
Consider the oscillator of a standing light wave of wavelength
l in a one-dimensional optical resonator (a pair of facing

parallel mirrors) of lengthL. The frequency of the oscillator is
linked to its mode number j by the simple formula

oj � pc
L
j ; �48�

where j � 2L=l is the whole number of half-waves fitting into
the length of the resonator.

We set the initial thermal distribution r0n in the form (40)
at temperature T. If we now slowly change the length of the
resonator (the quality of the resonator is assumed infinite),
the frequency of the selected jth mode will change according
to Eqn (48). The separation between the energy levels of
oscillator will change accordingly, and, given that the values
of r0n remain the same, the temperature will vary according to
the adiabatic law

LT � const : �49�

If we consider the initial thermal states of all modes of the
resonator (field oscillators) at the same temperature, then
the distribution of the mean number of quanta �nj is given by
Planck's formula (36). A sufficiently slow change of the
length of resonator L�t� ensures the equilibrium nature of
this distribution, which is easily checked with the same
formulas.

Such a transformation can be interpreted as the Doppler
shift of the frequency of each photon repeatedly bouncing off
the moving mirror. Naturally, the total number of light
quanta in a given mode is conserved.

It is also quite easy to construct the three-dimensional
extension of this example, defining the spectral modes in a
cubic resonator of volume V � L3. The same train of
arguments will bring us to the known equation of adiabat
for thermal radiation

VT 3 � const : �50�

3.3 Thermal particle in a potential well
For our third example we take the textbook problem of
energy levels of a nonrelativistic particle in infinitely deep
potential well of length L. The energy spectrum of the system
in this case is nondegenerate and is described by the known
formula

En � p2

8m0L2
n2 ; �51�

where n � 1; 2; . . .. The canonical distribution of eigenvalues
rn at temperature T is still given by Eqn (2), so their
constancy, as L is varied, is ensured by the conservation of
the product TL2. In the form more traditional for thermo-
dynamics, we get the adiabat of a classical one-dimensional
gas:

LT 1=2 � const : �52�

The almost obvious three-dimensional extension of this result
gives the conventional adiabat of Boltzmann's ideal gas

VT 3=2 � const : �53�

It is surprising how closely related are this simple quantum
problem and the piston of a steam engine!
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4. Conclusion

Ascertaining the fundamentally quantum origins of the
second law, we cannot bypass the sacramental issue of the
source of irreversibility Ð on which, according to Max
Planck, `the entire thermodynamics stands and falls' (see
Ref. [16]).

The initial increase of the sum of two entropies from zero
is already encountered in the problem of collision of two
particles. The wave function of the two-particle system as a
whole still exists, but becomes less and less local as the
collision partners recede. This unusual situation was actually
predetermined by the very acceptance of themain postulate of
quantum mechanics Ð the principle of superposition of
physical states. Formulated this century, this principle will
apparently become the cornerstone of physical reasoning for
future generations of scientists.

It is more or less natural that the specific features of
quantum collisions will still remain when we take into
consideration the subsequent interactions of particles with
an increasing number of external objects. There is no such
thing as a resonator of infinite quality, and it is not possible to
achieve complete thermal insulation of a gas volume. To say
nothing of the showers of cosmic particles that pass through
any man-made device and take part in the physical processes.

Because of this, it would be a mistake to try to take into
account all possible components of the open system in the
nonlocal quantum state Ð the more so since all our physical
measurements are essentially local. We should rather admit
that the model an isolated dynamic system created for the
sake of convenience is now taking revenge on its creators,
making them seek a way out of the `crazy infinity' like fractals
or dynamic chaos.

Of course, many physical and philosophical questions
remain, but the mathematical scheme of emergence of
empirical irreversibility through quantum nonlocality is
gradually becoming clear.

Another important problem is the necessity of using the
classical continuous time t in the description of quantum
processes. This situation gives rise to a number of funda-
mental inconsistencies, noted by Erwin SchroÈ dinger [17]. In
the problems discussed above this comes up in the description
of switching of the interaction on and off. Even when this
description is done with great care, it is still necessary to use a
quasi-classical approximation of, for example, free motion of
molecules that brings them close and drives the apart. Such an
approach is even aesthetically alien to the pure logic of
quantum theory, but so far it is not possible to do without it.

In any case, the obstinate mechanistic mentality is
gradually losing ground. A new physical vision of the
Universe has to mature, but this will take Time, of this
concept whereof we might have.
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