
Abstract. This paper addresses the fundamental principles of
generalized Boltzmann physical kinetics, which introduces
terms accounting for the variation of the distribution function
over times of the order of the collision time into the Boltzmann
equation. The paper is primarily aimed at clarifying the quali-
tative aspects of the theory whose mathematical formalism was
developed in the author's earlier work. There is a detailed
discussion of how the generalized Boltzmann equation obtained
by themultiscalemethod relates to other alternative approaches
used in the development of kinetic equations. The application of
the generalized Boltzmann equation to certain classical trans-
port processes is discussed.

1. Introduction

In 1872 L Boltzmann, then a mere 28 years old, published his
famous kinetic equation for the one-particle distribution
function f �r; v; t� [1]. He expressed the equation in the form

Df

Dt
� J st� f � ; �1:1�

where J st is the collision (`stoû') integral, and

D

Dt
� q

qt
� v � q

qr
� F � q

qv
�1:2�

is the substantial (particle) derivative, v and r being the
velocity and radius vector of the particle, respectively.

Equation (1.1) governs the transport processes in a one-
component gas which is sufficiently rarefied that only binary
collisions between particles are of importance. While we are
not concerned here with the explicit form of the collision
integral (which determines the change of the distribution
function f in binary collisions), note that it should satisfy
conservation laws. For the simplest case of elastic collisions in
a one-component gas we have�

J stci dv � 0 �i � 1; 2; 3� ; dv � dvx dvy dvz ; �1:3�

where ci are the collisional invariants (c1 � m, c2 � mv,
c3 � mv2=2, m is the mass of the particle) related to the laws
of conservation of mass, momentum, and energy.

Integrals of the distribution function (i.e. its moments)
determine the macroscopic hydrodynamic characteristics of
the system, in particular the number density of particles

n �
�
fdv �1:4�

and the temperature T:

3

2
kT � 1

2
m

�
f �vÿ v0�2 dv : �1:5�

Here k is the Boltzmann constant, and v0 the hydrodynamical
flow velocity.

It follows then that multiplying the Boltzmann integro-
differential equation term by term by collisional invariantsci,
integrating over all particle velocities, and using the conserva-
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tion laws (1.3) we arrive at the differential equations of fluid
dynamics, whose general form is known as the Enskog
equations of motion.

The Boltzmann equation is not of course as simple as its
symbolic form above might suggest, and it is in only a few
special cases that it is amenable to a solution. One example is
that of a Maxwellian distribution in a locally, thermodyna-
mically equilibrium gas in the event when no external forces
are present. In this case the equality

J st � 0 �1:6�
is met, giving the Maxwellian distribution function

f �0� � n

�
m

2pkT

�3=2

exp

�
ÿmV 2

2kT

�
; �1:7�

where V � vÿ v0 is the thermal velocity.
It was much later, years after Boltzmann's death in 1906,

that an analytic method for solving the Boltzmann equation
was developed for the purpose of calculating transport
coefficients. This method, developed in 1916 ± 1917 by Chap-
man and Enskog [2 ± 5], led to explicit expressions for the
coefficients of viscosity, thermal conductivity, diffusion, and
later thermal diffusion in a system with a small parameter
(which for Chapman and Enskog's particular problem of a
nonreacting gas was the Knudsen number, the ratio of the
particle's mean free path to a characteristic hydrodynamic
dimension).

However, even in Boltzmann's days there was a complete
awareness that his equation acquires a fundamental impor-
tance for physics and that its range of validity stretches from
transport processes and hydrodynamics all the way to
cosmology Ð thus fully justifying the keen attention it
attracted and debates it provoked.

Of the many results L Boltzmann derived from his kinetic
equation, one of the most impressive is the molecular-kinetic
interpretation of the second principle of thermodynamics and
in particular of the statistical meaning of the concept of
entropy. It turned out that it is possible to define the function

H �
�
f ln fdv ; �1:8�

(H being for heat) which behaves monotonically in a closed
system.

If the relation between S, the entropy per unit volume of
an ideal gas, and theH-function is written in the form

S � ÿkH� const ; �1:9�

then one can prove the inequality

qS
qt

5 0 : �1:10�

The laconic formula

S � k lnW �1:11�

connecting the entropy S and the thermodynamic probability
W is inscribed on Boltzmann's tombstone.

Ever since their creation, Boltzmann's physical kinetics
and the Boltzmann equation have received severe criticism,
much of which remains of interest even today. Let us
elaborate on this.

To begin with, Boltzmann's contemporaries were very
much in the dark regarding the relation between the
Boltzmann equation and classical mechanics Ð in particu-
lar, with the Newton equation. The Boltzmann equation
was obtained in a phenomenological manner based on
convincing physical arguments and reflects the fact that
the distribution function does not change along the
particle's trajectory between collisions but rather changes
as a result of an `instantaneous' interaction between
colliding particles.

J Loschmidt noted in 1876 that the Boltzmann equation
underlying the H-theorem includes only the first time
derivative whereas the Newton equation contains the second
(`square of time') and hence the equations of motion are
reversible in time. This means that if a system of hard-sphere
particles starts a `backward' motion due to the particles
reversing their direction of motion at some instant of time, it
passes through all its preceding states up to the initial one, and
this will increase theH-function whose variation is originally
governed by reversible equations of motion. The essential
point to bemade here is that the observer cannot prefer one of
the situations under study, the `forward'motion of the system
in time, in favor of the second situation, its `backward'
motion. In other words, the problem of the reversibility of
time arises here.

Although somewhat differently formulated, essentially
the same objection was made in 1896 by Planck's student
E Zermelo, who noted that the H-theorem is inconsistent
with PoincareÂ 's `recurrence' theorem proved in 1890 and
stated that any physical system, even with irreversible
thermodynamic processes operating in it, has a nonzero
probability of returning to its original state. Boltzmann,
himself fully aware of this possibility, wrote in the second
part of his Lectures on the Theory of Gases (see Ref. [6],
p. 251): ``As a result of the motion of gas molecules, the H-
function always decreases. The unidirectional nature of this
process does not follow from the equations of motion which
the molecules obey. Indeed, these equations do not change if
time changes sign.''

There is a well-known example from probability theory
which Boltzmann employed as an argument in his discussions
Ð sometimes very heated ones Ð with Zermelo, Planck and
Ostwald. If a six-sided die is thrown 6000 times, one expects
each side to turn up about 1000 times. The probability of, say,
a six turning up 6000 times in a succession has a vanishingly
small value of �1=6�6000. This example does not clear up the
matter, however. Nor do the two papers which Boltzmann's
student P Ehrenfest wrote in co-authorship with T Afa-
nas'eva-Ehrenfest after the death of the great Austrian
physicist.

Their first model, reported byAfanas'eva-Ehrenfest at the
February 12, 1908 meeting of the Russian Physico-Chemical
Society, involved the application of the H-theorem to the
`plane' motion of a gas [7]. Suppose P-molecules, non-
transparent to one another, start moving normally to axis y
and travel with the same velocity in the direction of axis x.
Suppose further that in doing so they undergo elastic
collisions with Q-particles, squares with sides at an angle of
45� to axis y, which are nontransparent to the molecules and
are all at rest.

It is readily shown that shortly after, all the molecules will
divide themselves into four groups, and it is a simplematter to
write down the change in the number of molecules P in each
group in a certain time Dt and then to define a `planar-gas'
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H-function

H �
X4
i�1

fi ln fi ; �1:12�

where fi is the number ofmolecules of the ith kind, i.e. of those
moving in one of the four possible directions. If all the
velocities reverse their direction, the H-function starts to
increase and reverts to the value it had when the P-molecules
started their motion from the y axis. While this simple model
confirms the PoincareÂ ± Zermelo theorem, it does not at all
guarantee that theH-functionwill decrease when the farmore
complicated Boltzmann model is used.

P and T Ehrenfest's second model [8], known as the
`lottery' model, features two boxes, A and B, and N
numbered balls to which there correspond `lottery tickets'
placed in a certain box andwhich are all in boxA initially. The
balls are then taken one by one from A and transferred to B
according to the number of a lottery ticket, drawn randomly.
Importantly, the ticket is not eliminated after that but rather
is returned to the box. In the event that the newly drawn ticket
corresponds to a ball contained in B, the ball is returned toA.
As a result, there will be approximately N=2 balls in either
box.

Now suppose one of the boxes contains n balls Ð and the
other accordingly Nÿ n balls Ð at a certain step s in the
drawing process. We can then define D, a function which
determines the difference in the number of balls between the
two boxes: D � nÿ �Nÿ n� � 2nÿN. In `statistical' equili-
brium, D � 0 and n � N=2. The dependence D�s� will imitate
the behavior of theH-function in a Boltzmann gas.

This example is also not convincing enough because this
`lottery' game will necessarily lead to a fluctuation in the D
function, whereas Boltzmann kinetic theory excludes com-
pletely fluctuations in the H-function. By the end of his life
Boltzmann went over to fluctuation theory, in which the
decrease of the H-function in time is only treated as the
process the system is most likely to follow. This interpreta-
tion, however, is not substantiated by his kinetic theory since
the origin of the primary fluctuation remains unclear (the
galactic scale of such fluctuation included).

One of the first physicists to see that Boltzmann equations
must be modified in order to remove the existing contra-
dictions was JMaxwell.Maxwell thought highly of the results
of Boltzmann, who in his turn did much to promote Maxwell
electrodynamics and its experimental verification.

We may summarize Maxwell's ideas as follows. The
equations of fluid dynamics are a consequence of the
Boltzmann equation. From the energy equation, limiting
ourselves to one dimension for the sake of simplicity and
neglecting some energy transfer mechanisms (in particular,
convective heat transfer), we obtain the well-known heat
conduction equation

qT
qt
� a2

q2T
qx2

: �1:13�

The fundamental solution of Eqn (1.13) up to the
dimensional constant is

T�x; t� � 1

2
���������
pa2t
p exp

�
ÿ x2

4a2t

�
�1:14�

and represents the temperature at point x at instant t provided
at time t � 0 an amount of heat cr, with r the density and a

the thermal diffusivity of the medium, is evolved at the origin
of coordinates. Defining an argument of a function T as
y � a2twith the dimension of a coordinate squared we obtain

T � 1

2
������
py
p exp

�
ÿ x2

4y

�
: �1:15�

The temperature distribution given by this equation is
unsatisfactory physically. For small values of y, the tempera-
ture at the heat evolution point x � 0 is indefinitely large. On
the other hand, at any arbitrarily distant point x the
temperature produced by an instantaneous heat source will
be different from zero for arbitrarily small times. While this
difference may be small, it is a point of principal importance
that it has a finite value.

As Landau and Lifshitz noted in their classical Course of
Theoretical Physics ([9], p. 283), ``The heat conduction
process described by the equations obtained here has the
property that any thermal perturbation becomes instanta-
neously felt over all space''. This implies an infinitely fast
propagation of heat, which is absurd from the point of view of
molecular-kinetic theory. In the courses of mathematical
physics this result is usually attributed to the fact that the
heat conduction equation is derived phenomenologically,
neglecting the molecular-kinetic mechanism of heat propaga-
tion. However, as has been already noted, the parabolic
equation (1.13) follows from the Boltzmann equation. Some
ofMaxwell's ideas, phenomenological in nature and aimed at
the generalization of the Boltzmann equation, are discussed
in Woods' monograph [10].

Although the examples above are purely illustrative and
the exhaustive list of difficulties faced by Boltzmann kinetic
theory would of course be much longer, it should be
recognized that after the intense debates of the early 20th
century, the search for an alternative kinetic equation for a
one-particle distribution function has gradually levelled off
or, perhaps more precisely, has become of marginal physical
importance. Both sides of the dispute have exhausted their
arguments. On the other hand, the Boltzmann equation has
proven to be successful in solving a variety of problems,
particularly in the calculation of kinetic coefficients. Thus, the
development of Boltzmann kinetic theory has turned out to
be typical for any revolutionary physical theory Ð from
rejection to recognition and further to a kind of `canoniza-
tion'.

Work on the hyperbolic equation of heat conduction was
no longer related directly to the Boltzmann equation but
rather was of a phenomenological nature.Without expanding
the details of this approach, we only point out that the idea of
the improvement of Eqn (1.13) was to introduce the second
derivative with respect to time thus turning Eqn (1.13) into the
hyperbolic form [11]

trel
q2T
qt 2
� qT

qt
� a2

q2T
qx2

; �1:16�

where trel is treated as a certain relaxation kinetic parameter
with the dimensions of time. The wave equation (1.16) leads
to final propagation velocities for a thermal perturbation Ð
although it should be remarked parenthetically that the quasi-
linear parabolic equations may also produce wave solutions.

Following its introduction, stable and high-precision
computational schemes were developed for the hyperbolic
equation of heat conduction [12], whose applications
included, for example, two-temperature nonlocal heat con-
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duction models and the study of the telegraph equation as a
paradigm for possible generalized hydrodynamics [13, 14].
The fundamental shortcoming shared by all these studies is
that they are phenomenological and intuitive and fully alien
to Boltzmann classical kinetic theory. However, the major
conclusion to which we are inevitably led is that any attempt
at `improving' the heat conduction equation will lead to a new
hydrodynamic theory which in turn must follow from a
kinetic equation other than Boltzmann's.

A breakthrough period in the history of kinetic theory
occurred in the late 1930s and early 1940s, when it was shown
through efforts of many scientists Ð of which Bogolyubov
certainly tops the list Ð how, based on the Liouville equation
for the multiparticle distribution function fN of a system ofN
interacting particles, one can obtain a one-particle represen-
tation by introducing a small parameter e � nvB, where n is
the number of particles per unit volume and vB is the
interaction volume [15 ± 19]. This hierarchy of equations is
usually referred to as the Bogolyubov or BBGKY (Bogolyu-
bov ±Born ± Green ±Kirkwood ±Yvon) chain.

We do not present the technical details but refer the reader
to the classical works cited above or, for example, to Ref. [20].
Some fundamental points of the problem are worth mention-
ing here, however.

(1) Integrating the Liouville equation

qfN
qt
�
XN
i�1

vi � qfNqri �
XN
i�1

Fi � qfNqvi � 0 �1:17�

subsequently over phase volumes dOs�1; . . . ; dON

�dOj � drj dvj�, one obtains a kinetic equation for the s-
particle distribution function, with the distribution function
fs�1 in the integral part of the corresponding equation.

In other words, the set of integro-differential equations
turns out to be a linked one, so that in the lowest-order
approximation the distribution function f1 depends on f2.
This means formally that, strictly speaking, the solution
procedure for such a set should be as follows. First find the
distribution function fN and then solve the set of BBGKY
equations subsequently for decreasingly lower-order distribu-
tions. But if we know the function fN, there is no need at all to
solve the equations for fs and it actually suffices to employ the
definition of the function

fs �
�
fN�t;O1; . . . ;ON� dOs�1 . . . dON : �1:18�

We thus conclude that the rigorous solution to the set of
BBGKY equations is again equivalent to solving Liouville
equations. On the other hand, the seemingly illogical solution
procedure involving a search for the distribution function f1
is of great significance in kinetic theory and in nonequilibrium
statistical mechanics. This approach involves breaking the
BBGKYchain by introducing certain additional assumptions
(which have a clear physical meaning, though). These
assumptions are discussed in detail below.

(2) For a nonreacting gas, the Boltzmann equation is valid
for two time scales of distribution functions: one of the order
of the mean free time of the particles, and the other the
hydrodynamic flow time. The Boltzmann equation is invalid
for time lengths of the order of the collision times. Notice that
a change from the time scale to the length scale can of course
be made if desired.

(3) After the BBGKY chain is broken and f2 represented
as a product of one-particle distribution functions (which is

quite reasonable for a rarefied gas), the Boltzmann equation
cannot be written in a classical form with only one small
parameter e and it reduces instead to the Vlasov equation in a
self-consistent field.

(4) Because the Boltzmann equation does not work at
distances of the order of the particle interaction radius (or at
the rB scale), Boltzmann particles are pointlike and structure-
less, and it is one of the inconsistencies of the Boltzmann
theory that the resulting collision cross sections of the
particles enter the theory by the collision integral.

(5) Usually the one-particle distribution function is
normalized to the number of particles per unit volume. For
Boltzmann particles the distribution function is `automati-
cally' normalized to an integer because a pointlike particle
may only be either inside or outside a trial contour in a gas Ð
unlike finite-diameter particles which of course may overlap
the boundary of the contour at some instant of time. Vlasov
[21] attempted to eliminate the inconsistencies of the
Boltzmann theory through the inclusion of additional
dynamical variables in the one-particle distribution function
f�r; v; _v;�v; �v

:
; . . . ; t�.

Another noteworthy point is that the mean free path in
Boltzmann kinetic theory is only meaningful for particles
modelled by hard elastic spheres. Other models face difficul-
ties related, though, to the level of one-particle description
employed. The requirement for the transition to a one-
particle model is that molecular chaos should exist prior to a
particle collision.

The advent of the BBGKY chain led to the recognition
that whatever generalization of Boltzmann kinetic theory is to
be made, the logic to be followed should involve all the
elements of the chain, i.e. the Liouville equation, the kinetic
equations for s-particle distribution functions fs, and the
hydrodynamical equations. This logical construction was
not generally adhered to.

In 1951, N Slezkin published two papers [22, 23] on the
derivation of alternative equations for describing the motion
of gas. The idea was to employ Meshcherski|̄'s variable-mass
point dynamics theory [24], well known for its jet propulsion
applications.

The assumption of a variable-mass particle implies that at
each point a liquid particle, close to this point and moving
with a velocity v, adds or loses a certain mass, whose absolute
velocity vector U differs, as Slezkin puts it, by a certain
appreciable amount from the velocity vector v of the particle
itself. Since there are different directions for this mass to come
or go off, the associated mass flux density vector Q is
introduced.

By applying the laws of conservation ofmass,momentum,
and energy in the usual way, Slezkin then proceeds to
formulate a set of hydrodynamical equations, of which we
will here rewrite the continuity equation for a one-component
nonreacting gas:

qr
qt
� q
qr
� �rv�Q� � 0 : �1:19�

The mass flux density Q is written phenomenologically in
terms of the density and temperature gradients.

Thus, the continuity equation is intuitively modified to
incorporate a source term giving

qr
qt
� q
qr
� rv � q

qr
�
�
D

qr
qr
� b

qT
qr

�
; �1:20�
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where the coefficient D is that of self-diffusion, and b is
related to thermal diffusion. Thus, we now have fluctuation
terms on the right-hand side of Eqn (1.20), which are
generally proportional to the mean free time t and, hence,
after Eqn (1.20) is made dimensionless, to the Knudsen
number which is small in the hydrodynamic limit.

At very nearly the time of the publication of Slezkin's first
paper [23], Vallander [25] argued that the standard equations
of motion are ill grounded physically and should therefore be
replaced by other equations based on the introduction of
additional mass Qi and energy ti fluxes �i � 1; 2; 3�:

Qi � D1
qr
qri
�D2

qT
qri

; ti � k1
qr
qri
� k2

qT
qri

;

where, to quote, ``D is the density self-diffusion coefficient,D2

is the thermal self-diffusion coefficient, k1 is the density heat
conductivity, and k2, the temperature heat conductivity''.

Heuristic and inconsistent with Boltzmann's theory, the
work of Slezkin and Vallander came under sufficiently severe
criticism. Shaposhnikov [26] noted that in these papers,
``which are almost identical in content ... the essential point
is that instead of the conventional expression rv0, additional
effects Ð `concentration self-diffusion' and `thermal self-
diffusion' Ð are introduced into the mass flux density
which, in addition to the macroscopic mass transfer, cause a
molecular mass transfer, much as themacroscopic energy and
momentum transfer in a moving fluid goes in parallel with
analogous molecular transport (heat conduction and viscos-
ity)''. Shaposhnikov then proceeds to derive the equation of
continuity from the Boltzmann equation for a one-compo-
nent gas and shows that the hydrodynamic equations of
Slezkin and Vallander are in conflict with the Boltzmann
kinetic theory.

Note that Slezkin and Vallander also modified the
equations of motion and energy for a one-component gas in
a similar way (by including self-diffusion effects). Possible
consequences of additional mass transfer mechanisms for the
Boltzmann kinetic theory were not analyzed by these authors.

Boltzmann's `fluctuation hypothesis' was repeatedly
addressed by Ya Terletski|̄ (see, for instance, Refs [27, 28])
whose idea was to estimate fluctuations by using the
expression the general theorems of Gibbs (see, for example,
Ref. [29], pp. 85 ± 88) yield for the mean-square deviation of
an arbitrary generalized coordinate. To secure that fluctua-
tions in statistical equilibrium be noticeable, Terletski|̄
modifies the equation of perfect gas state by introducing a
gravitational term, which immediately extends his analysis
beyond the Boltzmann kinetic theory leaving the question
about the irreversible change of the Boltzmann H-function
unanswered.

In recent years, possible generalizations of the Boltzmann
equation have been discussed widely in the scientific litera-
ture. Since the term `generalized Boltzmann equation' has
usually been given to any newmodification published, we will
only apply this term to the particular kinetic equation derived
in Refs [30 ± 32] to avoid confusion.

LWoods (see, e.g., Ref. [33]), following ideas dating back
to Maxwell, introduces in his theory a phenomenological
correction to the substantial first derivative on the left-hand
side of the Boltzmann equation to take account of the further
influence of pressure on transport processes. It is argued that
the equation of motion of a liquid particle may be written as

_v � F� P ;

where P is a certain additional force proportional to the
pressure gradient: P � ÿrÿ1 qp=qr, with the result that the
left-hand side of the Boltzmann equation becomes

Df

Dt
� qf

qt
� v � qf

qr
�
�
Fÿ 1

r
qp
qr

�
� qf
qv
; �1:21�

whereas the collisional term remains unchanged. The phe-
nomenological equation (1.21) has no solid foundation and
does not fall into the hierarchy of Bogolyubov kinetic
equations.

Other suggestions on possible generalizations of the
Boltzmann equation are best described by leaning upon the
basic principles of the generalized Boltzmann physical
kinetics developed by the present author. We now proceed
to discuss these principles.

2. Generalized Boltzmann equation

Of the numerous scales involved in reacting gas problems,
three major groups of scales pertaining to length, time, and
velocity deserve special consideration. In this case the particle
interaction scale rB presents only one of the scales (and the
shortest) in the scale hierarchy in molecular systems, where
the l scale related to the particle mean free path and the
hydrodynamic L scale, for example, the length or diameter of
the flow channel, the characteristic size of the streamline
body, etc., always exist. In gas dynamics, the conditions

rB 5 l5L �2:1�

are usually satisfied. If desired, inequalities (2.1) can be
rewritten in terms of such parameters as the characteristic
collision time, mean free time, and hydrodynamic flow time.
Because the Boltzmann equation is valid only on the l and L
scales, the fundamental problem arises here of how to
adequately describe kinetic processes at all the three scales
of a system's evolution.

The corresponding generalized Boltzmann equation was
derived by the present author in 1987 and was presented in his
lectures on physical kinetics given at Sofia University,
Bulgaria, in the same year. Later, the equation and its
derivation procedure were published in the abstracts of the
papers presented at the 7th Meeting on the Mechanics of
Reacting Media in Krasnoyarsk, Russia, 1988. The equation
reads

Df

Dt
ÿ D

Dt

�
t
Df

Dt

�
� J st : �2:2�

Here t is the mean free time, J st is the Boltzmann collision
integral, and D=Dt is the operator defined by Eqn (1.2).

For a multicomponent reacting gas, the generalized
Boltzmann equation can be rewritten as

Dfa
Dt
ÿ D

Dt

�
ta

Dfa
Dt

�
� J st; el

a � J st; r
a ; �2:3�

where fa is the distribution function for a particle of the ath
kind, ta is themean free time for a particle of the ath kind, and
J st; el
a and J st; r

a are the Boltzmann collision integrals for elastic
and inelastic collisions, respectively.

Since both the derivation of the generalized Boltzmann
equation and some of its applications have subsequently been
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published repeatedly both in Russia and abroad (see, e.g.,
Refs [30 ± 32, 34 ± 38]), and since, further, some of these
derivations are too cumbersome to reproduce, we confine
our attention here to the fundamental physical aspects of this
equation and to some subtleties of its derivation. Our starting
point is the classical Liouville equation (1.17), which describes
the evolution, in 6N-dimensional space, of the N-particle
distribution function fN for a system of N particles whose
motion is completely determined by specifying their positions
ri at a certain instant of time and momenta pi.

We now proceed by applying Bogolyubov's procedure
and writing down the dimensionless equation for the one-
particle distribution function. In doing so, we follow the
multiscale method [39] and introduce three groups of scales:

at the rB level Ð the particle interaction radius rB,
characteristic collision velocity vB0, and the characteristic
collision time rB=vB0;

at the l level Ð the mean free path l, the mean free-flight
velocity vl0, and the characteristic time scale l=vl0, and

at the L level Ð the characteristic hydrodynamic dimen-
sionL, the hydrodynamic velocity vL0, and the hydrodynamic
time L=vL0.

We shall assume that the arguments of the s-particle
function f̂s are the above three groups of scaled variables
and a small parameter e � nvB � nr3B. A hat over a symbol
means that the quantity so labelled is made dimensionless.
The normalization of the distribution functions is given by

f̂s � fs
v 3s
B0

n
: �2:4�

We now write down an asymptotic series for the function f̂s:

f̂s �
X1
v�0

f̂ vs �t̂B; r̂iB; v̂iB; t̂l; r̂il; v̂il; t̂L; r̂iL; v̂iL� ev ; �2:5�

and take the derivatives on the left-hand side of the sth
BBGKY equation

qf̂s
qt̂
�
Xs
i�1

v̂iB � qf̂sqr̂iB
�
Xs
i�1

F̂ij � qf̂sqv̂iB
� a

Xs
i�1

F̂iB � qf̂sqv̂iB

� ÿe 1

N

Xs
i�1

XN
j�s�1

�
F̂ij � q

qv̂iB
f̂s�1�t̂; Ô1; . . . ; Ôs; Ôj� dÔj ;

�2:6�

according to the rules intended for taking the derivatives of
the composite functions. Equating the coefficients of e0 and e1

now yields

qf̂ 0
1

qt̂B
� v̂1B � qf̂

0
1

qr̂1B
� aF̂1 � qf̂

0
1

qv̂1B
� 0 ; �2:7�

qf̂ 11
qt̂B
� v̂1B � qf̂

1
1

qr̂1B
� aF̂1 � qf̂

1
1

qv̂1B

� e2
qf̂ 0

1

qt̂l
� v̂1B � qf̂

0
1

qr̂1l
� e2F̂1 � qf̂

0
1

qv̂1l

� e1e2e3
qf̂ 0

1

qt̂L
� e1v̂1B � qf̂

0
1

qr̂1L
� e2
e3

F̂1 � qf̂
0
1

qv̂1L

� ÿ
Xm
d�1

Nd

N

�
F̂1; j2Nd �

q
qv̂1B

f̂ 0
2; j2Nd

dOj2Nd : �2:8�

Here e1 � l=L denotes the Knudsen number, e2 � vl0=vB0,
e3 � vL0=vl0, a � Fl0=F0; as a scale of the internal forces F0,
the quantity v2B0=rB was used. Equation (2.8) is written down
for a multicomponent gaseous mixture, and the index j
determines the particle attachment to a group Nd

�d � 1; . . . ; m� in the m-component gaseous mixture.
By manipulating Eqn (2.8) we obtain

D1 f̂
1
1

Dt̂B
� d1 f̂

0
1

dt̂l;L
� Ĵ st; 0 ; �2:9�

where we have introduced the notation
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1
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1
1

qr̂1B
� aF̂1 � qf̂

1
1

qv̂1B
;

d1 f̂
0
1

dt̂l;L
� e2

qf̂ 0
1

qt̂l
� v̂1B � qf̂

0
1

qr̂1l
� e2F̂1 � qf̂

0
1

qv̂1l

� e1e2e3
qf̂ 0

1

qt̂L
� e1v̂1B � qf̂

0
1

qr̂1L
� e2
e3

F̂1 � qf̂
0
1

qv̂1L
: �2:10�

The following remarks are of fundamental importance in
connection with the theory being developed.

(1) No restrictions are placed on the values of e1, e2, e3,
including the Knudsen number e1.

(2) The dimensionless distribution functions f̂ have two
indices, of which the upper denotes the order of approxima-
tion in the small-e expansion. The lower index denotes the
number of the equation and the number of particles, both of
which should be accounted for simultaneously when con-
structing the proper distribution function.

(3) Equation (2.9) contains linking not only with respect
to the lower but also with respect to the upper index, implying
that in order to employ the kinetic equation, additional
assumptions should be made to reduce the equation to one
dependent variable.

(4) The collision integral Ĵ st; 0 transforms to the Boltz-
mann collision integral if the pair correlation functions in the
zero-order e-expansion vanish and if one can ignore, at the rB
scale, the explicit effect, on a given trial particle, of the self-
consistent force of internal origin. We shall address this point
in more detail below, when discussing the relationship
between the generalized Boltzmann equations and alterna-
tive derivations of kinetic equations. The zero-order two-
particle distribution function entering the Boltzmann colli-
sion integral is calculated at the l scale and is presented, as
usual, as a product of zero-order one-particle functions; this
means that interacting particles are not correlated prior to a
collision.

(5) The use of this representation makes it possible to
express the collision integral Ĵ st; 0 in the Boltzmannian form.
The presence of superscript `0' in Ĵ st; 0 is physically meant that
even though the variation of the distribution function on the
rB scale is taken into account [the first term on the right-hand
side of Eqn (2.9)], the form of the Boltzmann collision integral
containing the function f 0

1 remains unchanged.
(6) It is crucial that the term D1 f̂

1
1 =Dt̂B in Eqn (2.9),

accounting for the variation of the distribution function on
the rB scale, is of the same order of magnitude as the l- and L-
scale terms. This has nothing to do with whatever approxima-
tions for D1 f̂

1
1 =Dt̂B may later be made to break the

Bogolyubov chain. The (unjustified) formal neglect of the
termD1 f̂

1
1 =Dt̂B reduces Eqn (2.9) to the Boltzmann equation.

This means, in turn, that the rB-scale distribution function is
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left out of consideration in the Boltzmann kinetic theory;
particles featuring in the Boltzmann kinetic theory are
pointlike and structureless. The system can be described in
terms of the independent variables r, p, t, and the change in
the distribution function due to collisions is instantaneous
and is accounted for by the source term Ĵ st; 0.

We now proceed to break the Bogolyubov chain at the rB
scale with respect to the superscript in D1 f̂

1
1 =Dt̂B. This term

allows the exact representation

D1 f̂
1
1

Dt̂B
� D1

Dt̂B

�
qf̂1
qe

�
e�0

�2:11�

using the series (2.5). Note, however, that in the `field'
description the distribution function f1 at the interaction (rB)
scale depends on e through the dynamical variables r, v, t
interrelated by the laws of classical mechanics. We can
therefore use the approximation

D1

Dt̂B

"�
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qe

�
e�0

#
� D1
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"
qf̂1
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�
q�ÿt̂B�
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�
e�0

� qf̂1
qr̂B
� qr̂B
q�ÿt̂B�

�
q�ÿt̂B�

qe

�
e�0
� qf̂1
qv̂B
� qv̂B
q�ÿt̂B�

�
q�ÿt̂B�

qe

�
e�0

#

� ÿ D1

Dt̂B

"�
qt̂B
qe

�
e�0

D1 f̂1

Dt̂B

#

� ÿ D1

Dt̂B

"�
qt̂B
qe

�
e�0

D1 f̂
0
1

Dt̂B

#
� ÿ D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B

�
: �2:12�

The approximation introduced here proceeds against the
course of time and corresponds to the condition that there be
no correlations as t0 ! ÿ1, where t0 is some instant of time
on the rB scale at which the particles start to interact with each
other. In the Boltzmann kinetic theory, the condition of
correlation weakening has the form

lim
t0!ÿ1

W2

�
r1 ÿ v1�tÿ t0�; v1; r2 ÿ v2�tÿ t0�; v2; t0

� � 0 ;

�2:13�
whereW2 is the pair correlation function. For t0 ! ÿ1 (but
not for t0 ! �1!), the condition (2.13) of correlation
weakening, together with the approximation (2.12), single
out a time direction and lead to the time irreversibility in real
physical processes [15]. The next section of this paper
discusses this point in detail in connection with the proof of
the generalized H-theorem.

Reverting now to the dimensional form of the equation,
normalizing the distribution function to the number density
of the particles, and using Eqn (2.12), Eqn (2.9) becomes

Dfa
Dt
ÿ D

Dt

�
ta

Dfa
Dt

�
�
Xm
b�1

��
f 0a f 0b ÿ fa fb

�
gabb db dj dvb :

�2:14�
Here gab is the relative velocity of the colliding particles a and
b, b is the impact parameter, and j the azimuth angle.

Several comments on the generalized Boltzmann equation
(2.14) are in order.

(1) The particle numbered 1 in the multicomponent
system belongs to the ath component of the gas mixture,
which is indicated by the subscript a on the distribution

function symbol. Note the absence of the superscript `0' on
f Ð it does not make sense to carry it along since the
generalized Boltzmann equation contains only functions of
zero order in the expansion in terms of the density
parameter e.

(2) The physical meaning of the parameter ta can be
understood by considering the relation

1

ta
�
�
qe
qt

�
e�0

: �2:15�

Here e is the number of particles of all kinds which happen to
be within the interaction volume of an a particle by the instant
of time t. The right-hand side of Eqn (2.15) is interpreted as
indicating the number of particles within the interaction
volume of a certain particle of sort a per unit time (to
calculate the required derivative, the additional condition
e � 0 is imposed). Clearly, their number is equal to the
number of collisions which the a particle experiences with
the remaining particles in a unit time.

Thus, the parameter ta is the mean time between the
successive collisions of the a particle with particles of all
kinds, defined by

ta � naXm
b�1

Nab

: �2:16�

The number Nab of collisions between particles of a and b
sorts per unit volume in a unit time is calculated using the
functions fa and fb. For theMaxwellian distribution functions
[40]

Nab � 2nanb s2ab

�
2pkT
mab

�1=2

; �2:17�

where sa is the diameter of the particle a, andmab the reduced
mass.

(3) In the hydrodynamic limit and within the hard-sphere
model, the first (Maxwellian) approximation yields

t �0�p � 0:8m ; �2:18�

where p is the static pressure, and m denotes the dynamic
viscosity.

(4) The generalized Boltzmann equation contains not only
second derivatives with respect to time but also mixed (time ±
velocity and time ± coordinate) partial derivatives. Introdu-
cing the `averaged' distribution function

f a � fÿ t
Df

Dt
; �2:19�

it assumes the form

Df a

Dt
� J st� f � �2:20�

similar to the Boltzmann equation (1.1). Now it becomes clear
that the Boltzmann equation, which does not contain
fluctuation terms, is not a closed one, and there is no rigorous
solution (to put it mildly) to the closure problem for the
system ofmoment equations in the theory of turbulence based
on hydrodynamical equations derived from the Boltzmann
equations.
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(5) The parameter t in the generalized Boltzmann
equation can be assigned a clear physical meaning and,
unlike the so-called kinetically consistent difference schemes
[41], to be discussed later, does not lead to secular terms.

(6) The generalized Boltzmann equation in the dimension-
less form is written as [2]

Df̂a

Dt̂
ÿ D

Dt̂

�
Kn t̂a

Df̂a

Dt̂

�
� 1

Kn
Ĵ st ; Kn � e1 : �2:21�

From this it follows that the second term is of the order of the
Knudsen number (Kn) and turns out to dominate the left-
hand side of this equation as the Knudsen number increases.
Needless to say, this is not going beyond the free-molecular
limit of the equation because

D

Dt

Df̂a

Dt̂
� 0 for Kn!1 : �2:22�

The solution of Eqn (2.22) is the equation of Knudsen
flow

Df̂a
Dt
� 0 ; �2:23�

i.e. the analogue of the Liouville equation for a one-particle
distribution function. Note, however, that the second term in
Eqn (2.21) cannot be ignored even for small Knudsen
numbers because in that case Kn acts as a small coefficient
of higher derivatives, with an unavoidable consequence that
the effect of this term will be strong in some regions. The
neglect of formally small terms is equivalent, in particular, to
dropping the (small-scale) Kolmogorov turbulence from
consideration.

In closing this section we want to emphasize the funda-
mental point that the introduction of the third scale, which
describes the distribution function variations on a time scale
of the order of the collision time, leads to the single-order
terms in the Boltzmann equation prior to Bogolyubov-chain-
decoupling approximations, and to terms proportional to the
mean time between collisions after these approximations. It
follows that the Boltzmann equation requires a radical
modification Ð which, in our opinion, is exactly what the
generalized Boltzmann equation provides.

3. Generalized H-theorem
and the time irreversibility

Acenterpiece of the kinetic theory, the BoltzmannH-theorem
provides in fact the kinetic justification for the notion of
entropy. The generalizedH-theorem was proved in 1992 (see,
e.g., Ref. [37]). We now sketch the proof and discuss it from
the viewpoint of time irreversibility.

Let us first consider a simple gas of spherical molecules,
assumed to be uniform and free of external forces. The
generalized Boltzmann equation then takes the form

qf
qt
ÿ q
qt

�
t
qf
qt

�
� J st : �3:1�

Let us introduce the Boltzmann H-function

H �
�
f ln f dv : �3:2�

Multiplying both sides of Eqn (3.1) by ln f and performing
some manipulations we obtain

q
qt
� f ln f � ÿ t

q2

qt 2
� f ln f � � t

1

f

�
qf
qt

�2

ÿ qt
qt

q
qt
� f ln f � � �1� ln f �J st ; �3:3�

whichwhen integrated term by term over all particle velocities
yields

dH

dt
ÿ d

dt

�
t
dH

dt

�
� ÿt

�
1

f

�
qf
qt

�2

dv�
�
�1� ln f �J st dv ;

�3:4�

where the definition of theH-function has been used.
Now because the inequality

ÿt
�
1

f

�
qf
qt

�2

dv�
�
�1� ln f �J st dv4 0 �3:5�

is satisfied it turns out that

d

dt

�
Hÿ t

dH

dt

�
4 0 : �3:6�

We now define theH a-function such that

H a � Hÿ t
dH

dt
: �3:7�

Then the following inequality holds

dH a

dt
4 0 ; �3:8�

which expresses the conclusion of a generalizedH-theorem.
The lower bound on the generalized H a-function is

determined by the same factors determining the lower
bound for the H-function. The following two statements can
be proved [32]:

(1) if

dH

dt
4 0 ; then also

dH a

dt
4 0 ; �3:9�

(2) if at a certain stage of the system's evolution 1

dH

dt
5 0 ; then also

dH a

dt
5 0 ; �3:10�

which is forbidden by inequality (3.8).
For a multicomponent gas, the analogue of Eqn (3.1) has

the form

qfa
qt
ÿ q
qt

�
ta

qfa
qt

�
� J st

a ; �3:11�

and as a result the H-function for a component a
�a � 1; . . . ; m� of the mixture can be written as

Ha �
�
fa ln fa dva : �3:12�

1 The possibility of there being a fluctuation of H growing exponentially

with time in the equilibrium state (for H a � 0) is ruled out by setting the

constant of integration equal to zero, because a spatially uniformmodel of

a physical system is incorrect in this case (see p. 619).
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The remaining arguments go through exactly as before, and
inequality (3.8) becomes

dH a
a

dt
4 0 : �3:13�

Summation over all components now yields the H-
function for the multicomponent gas mixture:

H �
X
a

fa ln fa dva ; �3:14�

with

H a � Hÿ
Xm
a�1

ta
dHa

dt
; �3:15�

and the inequality

dH a

dt
4 0 ; �3:16�

the latter following from Eqn (3.13).
If bimolecular chemical reactions

Aa � Ab $ Ag � Ad �a; b; g; d � 1; . . . ; m�
proceed in the multicomponent gas mixture, then applying
the principle of microscopic reciprocity we again find the H-
theorem to be formulated in terms of Eqn (3.16).

If we now turn to the entropy description then, within an
insignificant constant S0 specified only by the entropy
reference adopted, we arrive at the classical relation

S � ÿkH� S0 ;

leading to the thermodynamic inequality

dS

dt
5 0 : �3:17�

Let us now examine the latter inequality from the cause-
and-effect as well as the time irreversibility points of view. The
first question to be answered is how exactly the generalized
Boltzmann physical kinetics gave rise to inequality (3.16)
leading to the entropy increase (3.17) and to the existence of
irreversible processes. This effect is a direct consequence of
approximation (2.12), which involves motion against the
flying direction of an `arrow of time' with the result that the
state of a system at a given instant is predetermined by
collisions that occurred in the past.

We introduce the physical causality principle as an
operator which of all the events that may occur at a given
time `cuts out' only that Ð certain Ð event, whose causes lie
in the past and which translates the certain event under study
at the moment to the class of causal relations for some
potential event in the future. It is in this way that the time
irreversibility enters the theory. In other words, the causality
principle cannot be ascribed anymeaning unless the notion of
time irreversibility is used.

What will happen if we abandon the causality principle
formally in this particular case? If one removes the additional
assertion that cause precedes effect, then onemay replace t by
ÿt formally in Eqn (3.4), to obtain

dH a0

dt
ÿ t

�
1

f

�
qf
qt

�2

dv

� 1

4

�
ln

ff1
f 0f 01
� f 0f 01 ÿ ff1�gb db dj dv1 ; �3:18�

where

H a0 � H� t
dH

dt
;

or in a different way

dH a0

dt
ÿ t

�
1

f

�
qf
qt

�2

dv4 0 : �3:19�

This says nothing about the sign of the derivative dH a0=dt.
Inequality (3.19) may also retain its truth in the case where

dH a0

dt
> 0 ;

because this quantity is decreased by subtracting the non-
negative integral

t
�
1

f

�
qf
qt

�2

dv ;

which does not change when t is replaced by ÿt.
Thus, the principle of increase of entropy is a direct

consequence of the principle of time irreversibility.
We now proceed to examine the relation between the

generalized Boltzmann equation obtained by the multiscale
method and alternative approaches to the derivation of
kinetic equations.

4. Generalized Boltzmann equation and the
`physical' derivation of the Boltzmann equation

Let us consider the relationship between the generalized
Boltzmann equation and the so-called `physical' derivation
of the Boltzmann equation. Of course, the discussion below
will no longer be rigorous, but it will nevertheless be useful for
understanding the situation. For this purpose consider the
change in the number of particles of the sort awhich at instant
of time t fill a volume dr t dv ta in phase space. In the absence of
collisions, after a time interval dt these particle will occupy the
volume dr t�dt dv t�dta , and the difference

fa
�
r�t� dt�; va�t� dt�; t� dt

�
dr t�dt dv t�dta

ÿ fa�r; va; t� dr t dv ta
will be zero.

In the presence of external forces Fa, for example, Lorentz
forces, there is generally no reason to consider that elemen-
tary phase volume does not change with time, and the
Boltzmann equation is therefore written as

fa

�
r� va dt� 1

2
Fa�dt�2; va � Fa dt� 1

2

qFa

qt
�dt�2; t� dt

�
� d
�
r t�dt; v t�dta

�
d
�
r t; v ta

� ÿ fa�r; va; t� � J st
a dt : �4:1�

This equation retains the terms of order bigO
��dt�2�, and the

calculation of the Jacobian gives

d
�
r t�dt; v t�dta

�
d
�
r t; v ta

� � 1�
"�

qa
ma

�2

B 2 ÿ 1

2

q
qr
� Fa

#
: �4:2�

Here qa is the charge of a particle,B is themagnetic induction,
and Fa, the external force acting on the unit mass of a
particles.
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Expanding the distribution function in a series and
keeping the terms of order big O

��dt�2�, we obtain the
following integro-differential difference equation

qfa
qt
� va � qfaqr � Fa � qfaqva

� t

"
Fa � qfaqr �

qFa

qt
� qfa
qva

� 2

�
qa
ma

�2

B 2fa ÿ fa
q
qr
� Fa � qfa

qva
Fa :

q
qva

Fa

� qfa
qva

va :
q
qr

Fa � q2fa
qva qva

: FaFa � 2
q2fa
qva qr

: vaFa

� 2
q2fa
qva qt

� Fa � q2fa
qt 2
� 2

q2fa
qr qt

� va � q2fa
qr qr

: vava

#
� J st

a ;

�4:3�

where t � Dt=2 is the difference interval.
Equation (4.3) should be treated as a source of differ-

ential-difference approximations for the left-hand side of the
Boltzmann equation (4.1). Of course, the differential-differ-
ence operator in Eqn (4.3) is not identical to the differential
operator in the generalized Boltzmann equation (2.14) Ð the
parameter t is just the time difference interval, and formally
increasing it gives rise to secular terms on the left-hand side of
Eqn (4.3). The t-parametrized differential operator in Eqn
(4.3) is formally identical to the corresponding operator of the
generalized Boltzmann equation provided t � const, the
magnetic induction B � 0, and the external forces acting on
the system are independent of r.

If we put the external forces Fa to be zero, Eqn (4.3) takes
the form

Dfa
Dt
� t

D

Dt

Dfa
Dt
� J st

a ; �4:4�

where

D

Dt
� q

qt
� va � qqr : �4:5�

The question which remains to be answered regarding the
formal `physical' derivation of the Boltzmann equation is
how to achieve a highly accurate approximation for J st

a . The
parameter t in Eqn (4.4) is a constant which has the opposite
sign as compared to its counterpart in Eqn (2.14).

Is it possible to obtain a differential-difference approx-
imation with a minus sign for the second substantial
derivative? The answer is a definite yes: the approximation
of the form

fa�t; r; va� ÿ fa�tÿ Dt; rÿ Dr; va ÿ Dva�

�
�
Dfa
Dt

�
t

Dtÿ �Dt�
2

2

�
D

Dt

Dfa
Dt

�
t

� . . . �4:6�

directed `backward' in time leads to the balance equation

Dfa
Dt
ÿ t

D

Dt

Dfa
Dt
� J st

a ; t � Dt
2
: �4:7�

Mathematically, both differential-difference approxima-
tions are entirely equivalent, and it is only for reasons of
stability that one may be preferred over the other. The
assumptions mentioned above result in the differential-
difference approximation being identical to the generalized
Boltzmann equation Ð provided, of course, that the time

interval Dt � const of the difference scheme is used formally
as two times the mean free time in the generalized Boltzmann
kinetic theory.

Thus, two mathematically equivalent difference approx-
imations (4.4) and (4.7) have various physical meaning [cf.
Eqn (2.12)]: while one involves the notion of the `predicted
future', the other relates to the `predetermined past' corre-
sponding to the principle of time irreversibility. The impor-
tant point to make is that as far as the `physical' derivation of
the Boltzmann equation is concerned, this fact is of no
significance because the evolution of the distribution func-
tion on the rB scale is not considered at all and, as a
consequence, both these approximations lead to the same
result.

Thus, Boltzmann's result dH=dt4 0, a consequence of
the phenomenological derivation of the Boltzmann equation,
may be obtained without explicitly introducing the hypoth-
esis of time irreversibility, whereas its analogue in the
generalized theory requires that the time irreversibility
assumption (alias, the causality principle) be explicitly used.

We turn next to consider the theory of kinetically
consistent difference schemes (see, for example, Refs [41 ±
43]). The basic ideas of the theory can be traced back to
Reitz's (see, e.g., Ref. [44]) method of splitting physical
processes into a kinetic and a hydrodynamic stage when
addressing transport problems. Unlike paper [44], the theory
of kinetically consistent difference schemes uses the expan-
sion of the distribution function as a Taylor series in powers
of vt (t being a certain arbitrary parameter determined by the
ratio of the mesh width h in space to the characteristic
hydrodynamical velocity vh) correct to third order:

f j�1�r; v; t j�1� � f j
0 ÿ t

X3
a�1

qf j
0

qra
� t2

2

X3
a; b�1

q2f j
0

qra qrb
vavb � . . . ;

�4:8�

where f0 is the Maxwellian distribution function, and j refers
to the step number in time.

Work [41] dealing with the theory of kinetically consistent
difference schemes introduces three parameters

t x � hx

2vh
; t y � hy

2vh
; t z � hz

2vh
; �4:9�

which are determined by the space step along the coordinates
x, y, z. To find the values of the gas-dynamic parameters at
the next time layer t � t j�1, the expansion above is multiplied
by the mechanical balance invariants and integrated over the
molecular velocities of a one-component gas. This yields a
system of differential-difference equations whose right-hand
sides, unlike those of classical hydrodynamics, contain
additional terms which are a combination of second spatial
derivatives multiplied by the particular time step employed.

The approach of Ref. [43] does not lead to any new
hydrodynamic picture. Furthermore, the derivation of Eqn
(4.3) suggests that in the general case this approach does not
even provide a second-order approximation either to the
Boltzmann equation or to the generalized hydrodynamical
equations, the latter being in fact a direct consequence of the
generalized Boltzmann equations (see also Refs [35, 36]).
Attempts to justify the theory of kinetically consistent
difference schemes by using a modified Boltzmann equation
with an additional relaxation term break down because the
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Boltzmann equation works through the times of the order of
the relaxation time. In particular, this approximation Ð
unlike the generalized hydrodynamical equation and the
generalized Boltzmann equation Ð does not contain any
mixed partial time ± space derivatives, nor second partial time
derivatives. As a consequence, the theory of kinetically
consistent difference schemes is of no value when dealing
with such problems as (a) the adequatemodelling of turbulent
flows, (b) the construction of a generalized Navier ± Stokes
approximation, (c) the inclusion of external forces, (d) the
clarification of the physical meaning of the parameter twhich
gives rise to secular terms in equations, and (e) the assessment
of the impact the unavoidable modification of the collisional
integral has on the hydrodynamical equations. As pointed out
by Klimontovich [45], ``the common drawback of papers [41,
46] is, in particular, that the additional terms they introduce
violate the invariance of the kinetic equation with respect to
the Galilean transformation. Here too, no sufficient justifica-
tion was given for introducing additional terms''.

An analogy might be appropriate here. Suppose we wish
to write the finite-difference approximation for the second
Newton law, �x � F=m. Depending on the accuracy of the
scheme used, finite-difference increments of the second and
higher orders may appear in the finite-difference approxima-
tion, but this does not mean that reverting to the differential
formulation we shall obtain a new law of nature of the type
�x� t�x

:� F=m. The reason is quite obvious: one cannot obtain
a qualitatively new physical description just by using a
formally higher-level difference approximation for a classical
equation.

In his approach, instead of the usual Liouville equation,
Klimontovich [45, 47] used a kinetic equation obtained from
the Liouville equation by adding a source (or, to use the
terminology of Ref. [45], p. 319, `seeding') term which when
written in the t-form is

fN�r; v; t� ÿ ~fN�r 0; v 0; t�
tph

:

This term, according to Ref. [45], ``describes the `tuning' of
the microscopic particle distribution to the corresponding
smoothed distribution''.

In the transition to a one-particle description later in the
derivation, the parameter tph is taken to be t. The resulting
equation then turns out to be a combination of the Boltzmann
and Fokker ± Planck descriptions (the differential part of the
Boltzmann equation remaining unchanged), with the addi-
tional `collision integral' (see Ref. [45], p. 251)

I�R��R; v; t� � q
qR

�
D

qf
qR
ÿ bF�R� f

�
; �4:10�

which accounts for the smoothing process with respect to the
size of the `point', where D is one of the three kinetic
coefficients (kinematic viscosity, thermal diffusivity, or self-
diffusion coefficient), and b is the mobility. It is assumed that
the three kinetic coefficients are all the same and that the
difference between them may be accounted for by using
another, somewhat more complicated smoothing function.

An analogy can be drawn between the continuity equation
due to Slezkin [22, 23] and that due to Klimontovich [45].
Other analogies of hydrodynamical equations are not worth
discussing here in our view. As a matter of fact, a source term
in the Liouville equation may result from an incomplete

statistical description of a reacting system or may be due to
the presence of radiation or nonholonomic constraints of
some special types, and the size of Klimontovich's `point' is
determined by the rB-scale left out of account earlier in the
Boltzmann equations.

5. Generalized Boltzmann equation and iterative
construction of higher-order equations
in the Boltzmann kinetic theory

Let us consider the relation between the generalized Boltz-
mann equation and the iterative construction of higher-order
equations in the Boltzmann kinetic theory. Neglecting
external forces, the Boltzmann equation for a spatially
homogeneous case, with the right-hand side taken in the
Bhatnagar ±Gross ±Krook (BGK) form, is given by

qfa
qt
� ÿ fÿ f0

trel
; �5:1�

where trel is the relaxation time, and f0 the equilibrium
distribution function. From Eqn (5.1) it follows that

f � f0 ÿ trel
qf
qt
� f0 ÿ trel

qf0
qt

: �5:2�

The second iteration is constructed in a similar fashion giving

f � f0 ÿ trel
q
qt

�
f0 ÿ trel

qf
qt

�
� f0 ÿ trel

qf0
qt
� t2rel

q2f0
qt 2

:

�5:3�

Thus we obtain for the distribution function the series
representation

f �
X1
i�0
�ÿ1�i q

if0
qt i

t irel ; �5:4�

where the zero-order derivative operator corresponds to the
distribution function f0.

From Eqn (5.3) there follows an analogue of the kinetic
equation (5.1) for the second approximation:

ÿtrel q
2f0
qt 2
� qf0

qt
� ÿ fÿ f0

trel
: �5:5�

It is important to note that the second time derivative of the
distribution function f0 in Eqn (5.5) occurs with a minus sign.

In the general case we have the expansionX1
i�1

t iÿ1rel �ÿ1�iÿ1
q if0
qt i
� ÿ fÿ f0

trel
: �5:6�

We now proceed to show that the generalized Boltzmann
equation permits an iterative procedure similar to that just
described. To this end we can write the second approximation
in the form

D1 f̂
1
1

Dt̂B
� ÿ D1

Dt̂B

�
t
D1 f̂1

Dt̂B

�
� ÿ D1

Dt̂B

�
t
D1

Dt̂B
� f̂ 0

1 � f̂ 11 �
�

� ÿ D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B
� t

D1 f̂
1
1

Dt̂B

�
� ÿ D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B

�
� D1

Dt̂B

"
t
D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B

�#
; �5:7�

using approximation (2.12).
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Higher approximations follow the same pattern. Thus one
obtains

D1 f̂
1
1

Dt̂B
� ÿ D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B

�
� D1

Dt̂B

"
t
D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B

�#

ÿ D1

Dt̂B

(
t
D1

Dt̂B

�
t
D1

Dt̂B

�
t
D1 f̂

0
1

Dt̂B

��)
� . . . �5:8�

Assuming a spatially homogeneous system free of forces,
we obtain

qf 11
qt
�
X1
i�2

t iÿ1�ÿ1�iÿ1 q
if 0
1

qt i
�5:9�

from Eqn (5.8) with t � const. It follows that in this
particular case the generalized Boltzmann equation takes
the formX1

i�2
t iÿ1�ÿ1�iÿ1 q

if 0
1

qt i
� qf 0

1

qt
� J st; 0 �5:10�

or, collecting terms on the left, one findsX1
i�1

t iÿ1�ÿ1�iÿ1 q
if 0
1

qt i
� J st; 0 : �5:11�

The analogy between Eqns (5.6) and (5.11) is clearly seen.
In solid-state problems Ð concerning, for example,

charge and energy transfer in nondegenerate semiconductors
Ð one solves the Boltzmann equation iteratively for a
spatially homogeneous system in the presence of an external
electromagnetic field. For the BGK-approximated collision
integral, the Boltzmann equation becomes

F
qf
qvz
� ÿ fÿ f0

trel
�5:12�

(for a z-directed external force F), and the distribution
function is written as

f � f0 ÿ trel F
qf
qvz

: �5:13�

In a first approximation, we obtain

f � f0 ÿ trel F
qf0
qvz

: �5:14�

Substituting Eqn (5.14) into the left-hand side of Eqn (5.12)
yields the second-order approximation,

f � f0 ÿ trel F
qf0
qvz
� t2relF

2 q2f0
qv2z
� . . . ; �5:15�

provided the external force F acting on the particle is velocity-
independent. The dots in this equation indicate that the
procedure of constructing the series may be continued by
this algorithm. From Eqn (15), the second-order accurate
equation is

F
qf0
qvz
ÿ trel F 2 q2f0

qv2z
� ÿ fÿ f0

trel
: �5:16�

This equation turns out to be a particular case of the
generalized Boltzmann equation if the system under study is

stationary, spatially homogeneous, and if the applied field is
sufficiently weak Ð giving hope for the convergence of the
series (5.15), in which the corresponding derivatives are taken
of the equilibrium distribution function. The representation
of the distribution function in a series form, Eqns (5.15) or
(5.4), is only possible when one uses the BGK model for the
Boltzmann collision integral.

Thus, the generalized Boltzmann equation automatically
captures the second iteration in the Boltzmann theory for
t � trel, but it does not of course presuppose the fulfillment of
all the conditions listed. Note also that the appearance of the
minus sign in the right-hand sides of Eqns (5.1) and (5.12) in
the BGK approximation has a deep physical meaning: this
sign makes it possible to prove the H-theorem for the BGK-
approximated Boltzmann equation and is related directly to
the approximation proceeded against the course of time.

6. Generalized Boltzmann equation and the
theory of kinetic equations with time delay

It is of interest to examine the relation between the Boltzmann
equation and the theory of kinetic equations accounting for
time delay effects. We resort to the Bogolyubov equation for
determining the evolution of the s-particle distribution
function in a one-component gas:

qfs
qt
�
Xs
i�1

vi � qfsqri
�
Xs
i�1

Fi � qfsqvi
�
Xs
ij�1

Fij � qfsqvi

� ÿ 1

N

Xs
i�1

Xs
j�s�1

Fij � qfsqvi
: �6:1�

In writing Eqn (6.1) the normalization condition�
fs dO1 . . . dOs � Ns �6:2�

was used and it was also assumed that the dynamic state of the
system is fully described by the phase variables Oi.

Introducing the correlation functionsW, the two-particle
distribution function may be written as

f2�O1;O2; t� � f1�O1; t� f1�O2; t� �W2�O1;O2; t� : �6:3�

At the rB scale, variables O1 and O2 turn out to be correlated,
but because of definition (6.3) this effect is accounted for by
the function W2. Consequently, in this approach it is the
integral term containing W2 which must lead to the
Boltzmann (or a more general) collision integral.

The BBGKY-1 equation has the form

qf1
qt
� v1 � qf1qr1

� F1 � qf1qv1
� 1

N

XN
j�2

qf1
qv1
�
�
Fij f1�2� dO2

� ÿ 1

N

Xs
j�2

�
Fij � qW2

qv1
dO2 : �6:4�

The internal force F
�in�
1 exerted on a given particle 1 from

the side of particle 2 at its arbitrary location in phase space
may be written as

1

N

XN
j�2

�
F1j f1�2� dO2 � F

�in�
1 : �6:5�
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Here, as usual, the symbol `2', the argument of the one-
particle distribution function f1�2�, denotes the phase vari-
ables of the particle 2. For identical particles, one finds

F
�in�
1 � Nÿ 1

N

�
F12 f1�2� dO2 �

�
F12 f1�2� dO2

�
�
F1j f1� j � dOj � j � 2; 3; . . .� : �6:6�

If the self-consistent force acting on a probe particle in the
one-particle picture is introduced as the sum

F
�sc; 1�
1 � F1 � F

�in�
1 �6:7�

of the external force F1 and the internal force F
�in�
1 defined by

Eqn (6.5), then we arrive at the equation

qf1
qt
� v1 � qf1qr1

� F
�sc; 1�
1 � qf1

qv1
� ÿ 1

N

XN
j�2

F1j � qW2

qv1
dO2 : �6:8�

The BBGKY-2 equation has the form

qf2
qt
� v1 � qf2qr1

� v2 � qf2qr2
� F1 � qf2qv1

� F2 � qf2qv2

� F12 � qf2qv1
� F21 � qf2qv2

� ÿ 1

N

XN
j�3

��
F1j � qf3qv1

� F2j � qf3qv2

�
dO3 : �6:9�

We next express the distribution function f3 in terms of the
correlation functions as

f3�O1;O2;O3; t� � f1�O1; t� f1�O2; t� f1�O3; t��
� f1�O1; t�W2�O2;O3; t� � f1�O2; t�W2�O1;O3; t��
� f1�O3; t�W2�O1;O2; t� �W3�O1;O2;O3; t� �6:10�

and apply the theory of correlation functions to obtain an
approximation for collision integrals.

Assumption 1. The correlation function W3 may be
neglected.

Using Eqn (6.2), Eqn. (6.10) can be put into the form

f3�1; 2; 3� � f1�3� f2�1; 2� � f1�2�W2�1; 3� � f1�1�W2�2; 3� :
�6:11�

Substituting Eqn (6.11) into Eqn (6.9) and introducing self-
consistent forces in the framework of a two-particle descrip-
tion � j � 3; 4; 5; . . .�, viz.

F
�sc; 2�
1 � F1 � F12 �

�
F1j f1� j � dOj ;

F
�sc; 2�
2 � F2 � F21 �

�
F2j f1� j � dOj ; �6:12�

we arrive at the equation for f2�1; 2�:
qf2
qt
� v1 � qf2qr1

� v2 � qf2qr2
� F

�sc; 2�
1 � qf2

qv1
� F

�sc; 2�
2 � qf2

qv2

� f1�2�
�
qf1�1�
qt
� v1 � qf1�1�qr1

� F
�sc; 1�
1 � qf1�1�

qv1

�
� f1�1�

�
qf1�2�
qt
� v2 � qf1�2�qr2

� F
�sc; 1�
2 � qf1�2�

qv2

�
; �6:13�

making use of the results

qf1�1�
qt
� v1 � qf1�1�qr1

� F
�sc; 1�
1 � qf1�1�

qv1

� ÿ
�
F13 � qW2�1; 3�

qv1
dO3 ; �6:14�

qf1�2�
qt
� v2 � qf1�2�qr2

� F
�sc; 1�
2 � qf1�2�

qv2

� ÿ
�
F23 � qW2�2; 3�

qv2
dO3 : �6:15�

In writing Eqn (6.13) we have used the following assumption.
Assumption 2. The polarization effects leading to the

integrals

ÿ 1

N

XN
j�3

�
F1j � q

qv1

ÿ
f1�1�W2�2; 3�

�
dO3 ;

ÿ 1

N

XN
j�3

�
F2j � q

qv2

ÿ
f1�2�W2�1; 3�

�
dO3 ;

may be ignored.
We next introduce the substantial derivatives

Df2�1; 2�
Dt

� qf2
qt
� v1 � qf2qr1

� v2 � qf2qr2

� F
�sc; 2�
1 � qf2

qv1
� F

�sc;2�
2 � qf2

qv2
; �6:16�

D1 f1�1�
Dt

� qf1
qt
� v1 � qf1qr1

� F
�sc; 1�
1 � qf1

qv1
; �6:17�

D2 f1�2�
Dt

� qf1
qt
� v2 � qf1qr2

� F
�sc; 1�
2 � qf1

qv2
; �6:18�

which when substituted into Eqn (6.13) yield

D f2�1; 2�
Dt

� f1�2� D1 f1�1�
Dt

� f1�1� D2 f1�2�
Dt

: �6:19�
Let us now integrate with respect to time along the phase

trajectory in a six-dimensional space:

f2�1; 2� � f2; 0�1; 2� �
�t0�t
t0

f1�2� D1 f1�1�
Dt

dt

�
�t0�t
t0

f1�1� D2 f1�2�
Dt

dt ; �6:20�

where f2; 0�1; 2� denotes the initial value of the two-particle
distribution function.

Assumption 3. We resort to the Bogolyubov condition of
the weakening of initial correlations corresponding to a
certain initial instant of time t0 [see Eqn (2.13)]:

lim
t0!ÿ1

W2

�
r1�t0ÿt�; v1�t0ÿt�; r2�t0ÿt�; v2�t0ÿt�; t0ÿ t

� � 0 :

�6:21�
This condition implies that (a) we are dealing with infinite
motion in a two-body problem, (b) we may speak of the
condition of molecular chaos being fulfilled prior to the
collision of the particles 1 and 2, which corresponds to the
approximation in Eqn (2.12) proceeded against the course of
time, and (c) Eqn (6.21) is written at the rB scale even though
no scale is introduced explicitly.
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Because of assumption 3, Eqn (6.20) may be represented
in the form

f2�1; 2� � f1
ÿ
r1�t0�; v1�t0�; t0

�
f1
ÿ
r2�t0�; v2�t0�; t0

�
�
�t0�t
t0

f1�2� D1 f1�1�
Dt

dt�
�t0�t
t0

f1�1� D2 f1�2�
Dt

dt : �6:22�

Assumption 4.The collision of the probe particles, 1 and 2,
is dominated by the forces of their internal interaction, so that
[see Eqns (6.7) and (6.12)] one obtains

F
�sc; 2�
1 � F

�sc; 1�
1 ; F

�sc; 2�
2 � F

�sc; 1�
2 : �6:23�

Equation (6.22) then becomes

f2�1; 2� � f1
ÿ
r1�t0�; v1�t0�; t0

�
f2
ÿ
r2�t0�; v2�t0�; t0

�
�
�t0�t
t0

D12

Dt

�
f1�r1; v1; t� f2�r2; v2; t�

�
dt : �6:24�

Integrating by parts we find

f2�1; 2� � f1�r1; v1; t� f2�r2; v2; t�

� t
�
D12

Dt

h
f1
ÿ
r1�t�; v1�t�; t0

�
f1
ÿ
r2�t�; v2�t�; t0

�i�
t�t0

ÿ
�t0�t
t0

t
D12

Dt

D12

Dt

�
f1�1� f1�2�

�
dt : �6:25�

Assumption 5.Delay is sufficiently small that linearization
in delay time can be used.

The sumof the first two terms in Eqn (6.25) determines the
product f1�1� f1�2� at the instant of time t in the linear
approximation in t, the velocities of particles 1 and 2
corresponding to their initial values at time t0 (taken to be
t0 � ÿ1 on the rB scale).

If we now substitute f2�1; 2� from Eqn (6.25) into the
BBGKY-1 equation, we obtain

qf1�1�
qt
� v1 � qf1�1�qr1

� F1 � qf1�1�qv1

� ÿ
�
F12 � q

qv1

h
f1
ÿ
r1; v1�ÿ1�; t

�
f1
ÿ
r2; v2�ÿ1�; t

�i
dO2

�
�
F12 � q

qv1

��t0�t
t0

t
D12

Dt

D12

Dt

�
f1�1� f1�2�

�
dt

�
dO2 : �6:26�

The first integral on the right corresponds to the classical
form of the Bogolyubov collision integral and can be
transformed in the usual manner to the Boltzmann collision
integral [15]. The second collision integral accounts for the
time delay effect and is amenable to a differential approxima-
tion analogous to Eqn (2.12). To obtain this approximation,
the following assumption is made.

Assumption 6.For an arbitrary location of particle 2 in the
phase space of interacting particles 1 and 2, the dependence
on the integrand inside the braces in the time delay integral

J st
2 �

�
F12 � q

qv1

��t0�t
t0

t
D12

Dt

D12

Dt

�
f1�1� f1�2�

�
dt

�
dO2

�6:27�

is determined by the acting internal force F12 via the change in
the particle velocities 2.

From Eqn (6.27) we have [cf. Eqn (4.7)]

J st
2 �

�
F12 � q

qv1

��t
t0

t 0
D12

Dt 0
D12

Dt 0
�
f1�1� f1�2�

�
dt 0
�
dO2

�
��

F12 � q
qv1
� F21 � q

qv2

�
�
��t

t0

t 0
D12

Dt 0
D12

Dt 0
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f1�1� f1�2�
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dt 0
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dO2

� tr

�
D12

Dt

D12

Dt

�
f1�1� f1�2�

�
dO2 � tr

D1

Dt

D1 f1�1�
Dt

;

�6:28�

where the assumption 5 has been used again and an effective
delay time tr introduced.

Generally speaking, integration with respect to time in
Eqn (6.28) is `eliminated' by the substantial derivative, which
also contains spatial differentiation. However, to the linear
approximation in the delay time this contribution is negligi-
ble. This can be seen by writing

J st
2 �

�(�
F12 � q

qv1
� F21 � q

qv2
� �v2 ÿ v1� � q

qx21

�

�
�t
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D12

Dt 0
D12
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�
dt 0
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dO2
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�v2 ÿ v1� � q

qx21
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D12

Dt

D12

Dt 0
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dt 0
�
dO2

� tr
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Dt

D1 f1�1�
Dt

ÿ
��
�v2 ÿ v1� � q

qx21

�t
t0

t 0
D12

Dt 0
D12

Dt 0
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f1�1� f1�2�

�
dt 0
�
dO2

� tr
D1

Dt

D1 f�1�
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�
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�v2 ÿ v1� � q

qx21

��
f1�1� f1�2�

�ÿ � f1�1� f1�2��t0
ÿ tr

D1

Dt

�
f1�1� f1�2�

�
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�)
dO2 � tr

D1

Dt

D1 f1�1�
Dt

; �6:29�

where x21 � r2 ÿ r1.
Thus, the appearance of the second substantial derivative

with respect to time in the generalized Boltzmann equation
may be considered as a differential approximation to the time
delay integral that emerges in the theory of correlation
functions for kinetic equations.

It would appear that the above theory does not require
at all that we apply the multiscale method and expand the
distribution function in a power series of a small parameter
e � nr3B. However, such is not the case. As we have seen
above, the integration at the rB scale must be employed
anyway, and giving up the e-expansion of the distribution
function, on the other hand, makes it impossible to estimate
the value of tr. Each of the approaches outlined above
actually complement one another and are interrelated with
one another. The generalized Boltzmann equation can be
treated both from the point of view of a higher-order
Boltzmann theory and as a result of differential approxima-
tions to the collision integral accounting for time delay
effects.2 This assumption was used by Bogolyubov (see Ref. [48], p.203).
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There is another point to be made. From Eqn (2.6), the
equation for the distribution function f 0

2 accurate to the
zeroth order in e is

qf̂ 0
2

qt̂B
� v1B � qf̂

0
2

qr1B
� vj2Nd �

qf̂ 0
2

qrj2Nd ;B
� F̂1; j2 d � qf̂

0
2

qv1B

� F̂j2Nd ; 1 �
qf̂ 0

2

qvj2Nd;B
� aF̂1 � qf̂

0
2

qv1B
� aF̂j2Nd �

qf̂ 0
2

qvj2Nd ;B
� 0:

�6:30�

Comparing this with Eqns (6.9) and (6.10) shows that the
correlation functions accurate to zeroth order in e are zero
and that forces exerted on the colliding particles 1 and 2 from
the side of other particles are not considered in the zero-order
approximation at the rB scale. This result is used for
transforming the collision integral Ĵ st; 0 to the Boltzmann
form in the multiscale method.

We may summarize then by saying that the derivation of
the kinetic equation in the context of the theory of correlation
functions for one-particle distribution functions leads to a
kinetic equation of the form

Df

Dt
� JB � J td ; �6:31�

where JB and J td are the Boltzmann collision integral and the
collision integral accounting for time delay effects, respec-
tively.

The popularity of the BGK approximation to the
Boltzmann collision integral:

JB � f �0� ÿ f

t
�6:32�

is due to the drastic simplifications it affords. Essentially, the
generalized Boltzmann physical kinetics offer a local approx-
imation for the second collision integral

J td � D

Dt

�
t
Df

Dt

�
: �6:33�

Thus, Eqn (6.31) in its `simplest' version takes the form

Df

Dt
� f �0� ÿ f

t
� D

Dt

�
t
Df

Dt

�
: �6:34�

Since the ratio of the second to the first term on the right of
this equation is J td=J B � O�Kn2�, Kn being the Knudsen
number, it would seem that the second term can be neglected
for hydrodynamically small Knudsen numbers. However, in
the transition to the hydrodynamic limit (after multiplying
the kinetic equation by the collision invariants and subse-
quently integrating over velocities), the Boltzmann integral
term vanishes, while the second term on the right-hand side of
Eqn (6.34) gives a single-order contribution in the generalized
Navier ± Stokes description (let alone the effect of the small
parameter of the higher derivative).

A well-known example of a local approximation to a
nonlocal integral term in kinetic theory is the Enskog theory
of transport processes in a dense gas composed of hard
spheres. To obtain a local version of the theory, Enskog
used the expansion in terms of the small parameter s=l, where
s is the molecular diameter, and l the mean free path (see Ref.

[49]). For example, for hydrogen at normal pressures and
temperatures s � 3� 10ÿ8 cm and l � 1:1� 10ÿ5 cm, and
the resulting s=l � 2:7� 10ÿ3 corresponds to the typical
hydrodynamically-valid range of the Knudsen number
variation. In the case of the expansion in terms of Kn, s=l
would imply L � 0:4� 10ÿ2 cm as the characteristic hydro-
dynamic size whereat the smoothing is proceeding.

7. Generalized hydrodynamical equations
and the theory of turbulent flows

The generalized Boltzmann equation necessarily leads to a
new formulation of the hydrodynamical equations, yielding
what we will call the generalized hydrodynamical equations.
The classical Enskog, Euler, andNavier ± Stokes equations of
fluid dynamics are special cases of these new equations. The
derivation of the generalized hydrodynamical equations is
given in Refs [31, 38] and because it is too cumbersome to be
reproduced here, we will only consider the fundamental
points of this derivation, taking as an example the general-
ized Euler equations as used in the theory of turbulent flows.

The turbulent fluid motion has been the subject of intense
research for over a hundred years because it has numerous
applications in aerodynamics, hydraulics, combustion and
explosion processes, and hence is of direct relevance to
processes occurring in turbines, engines, compressors, and
other modern-day machines. The scientific literature on this
subject is enormous, and a detailed analysis of all the existing
models is beyond the scope of this paper. Here the object is to
discuss the currently available turbulence concept in the
context of generalized equations of fluid dynamics. In what
follows we will discuss `classical' turbulence, usually treated
starting from the Navier ± Stokes equations, moment meth-
ods, and similarity theory. We will also see how this picture
corresponds to the generalized Boltzmann kinetics and will
try to find out which of the known approaches may be used
and which should be abandoned.

It is commonly held that a fully developed turbulence may
be characterized by the irregular variation of velocity with
time at each point in the flow and that hydrodynamic
quantities undergo fluctuations (turbulent ones or pulsa-
tions), whose scale varies over the wide range from the
external (using the terminology of Ref. [9]) scale comparable
to the characteristic flow size, to a small scale on which the
dynamic fluid viscosity begins to dominate.

Because of the major role of the Reynolds criterion in the
theory of turbulence, the study of fluid motion on various
typical scales crucially depends on the construction of the
Reynolds number

Re � vl l
n
:

Here, l is the fluctuation scale, vl the characteristic velocity,
and n the kinematic viscosity. If l � L, withL being the typical
hydrodynamic size, then the Reynolds number Re is large and
the effect of molecular viscosity small Ð so that one may
neglect it altogether and apply the similarity theory (the
Kolmogorov ±Obukhov law) to get some idea of the fluctua-
tions.

From the large-scale fluctuations, the energy goes
(practically undissipated) to the small-scale ones, where
viscous dissipation takes place (Richardson model of 1922).
And even though the dissipation of mechanical energy e
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(falling at the unit mass per unit time) occurs on the least
possible scale lK (referred to below as the Kolmogorov
turbulence scale), it is believed that the quantity e also
determines the properties of turbulent motion on larger
scales. Between the Kolmogorov (or, using the terminology
of Ref. [9], internal) scale lK and the external scale lL � L
there is an inertial interval where the typical size l satisfies the
inequality

lK 5 l4 lL :

For want of a better model, it is assumed that turbulent
motion is described by the same equations of fluid mechanics
(Navier ± Stokes equations) used for laminar flows, with a
consequence that turbulence emerges as a flow instability or,
in this particular case, as an instability in the Navier ± Stokes
flow model. This gives rise to many inconsistencies, however.
It is known, for example, that ``although no comprehensive
theoretical study has thus far been made for flows through a
circular pipe, there is compelling evidence that this motion is
stable with respect to infinitesimal perturbations (in an
absolute as well as a convective sense) for any Reynolds
numbers'' [9]. This contradicts experimental data.

In 1924,WHeisenberg published a study on the instability
of laminar flows [50]. A year later, E Noether ``published
another paper'' Ð we are quoting Heisenberg [51] Ð ``in
which she proved with all mathematical rigour that the
problem admits of no unstable solutions at all and that a
flow must be everywhere stable ... What about the rigorous
mathematics then? I think that even now nobody knows what
is wrong with Noether's work''. It would appear that rather
thanNoether's mistake, the drawbacks of the Navier ± Stokes
flow model are to blame.

The notions of averaged and fluctuating motions
prompted Reynolds [52] to explicitly isolate the fluctuation
terms in the Navier ± Stokes equations and to subsequently
average them over a certain time interval. But neither this
approach nor the later technique of averaging over themasses
of liquid volumes (sometimes called Favre averaging [53])
provide close solutions, and indeed neither of them are
adequate when it comes to physics because, as we will see
below, the Navier ± Stokes equations are not written for true
physical quantities.

One further approach to the problem involves the
evaluation of velocity correlation functions with the aim of
establishing the relation between the velocities at two
neighboring flowfield points within the theory of local
turbulence. For example, the simplest correlation function is
the second-rank tensor

Bik �

�v2i ÿ v1i��v2k ÿ v1k�� ;

where v1 and v2 are the fluid velocities at two neighboring
points, and the angle brackets denote time averaging. A
question remains, however, what exactly `neighboring
points' means and how the time averaging procedure is to be
carried out. The theory of correlation functions attracted a
great deal of attention after L Keller and A Fridman first
introduced them into the hydrodynamics of turbulent
motions back in 1924.

In 1944, L Landau gave a comprehensive assessment of
this line of research. To quote him from Ref. [9], p. 200, ``One
would imagine that in principle it is possible to derive a
universal formula, applicable to any turbulent motion, for

determiningBrr,Btt for all distances r small compared to lL. In
reality, however, such a formula cannot exist at all as the
following argument shows. The instantaneous value of the
quantity �v2i ÿ v1i��v2k ÿ v1k� could in principle be expressed
in terms of the energy dissipation e at the same instant of time
t. However, the averaging of these expressions depends
significantly on how e varies in time throughout periods of
large-scale (of order lL) motions. But this variation is different
for various specific cases of motion, so the result of such
averaging cannot be universal''.

One can but agree with this view. To put it another way, if
the Kolmogorov scale admits an explicit universal formula-
tion for turbulent fluctuations (as we will show later on), then
large-scale fluctuations are determined by solving a specific
boundary-value problem.

A Kolmogorov advanced the hypothesis that the statis-
tical regime of the small-scale components is universal and is
determined by only two dimensional parameters, the average
rate of energy dissipation e and the kinematic viscosity n.
From dimensional considerations it follows that the Kolmo-
gorov fluctuation scale lK is of the order of n3=4eÿ1=4 and
corresponds to the particle mean free path in a gas.

We now apply the generalized hydrodynamical equations
to the theory of turbulence and demonstrate that they enable
one to write explicitly the fluctuations of all hydrodynamic
quantities on the Kolmogorov turbulence scale lK. Impor-
tantly, these turbulent fluctuations can be tabulated for any
type of flow and in this sense can serve as `universal formulas,'
to use the terminology of monograph [9]. We start by writing
down the generalized hydrodynamical equations and, for the
sake of simplicity, employ the generalized Euler equations for
the special case of a one-component gas flow in a gravita-
tional field. To this end we multiply the generalized
Boltzmann equations by the particles' elastic collision
invariants �m;mv;mv2=2� and integrate the resulting equa-
tions term by term with respect to velocity.

The calculation of the moments using the Maxwellian
distribution function yields the system of generalized Euler
equations which includes:

the continuity equation
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the equation of motion
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and the equation of energy
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where we have used the hydrodynamic approximation
t �0� � Pm=p (for the hard-sphere model, P � 0:8) and where

I
$
is the unit tensor.
We next introduce r1, v1, p1, and m1 as the density,

velocity, pressure, and viscosity scales, respectively. We take
the characteristic dimension to beL, and the time scale,L=v1.
Then the dimensionless equation of continuity takes the form
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Dimensionless combinations of the scale quantities
introduced above form the similarity criteria
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Thus, the continuity equation (7.4) contains the Reynolds,
Euler, and Frud similarity criteria and may be rewritten as
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In a similar fashionwewrite the dimensionless equation of
motion
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and the dimensionless equation of energy
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Equations (7.5) ± (7.7) are notable for their structure. All
the generalized equations of Euler fluid dynamics contain the
Reynolds, Euler, and Frud numbers (similarity criteria).
Naturally, the inclusion of forces of electromagnetic origin
would lead to additional similarity criteria. For each hydro-
dynamical quantity Ð density, energy, and momentum as
well as their fluxesÐ there is a corresponding temporally and
spatially fluctuating term which is proportional to Reÿ1 and,
hence, to the viscosity.

For small-scale fluctuations (i.e. smaller characteristic
dimension l in the Reynolds number), viscosity increases in
importance and starts to determine e, the dissipation of the
mechanical energy. The fluctuation terms thus determine
turbulent Kolmogorov-scale fluctuations (small-scale fluc-
tuations or, using the computational hydrodynamics term,
submesh turbulence) which are of a universal nature and not
problem specific.

To fully understand the situation, however, the following
questions remain to be answered:

(1) Are there no contradictions in the system of fluctua-
tions introduced in this way? In other words, is the set of
fluctuations self-consistent?

(2) With a system of base (independent) fluctuations on
hand, is it possible to derive explicit expressions for other
hydrodynamical quantities and their moments?

(3) What do the generalized hydrodynamical equations
for averaged quantities look like and how does the procedure
for obtaining the averaged equations agree with the Reynolds
procedure familiar from the theory of turbulence?
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In answering the above questions, the generalized Euler
equations for a one-component gas will be employed for the
sake of clarity. Implicit in the following analysis will be the
fact, already noted above, that we are dealing with small-scale
fluctuations.

The equations to be investigated are:
the continuity equation
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the equation of motion
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where we employ the Einstein summation rule for recurrent
subscripts a; b; g � 1; 2; 3 referring to components of vectors
in the Cartesian coordinate system,

and the equation of energy
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To calculate hydrodynamic fluctuations, the Reynolds
procedure will be employed. Thus, for example, the product
of the true density r and the true velocity v0 can be used to
obtain the fluctuation quantity v f0. Indeed, we have

rv0 � �ra � rf ��v a0 � v f0� ; �7:11�

where the superscript `a' denotes the average hydrodynamic
quantities. Ignoring the fluctuation terms squared and
keeping only first-order small quantities in relations of type
(7.11) we find

�rv0�f � rv0 ÿ rav a0 � rav f0 � rfv a0 : �7:12�

Thus one obtains
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From the continuity equation (7.8) we have

rf � t
�
qr
qt
� q
qr
� �rv0�

�
; �7:14�

�rv0�f � t
�
q
qt
�rv0� � q

qr
� �rv0v0� � qp

qr
ÿ rg

�
�7:15�

and therefore from Eqn (7.13) it follows
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Using Eqn (7.9), we find that the fluctuation of the
combined hydrodynamical quantity pdab � rv0av0b is given
by
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With the help of Eqn (7.17) we obtain
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We now proceed to calculate �rv20�f:
�rv20�f � rv20 ÿ rav a20 � �ra � rf��v a0 � v f0�2 ÿ rav a2
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which, when combined with Eqns (7.14) and (7.16), yields
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The fluctuations of the remaining hydrodynamical quantities
are obtained in a similar manner. The accompanying Table 1
lists the examples of Kolmogorov turbulent fluctuations for
reference (the independent fluctuations are underlined).

That hydrodynamic fluctuations (proportional to the
mean time t between the collisions, and hence to viscosity)
are bound to appear in the generalized hydrodynamical
equations is easily understood from the molecular-kinetic
point of view. Consider a gas of hard spheres contained in a
cavity with a rigid wall (Fig. 1) and draw a reference contour
at a distance of the order of the particle diameter from the
wall. Turn now to the continuity equation as an example. The
classical formulation of this equation, following from the
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Boltzmann equation or Ð in continuum mechanics Ð from
balance equations, is valid only for pointlike structureless
particles, which may be either inside or outside the reference
contour.

A particle of finite diameter may be partly inside and
partly outside the contour at some instant of time, which
necessarily leads to fluctuation of the mass within the
contour. Since the number of particles moving perpendicular
to the wall has zero expectation, it follows that to a linear

approximation the fluctuations are proportional to the mean
free path (or the mean time t between the collisions).

Let us define the Knudsen number Knl as the ratio of the
mean free path l to the distance l between the contour
boundary and the wall. In the dimensionless Eqns (7.8) ±
(7.10), theKnudsen numberKnl will appear as a coefficient of
the fluctuation terms. If l! 0, Knl !1, and the reference
contour coincides with the cavity wall, then there are no
integral fluctuations within the volume Ð with the conse-
quence that classical equations of continuity and motion
should be obeyed at the wall. This is indeed the case: the
fluctuation terms in the generalized continuity equation (7.8)
contain the left-hand sides of the classical equations of
continuity and motion. The vanishing of the fluctuation
terms at the wall provides additional boundary conditions
necessary for the generalized hydrodynamical equations.

Notice also that the appearance of second time derivatives
in the generalized Euler equations permits the use of the
Cauchy ±Kovalevskaya theorem in proving the existence and
uniqueness of the solutions.

We next employ the generalized continuity equation to see
how fluctuations are produced and smoothed out. We first
note that the generalized Boltzmann equation is of parabolic
type; for the one-dimensional unsteady case, using the BGK
approximation with t � const, it may be written as
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On changing to the characteristic variables z � xÿ vt, x � t,
this latter equation becomes
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which is integrated immediately to give
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The second constant of integration C2, corresponding to the
exponentially growing part of the general solution, is set equal
to zero according to the physical meaning of the solution.

In the spatially homogeneous case under the same
assumption (for example, for k � 5), we have the solutions
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for the generalized Boltzmann and Boltzmann descriptions,
respectively. Note the similarity of these solutions.

Now what happens to the fluctuations that develop in the
system? To see this, consider the generalized equation of
continuity (7.8), which we write down here in the generalized
Eulerian formulation under the assumption of no external
forces for the one-dimensional unsteady case:
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Table 1. Fluctuations of hydrodynamical quantities on the Kolmogorov
scale in the framework of the generalized Euler equations.
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Figure 1. Closed cavity and the reference contour containing particles of a

finite diameter.
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where t�0� is the mean time between collisions calculated in
the locally Maxwellian approximation: t�0�p � Pm (the
factor P being of order unity; for the hard-sphere model,
P � 0:8 to first-order approximation in Sonine polynomials
[49]).

We shall assume that except for shock-wave-type regions
(to be discussed below within the framework of the general-
ized Boltzmann equation) hydrodynamical quantities vary
not too rapidly on the scale of the order of the mean time
between collisions:

r
t�0�

4
qr
qt
;

r
t�0�

4
q
qx
�rv0� ;

the temperature variations are small, the convective transfer
is negligible, and the chaotic motion is highly energetic as
compared to the kinetic energy of the flow, i.e.V 2=v20 4 1 (for
example, for hydrogen at normal pressures and temperatures,
we have v0 � 10 cm sÿ1, giving 3:4� 108 for this ratio).
Consequently, Eqn (7.26) becomes
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or
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�
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whereD � Pm=r is the self-diffusion coefficient (see Ref. [49],
p. 134). Equation (7.28) is the diffusion equation, with the
implication that (a) a locally increasing density fluctuation
immediately activates the diffusion mechanism which
smooths it out, and (b) the generalized Boltzmann H-
theorem proved above ensures that the smoothed fluctua-
tions come to equilibrium.

A similar spatially inhomogeneous treatment may be
performed for the generalized equation of balance of
entropy.

We define the shear tensor S
$
such that its components are

as follows
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and write the generalized Euler equation in terms of the
average variables to obtain
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From the system of generalized Euler equations (7.30) ±
(7.32) we conclude the following:

(1) The formulation of the hydrodynamical equations in
terms of average quantities is the objective of `classical' theory
of turbulence. However, a rigorous approach based on the
generalized Euler equations leads to a residual (with respect

to true quantities) on the right of the equation of energy
(7.32).

(2) The residual

P e � 2
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in Eqn (7.32) turns out to be proportional to tp and hence to
the viscosity [cf. Eqn. (2.18)]. If one puts

P e � 0 ; �7:34�

then the set of equations (7.30) ± (7.32) reduces formally to
the Euler equations for averaged quantities. It follows that
the residual P e, which is the variation in space of the
thermal-energy and shear-energy dissipation, stimulates the
development of turbulence in the physical system under
study.

(3) The so-called `soft' boundary conditions commonly
imposed at the output of the computational flow region
follow from condition (7.34):
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(4) Equations (7.30) ± (7.32) do not reduce exactly to the
classical Euler equations even under condition (7.34) because
the average of the product of hydrodynamical quantities is
not equal to the product of their averages. Consequently,
this system of equations contains more unknowns (namely,
ra, �rv0�a, p a, �rv0v0�a, and

�
v0�rv20 � 5p��a) than equa-

tions, thus presenting the typical problem of the classical
theory of turbulence, which consists in closing the moment
equations.

The theory presented here overcomes this problem by
simply reverting to the formulation of the hydrodynamical
equations in terms of the true quantities. And it is only in the
case when turbulent fluctuations are completely absent or,
equivalently, when the average product of hydrodynamical
quantities is equal to the product of their averages, that we
arrive at the classical form of the Euler and, of course,
Navier ± Stokes equations. Thus, the classical Euler and
Navier ± Stokes equations are not written for true quantities,
and it is physically meaningless to employ the formal
Reynolds procedure to try to `extract' small-scale fluctua-
tions from these equations.

8. Numerical simulation of vortex gas flow using
the generalized Euler equations

To demonstrate the research potential of numerical vortex-
flow simulation using the generalized hydrodynamical equa-
tions, we examine the two-dimensional unsteady flow of a
compressible gas in a cavity [54 ± 56]. The problem to be
solved is the following. Consider a flow over a flat surface and
suppose there suddenly appears Ð as a result of some
mechanical action, for example Ð a certain cavity of square
cross section, whose length is much longer than the side of the
square (Fig. 2). It is assumed that at some instant of time gas
suddenly starts to move along the segment OL of the axis x
with the velocity Vs which is subsequently maintained
constant.

The system of the generalized Euler equations for a two-
dimensional, unsteady and nonisothermic flow of compres-
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sible gas is written in the following way:
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Here, t � Pm=p and v20 � u2 � v2, where v0 is the hydrodyna-
mical flow velocity with components u and v.

The system of generalized equations (8.1) ± (8.4) wasmade
dimensionless by using the dimensionless variables p̂ � p=p1,
r̂ � r=r1, û � u=Vs, v̂ � v=Vs, and t̂ � tVs=L.

The effect of the force of gravity is neglected, so that there
are two similarity criteria in the picture: Eu � p1=�r1V 2

s �
and Re � LVs r1=m1, whereVs is the velocity of the external
flow. The parameter P corresponds to the first-order
approximation in the hard-sphere model: P � 0:8.

The initial conditions �t � 0� are as follows
r � r1 ; p � p1 ; v � 0 ;

u � Vs for y � 0 ; u � 0 for y > 0 ;

qu
qt
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qr
qt
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qp
qt
� 0 :

The boundary conditions to be satisfied are

u�x; 0� � Vs ; v�x; 0� � 0 ;
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These boundary conditions imply that there is no slip, no
leakage of compressible gas through the wall, and no heat
transfer at the cavity wall Ð a good enough model to
demonstrate the potential of the generalized hydrodynami-
cal equations. The computations performed covered a wide
Reynolds number range. Many calculated results, including
those for other types of flow (along a heated cylinder and over
a step) may be found elsewhere [54 ± 56], and in what follows
only some characteristic results will be given.

Along with the program described above, calculations
using the generalized Euler equations and the Navier ± Stokes
equations were carried out simultaneously. While the cavity
flowfield solutions obtained by the different approaches are
qualitatively different for the drastically unsteady regime,
they start getting closer for sufficiently large times. Increasing
the Reynolds number increases the difference between the
flowfield patterns obtained from the generalized Euler
equations and the Navier ± Stokes equations. Results for
Re � 3200, Eu � 1:0, Kn � 0:0003915, and M � 0:775 at
(dimensionless) instants of time t̂ � 4:0, 9.5, and 230.0 are
shown in Figs 3 and 4 for the generalized Euler equations and
the Navier ± Stokes equations, respectively. Notice that the
concept of a quasi-stationary regime becomes rather vague in
this case.

Figure 5 shows the position of the center of the central
vortex at large times. Points 1 ± 11 were calculated from the
generalized hydrodynamical equations for the dimensionless
instants of time t̂ � 201:0, 202.0, 203.5, 204.0, 205.0, 205.8,

L

y

LO Vs

x

Figure 2.Unsteady flow of compressible gas in a cavity.
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207.0, 208.0, 209,0, 210.0, and 211.5. It turns out that the
vortex center performs a rotational motion. It is a well-known

fact that two-dimensional Navier ± Stokes calculations for an
incompressible isothermal fluid (water) for the central cross
section of a cavity correlate very poorly with experimental
data [57 ± 59] even if the length of the cavity is much larger
than its width. Nor do three-dimensional Navier ± Stokes
calculations improve the picture [60, 61]. It has been found
that three-dimensional Navier ± Stokes calculated results
obtained on coarser meshes may agree better with experi-
mental data than do formally more accurate solutions [60].

Unfortunately, we have no experimental results on the
situation we are consideringÐ i.e. gas flow in a cavity Ð and
as to the comparison of experimental and theoretical flow
data for a gas and a liquid (even at the same Re), this requires
great caution. Nevertheless, the calculated Re dependence of
the ratio of the size of the bottom near-wall vortex D3 to the
cavity width L (see Fig. 6) is in general agreement with
experiment [57 ± 59]. Interestingly, because of the growing
oscillations of hydrodynamical quantities, it is found that
even in the quasi-stationary regime fluctuations in the
position of the vortex, D3=L, increase in magnitude. As seen
in Fig. 6, the region of fluctuations is represented by an
expanding band which shows a transition to fully developed
turbulence.

Figure 7 demonstrates oscillations in the absolute magni-
tude of the dimensionless velocity v̂0 at the point (x̂ � 0:13,
ŷ � 0:87) over a dimensionless time period t̂ � 0:6 for
Re � 3200. Note the irregular nature of the oscillations.

a b c

t̂ � 4:0 t̂ � 9:5 t̂ � 230:0

Figure 3.Gas flow in a cavity at times t̂ � 4:0, 9.5, and 230.0. Calculations are done using the generalized Euler equations for Re � 3200, Eu � 1.

a b c

t̂ � 4:0 t̂ � 9:5 t̂ � 230:0

Figure 4.Gas flow in a cavity at times t̂ � 4:0, 9.5, and 230.0. Calculations are done using the Navier ± Stokes equations for Re � 3200, Eu � 1.
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Figure 5. Position of the center of the central vortex (relative to the center

of the cavity) for instants of time t̂ � 201:0, 202.0, 203.5, 204.0, 205.0,
205.8, 207.0, 208.0, 209,0, 210.0, and 211.5 (points 1 ± 11, respectively).

Calculations were done using the generalized hydrodynamical equations

for Re � 3200, Eu � 1.
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Thus, already at Re � 3200 the flow starts to exhibit typical
features of a turbulent regime.

Note that the use of the generalized hydrodynamical
equations with viscous terms makes it possible to construct
the extremely effective difference schemes, thus making these
equations even more attractive.

9. Sound propagation studied with the
generalized equations of fluid dynamics

The propagation of sound is a classical problem in kinetic and
hydrodynamic theories. Let an infinite plate oscillate in a gas
with the frequency o in the direction of its normal. Put
a � ot, where t is the mean time between collisions. For a
Boltzmann gas of hard spheres [49] one has

pt � Pm : �9:1�
In addition to the static pressure p and dynamic viscosity m,
the hydrodynamic relation (9.1) contains the parameter P,
which is 0.786 if the distribution function is expanded in terms
of Sonine polynomials, and 0.8 in the first-order (Maxwell)
approximation.

The parameter a may be linked to the Reynolds number
analogue

r � P
a
� p

om
: �9:2�

For large enough values of r, classical hydrodynamics works
quite satisfactorily. In linear acoustics, the attenuation of
sound tends to zero as r!1, and the velocity of sound is
given by

c20 � g
p0
r0
; �9:3�

where r0 is the density of the unperturbed gas and

g � wÿ1 � Cp

CV
�9:4�

is the ratio of the heat capacity at constant pressure to that at
constant volume.

Complications arise when r � 1 and especially in the limit
as r! 0. The Euler equations do not `feel' that the situation
has changed and yield a constant velocity of sound and zero
attenuation over the entire range of r. The Navier ± Stokes
equation leads to an entirely unreasonable prediction that the
attenuation tends to zero after having reached a maximum at
r � 1, and that the speed of sound tends to infinity as r! 0.
Therefore, the problem of sound propagation at small r
numbers requires a kinetic theory treatment. Without
entering into a detailed discussion of the methods mentioned
(see, e.g., Ref. [62]), it should be admitted that the situation as
a whole is unsatisfactory in this field.

In particular, the increased number ofmoments employed
when solving the Boltzmann equation by moment methods
gives a poorer agreement with experimental data. One
commonly speaks of the `critical Reynolds number' rcr,
below which it is impossible to obtain a plane-wave solu-
tion. For each particular type of model or moment equations
there exists a unique number rcr, thus revealing the purely
mathematical Ð rather than physical Ð nature of the effect
observed.

Let us apply the generalized equations of fluid dynamics
to the propagation of sound waves in a monatomic gas. In
linear acoustics, density and temperature perturbations are
written as

r � r0�1� s� ; �9:5�
T � T0�1� Z� ; �9:6�

respectively, and the solution of the generalized hydrodyna-
mical equations is taken in the form

s � �s exp�iotÿ k 0x� ; �9:7�
Z � �Z exp�iotÿ k 0x� ; �9:8�
v � �v exp�iotÿ k 0x� ; �9:9�

with v the hydrodynamical velocity, and k 0 the complex wave
number.

We now write down the system of nonstationary general-
ized Euler equations in a one-dimension case [cf. Eqns (7.8) ±
(7.10)]:
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Figure 7. Oscillations of the absolute value of velocity v̂0 at the point

(x̂ � 0:13, ŷ � 0:87) over a period of t̂ � 0:6 in the near-`quasi-stationary'

flow regime for Re � 3200, Eu � 1. Zero time t̂0 � 185:0.
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Figure 6.Relative sizeD3=L of the bottom vortex plotted versus Reynolds

number Re for Eu � 1. Solid lines represent theoretical results.
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From the equation of state

p � rRT ; �9:13�
in which R is the universal gas constant and which is valid for
the Maxwellian distribution function, it follows that

p � p0�1� s� Z� : �9:14�

On carrying out the linearization, Eqns (9.10) ± (9.12)
reduce to
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To consider in somewhat more detail the linearization
process, we use the continuity equation (9.10) as an exam-
ple. Let us rewrite it as
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Because for the one-component (`simple') gas of hard spheres
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we have
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Therefore, in linear acoustics, terms containing derivatives of
ln t contribute nothing to the first-order equations.

Using the representations (9.7) ± (9.9) we now arrive at a
system of equations
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If the rank of matrix equals the number of equations, then
the system of homogeneous algebraic equations (9.22) ± (9.24)
has only a trivial solution. The requirement that there be a
nonzero solution to this system is that its determinant must be
zero:
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giving an algebraic equation of the sixth order in the wave
number k 0:
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This equation reduces to the dimensionless form
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5w
aÿ 9

5w
a2 ÿ 3

5w
a3 � 0 ; �9:26�

where we have introduced the dimensionless wave number
k̂ � k 0c0=o with the characteristic velocity

c0 �
���������
g
p0
r0

r
: �9:27�
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The separation of the real from imaginary part in Eqn
(9.26) according to the equality

k̂ � a� ib ; �9:28�

now yields the system of equations for a and b:

3a3w2�a2 ÿ b 2��a4 � b 4 ÿ 14a2b 2� � 12aba2�a2 ÿ b 2�w

ÿ �3a3 � a�w�a4 � b 4 ÿ 6a2b 2� � �a2 ÿ b 2�
�
6

5
aÿ 1

5
a3
�

ÿ 2ab
�
1ÿ 2

5
a2
�
� 9

5w
ÿ 3

5w
a3 � 0 ; �9:29�

6a3w2ab�3a4 � 3b 4 ÿ 10a2b 2� ÿ 3a2w�a4 � b 4 ÿ 6a2b 2�

ÿ 4�3a3 � a�wab�a2 ÿ b 2� �
�
1ÿ 2

5
a2
�
�a2 ÿ b 2�

� 2ab
�
6

5
aÿ 1

5
a3
�
� 3

5w
ÿ 9

5w
a2 � 0 : �9:30�

From Eqn (9.7) it follows

s � �s exp

�
ÿo a

c0
x

�
exp

�
io
�
tÿ b

c0
x

��
;

showing that the factor a characterizes the attenuation of
sound and that b � c0=c is the ratio of the classical Eulerian
speed of sound to its calculated value.

Let us now consider two asymptotic solutions to Eqns
(9.29) and (9.30).

(1) If a � ot! 0, then in the limiting case a � 0 it follows
from Eqns (9.29) and (9.30) that

k̂ 2 � ÿ 3

5
wÿ1 : �9:31�

Using the value

w � 5

3
; �9:32�

for a monatomic gas [see Eqn (9.4)], one is led to the classical
Euler limit

k 0 � �i o
c0
: �9:33�

The wave number k 0 proves to be imaginary; for the
density perturbation, for example, the solution is written as

s � �s exp

�
io
�
t� x

c0

��
: �9:34�

Thus, in the classical Euler description sound is unattenuated
and its velocity remains constant and equal to c0 [cf. Eqn
(9.27)]. In other words, for oscillations travelling in the
positive x direction one obtains

a � 0 ; b � 1 : �9:35�

(2) If a!1, then it follows from Eqn (9.26) that

k̂ 6 ÿ 5

3
k̂ 4 ÿ 5

27
k̂ 2 � 25

27
; �9:36�

or [see Eqns (9.29) and (9.30)]

ÿ x�x2 ÿ 12y� ÿ 5

3
x2 � 20

3
y� 5

27
x � 25

27
;

3x2 ÿ 4y� 10

3
x � 5

27
; �9:37�

where

b 2 ÿ a2 � x ; a2b 2 � y : �9:38�

From Eqn (9.37), one finds

x3 � 5

3
x2 � 35

54
xÿ 25

162
� 0 ; �9:39�

and the asymptotic solution then follows readily as

a � 0:509 ; b � 0:650 : �9:40�

Figures 8 and 9 plot the dimensionless velocity of sound b
and the dimensionless attenuation rate a, as calculated by the
generalized Euler equations [31, 63], the Navier ± Stokes
equations, and the generalized Navier ± Stokes equations,
and compares the results with the experimental data of
Greenspan [66], andMeyer and Sessler [67]. Detailed general-
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Figure 8. Comparison of observed (symbols) and calculated (lines)

dimensionless velocity of sound b � c0=c as a function of the Reynolds

number analogue r: 1, generalized Euler equation; 2, generalized Navier ±

Stokes equation; 3, Navier ± Stokes equation. Open circles, data by

Greenspan; filled circles, data by Meyer and Sessler.
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Figure 9. Comparison of observed (symbols) and calculated (lines)

dimensionless attenuation rate a as a function of the Reynolds number

analogue r: 1, generalized Euler equation; 2, generalized Navier ± Stokes

equation; 3, Navier ± Stokes equation; 4, Burnett equation; 5, super-

Burnett equation; 6, moment equations (the number of moments

N � 105). Open circles, data by Greenspan; filled circles, data by Meyer

and Sessler.
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ized Navier ± Stokes calculations are given elsewhere [64] and
they are too cumbersome to present here.

We now proceed to discuss the numerical results obtained
from the generalized hydrodynamical equations and to make
comparisons with available published data. We will also
consider some aspects of the method of moments as applied
to the Boltzmann equations used in the sound propagation
problem. We will base our analysis on the results of Sirovich
and Thurber [65], presented in Figs 10 through 12 with
necessary notational changes.

Figure 10 compares the numerically calculated dimen-
sionless velocity of sound b � c0=c and dimensionless
attenuation rate a as functions of the Reynolds number
analogue r for the eight- and eleven-moment models using
the interaction potential of Maxwellian molecules and that of
the hard-sphere models. Notice that the twomodels yield very
close results.

Figures 11 and 12 plot similar data for hard spheres and
Maxwellian molecules and compare them with the experi-
mental data of Greenspan [66] and Meyer and Sessler [67] on
monatomic gases. Also shown are Navier ± Stokes results and
those obtained by Pekeris et al. [68, 69] in their unprecedently
voluminous computations using the 105- and 483-moment
models.

A comparison of the experimental data with the theore-
tical results obtained with the Boltzmann equations suggests
what appears at first sight to be a paradoxical conclusion: the
more accurate a theoretical model the worse its agreement
with experiment.We see indeed that the hard-spheremodel of
Sirovich and Thurber [65] works better with eight moments
than with eleven, and that the 105-moment results of Pekeris
et al. [68, 69] are much poorer.

Considering the weak correlation between the molecular
interaction model and the velocity of sound and attenuation
rate calculations, the results of the 483-moment computations
for the Maxwellian molecules within the range r < 1 should

be viewed as simply catastrophic. (Note that as the number of
the moments used increases, the `critical' number r decreases
[65], apparently raising hopes for a better final result.)

A similar situation exists with regard to the hydrody-
namic results: while the Navier ± Stokes equations are
totally invalid for r < 1, `corrected' models (e.g., the
Burnett equation) are even less successful. It can be argued

1.0

0.5

0.2

0.1

102 10 1 10ÿ1 10ÿ2 Kn

a

0.002 0.01 0.1 0.5 1 2 5 10 20 50 r

b

1 2

3 4

0.002 0.01 0.1 0.5 1 2 5 10 20 50 r

102 10 1 10ÿ1 10ÿ2 Kn

b

0.1

0.05

0.02

0.01

a

0.2 1

2 3

4

Figure 10.Comparison of the velocity of sound (a) and the attenuation rate

(b) as calculated from the Boltzmann equation for two models: 1, 11-

moment hard-sphere model; 2, 11-moment model of Maxwellian mole-

cules; 3, 8-moment hard-sphere model; 4, 8-moment model ofMaxwellian

molecules.
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Figure 11. Comparison of observed (symbols) and calculated (lines)

velocities of sound (a) and attenuation rates (b) as calculated from the

Boltzmann equation for the hard-spheremodel: 1, 11-momentmodel; 2, 8-

moment model; 3, 105-moment model; 4, Navier ± Stokes equation. Open

circles, data by Greenspan; filled circles, data by Meyer and Sessler.
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Figure 12. Comparison of observed (symbols) and calculated (lines)

velocities of sound (a) and attenuation rates (b) as calculated from the
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that, paradoxically though it may seem, the best classical
theory approach is to employ the Euler equation which,
although yielding zero attenuation and a constant velocity
of sound, at least does not involve divergences or non-
physical `critical' points.

Viewed in the context of the generalized Boltzmann
kinetic theory, this effect has a very clear origin. Let us
introduce the Knudsen number as the ratio of l=lb, the
mean free path of hard-sphere particles to the wavelength

lb � 2p
c0
o
: �9:41�

Since in the hard-sphere model

l � 1���
2
p

pns2
; m � 5

16

����������
mkT
p ���
p
p

s2
; �9:42�

where s is the particle diameter, it follows fromEqns (9.2) and
(9.3) that

Kn � lb
l
� 8

5p
��������
2pg
p 1

r
: �9:43�

In this case, the ratio of the heat capacities g � Cp=CV at
constant pressure and constant volume is 5=3, and using Eqn
(9.42) we can recalculate the scale of the Reynolds number
analogue r to an equivalent scale of the Knudsen number as
shown in Figs 10 ± 12.

Thus, discrepancies between the experiment and the
`revised' theoretical models based on the Boltzmann equa-
tions start to appear for Knudsen number values Kn � 1.
This is to be expected because the additional terms in the
kinetic equation of the generalized Boltzmann theory first
become comparable in magnitude and then start to dominate
the terms on the left-hand side of the Boltzmann equations as
the Knudsen number increases. This means, in particular,
that neither the Burnett equations nor, less still, super-
Burnett equations hold promise for higher Knudsen number
computations.

The generalized Boltzmann equation performs much
better. The generalized Euler equations and Navier ± Stokes
equations give quite satisfactory agreement with the experi-
mental data over the entire range of the Knudsen number,
including the asymptotic regions. The generalized Navier ±
Stokes equations fit the experimental points better than the
generalized Euler equations. Another important point about
this result is that it is obtained from the hydrodynamical
equations; this raises hope for a through computation of
hydrodynamic flows including shock layers, shock waves,
and intermediate Knudsen numbers, thus eliminating the
necessity of coupling the hydrodynamic and free-molecular
solutions.

Coupling problems of this kind are discussed widely in the
scientific literature (see, e.g., Refs [70, 71]). In the next section
we will see that the generalized hydrodynamical equations
make it possible to perform accurate through computations
via the shock wave or, in other words, to examine the
structure of the shock wave.

10. Shock wave structure examined with the
generalized equations of fluid dynamics

Let us consider the structure of the shock wave in a
monatomic gas [31, 72] based on the solution of the general-

ized hydrodynamical equations. The solution of the usual
gas-dynamic equations in this case is given by discontinuous
density, velocity, and temperature functions interrelated by
the Rankine ±Hugoniot equations.

This classical problem of kinetic theory has long become a
kind of a testing ground for approximate kinetic theories as
well as for methods of solving the Boltzmann equation. Note
that although the solution of this problem has also been
obtained with the Navier ± Stokes equations, at Mach
numbers not too close to unity the conditions for the
applicability of the Navier ± Stokes equations (small varia-
tions of hydrodynamical quantities over the molecular mean
free path) are of course not fulfilled, and a qualitative
description of the transition layer is the most that seems
achievable. (In this case the viscous terms in the Navier ±
Stokes equations play the same role as the artificial viscosity
terms which are introduced into the Euler equations in shock
wave calculations.)

The generalized Euler equations in the one-dimensional
steady case are [see Eqns (7.8) ± (7.10)]

d

dx

�
rv0 ÿ t�0�

d

dx
�rv0 � p�

�
� 0 ; �10:1�

d

dx

�
rv20 � pÿ t�0�

d

dx
�rv30 � 3pv0�

�
� 0 ; �10:2�

d

dx

�
rv30 � 5pv0 ÿ t�0�

d

dx

�
rv40 � 8pv20 � 5

p2

r

�)
� 0 : �10:3�

Recall that in the hard-sphere model t�0�p � 0:8m in the first-
order approximation within the framework of the Enskog
method.

Equations (10.1) ± (10.3) in the one-dimensional steady
case are readily integrated once to yield

rv0 � t�0�
d

dx
�p� rv20� � C1 ; �10:4�

p� rv20 � t�0�
d

dx

�
v0�3p� rv20�

�� C2 ; �10:5�

v0�5p� rv20� � t�0�
d

dx

�
8pv20 � 5

p2

r
� rv40

�
� C3 : �10:6�

To integrate Eqns (10.1) ± (10.3), it is necessary to specify
two boundary conditions for the hydrodynamical velocity,
density, and pressure. These are the so-called Hugoniot
conditions. The constants C1, C2 and C3 for Eqns (10.4) ±
(10.6) are determined by the conditions before the shock
wave:

�rv0�b � C1 ; �10:7�
�p� rv20�b � C2 ; �10:8��
v0�5p� rv20�

�
b
� C3 ; �10:9�

where the subscript `b' refers to the flow before the shock
wave.

However, the numerical integration of Eqns (10.4) ± (10.6)
is complicated by the necessity of satisfying the boundary
conditions at the opposite end of the integration region. A
simpler approach in this case is to solve the boundary value
problem directly, by applying the sweep method of solving
ordinary differential equations of second order. This is
exactly what V Polev and the present author did in 1988 [72].
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Let us define the width of the shock wave by the relation

d � ra ÿ rb
�dr=dx�max

; �10:10�

where the subscript `a' refers to the flow parameters after the
shock wave, and �dr=dx�max corresponds to the maximum
values of the density gradient in the shock wave.

Let us next define the dimensionless shock wave width

�d � lb
d
; �10:11�

where lb is the mean free path in the region before the shock.
For the hard-sphere model

lb � m���
2
p

prbs2
; �10:12�

or, using Eqns (9.3) and (9.42), one arrives at

lb � 16

5

������
5

6p

r
mb
cbrb

; �10:13�

where cb is the velocity of sound before the shock as
calculated in the Euler approximation. It is also useful to
define the dimensionless density

�r � rÿ rb
ra ÿ rb

: �10:14�

Figure 13 plots the dimensionless shock wave width �d as a
function of theMach numberM.We note that the theoretical
curves 1, 2, and 3 (computed with the generalized Euler
equations, the generalized Navier ± Stokes equations, and
the ordinary Navier ± Stokes equations, respectively) agree
reasonably well with the experimental data of Schmidt [73].
Curves 1 and 2 lie somewhat above the experimental points,
the generalized Navier ± Stokes calculations giving a better
fit. Notice that the Navier ± Stokes results (curve 3) become
unsatisfactory for M01:6.

The use of the Grad method also has proved unsatisfac-
tory. Grad himself used the thirteen-moment approximation
to determine the shock wave structure [74]. He found that a
solution to this problem does not exist for M > 1:65, and
Holway later established [75] that the Grad series for the

distribution function in the Boltzmann equation diverges
when M > 1:85.

It is important to note that our results on shock wave
structure were obtained in the framework of the generalized
hydrodynamical equations, which leads to the expectation
that these equations may be used effectively in through
calculations for arbitrary Mach and Knudsen numbers.

This brings to an end our presentation of the generalized
Boltzmann kinetic theory. The results outlined in this paper
are only a small part of what has been done since work on the
theory began over 10 years ago. And, as a final general
remark, many years of experience with the generalized
Boltzmann equation and its applications indicate that it
provides an exceptionally effective tool for treating many
physical problems in cases where classical theory fails.

I am deeply indebted to V L Ginzburg for his interest and
helpful comments. I would also like to thank the editorial
board of Physics ±Uspekhi for help in the preparation of the
manuscript.
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