
Abstract. Properties of cluster plasma are considered, the term
implying that clusters and small particles present in a plasma
are involved in effective growth and evaporation processes.
Instability against such processes arises both in uniform and
nonuniform cluster plasmas. The charging of clusters and small
particles is analyzed. The properties of an arc plasma are
studied along with cluster nucleation and radiation processes
proceeded in it. Arc plasma presents an opportune medium for
the transformation of an atomic vapor into a cluster beam, and
cluster plasma is also an effective light source. Methods for
cluster beam generation are presented and a cluster generation
technique using afterglow plasmas is discussed. Relaxation,
cluster charging, electric and transport processes in an after-
glow cluster plasma are analyzed.

1. Introduction

A plasma with a disperse phase is a weakly ionized gas
containing small particles or clusters, with the latter being
capable of influencing some properties of the plasma. Such a
plasma may be divided into several types including aerosol

plasma, dusty plasma and cluster plasma. Aerosol plasmas
exist in the Earth's atmosphere, and the properties of these
plasmas differ depending on the altitude above the Earth's
surface and the character of particle formation [1, 2]. At low
altitudes, charged particles in the atmosphere are formed
from atmospheric mist, from dust transported from the
Earth's surface, and may be products of chemical and
combustion processes on the Earth's surface. Because these
particles can be charged, they determine the atmospheric
conductivity, and therefore influence electric phenomena in
the Earth's atmosphere.

Particles of dusty plasma are stable and their charge is
usually determined by electron and ion attachment processes,
so that these particles are negatively charged. An example of a
dusty plasma is an ionized gas which is formed in the channel
of amagnetohydrodynamic generator using a solid fuel. Then
soot particles are present in the products of combustion, and
they can be ionized due to the high temperature or may
acquire a negative charge due to attachment of electrons. The
charge of soot particles can be used for extracting them from
the flow of gaseous products of combustion. Dusty plasma is
observed in interstellar clouds; it is produced in the course of
star and planet formation, and also as a result of the
interaction of planetary rings with planetary magneto-
spheres, as occurs with Jupiter, Saturn and Uranus [3 ± 5].
Sometimes a laboratory dusty plasma is called `colloidal
plasma' [5] by analogy with liquid colloids. In this case
particles may contain the total negative charge of the plasma
[5, 6]. An example of a laboratory dusty plasma is provided by
the `dusty plasma crystals' that arise when stable negatively
charged particles are trapped by radio-frequency or glow gas
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discharges and form crystal structures there, giving rise to
specific phenomena in the dusty plasma [5, 7 ± 15]. Such a
dusty plasma is of fundamental interest for the following
reasons. Firstly, study of the self-organization of this plasma,
giving rise to the formation of a dusty-plasma crystal, widens
our understanding of self-organizing systems and allows us to
model some phenomena in such systems, in particular, phase
transitions. Secondly, the negative charge of solid dielectric
particles in this plasma reaches 103ÿ106e [13 ± 15], where e is
the electron charge. Due to the giant charge of dielectric
particles, the condition of strong coupling may be realized in
this plasma in spite of the large distances between particles.
This allows one to use this plasma for modelling a plasma
with strong coupling (or nonideal plasma) [16, 17].

In contrast to a dusty plasma, the particles or clusters of a
cluster plasma under consideration can be destroyed or
formed in processes involving their atoms [18]. In particular,
in the case when clusters are charged, like cluster charges do
not allow contact between clusters in the course of their
evolution. Hence, the processes of cluster growth and
destruction are determined by processes involving vapor
atoms and proceed according to the scheme

Mn �M !Mn�1 ; �1:1�

where M is a metal atom, and Mn is a cluster consisting of n
atoms.

A charge of the cluster in a gas-discharge plasma can be
either positive or negative depending on the processes which
establish the charge equilibrium in the plasma. In order to
increase the cluster charge, a unipolar plasma from a corona
discharge is used. In this review we shall consider the
properties of a quasi-neutral cluster plasma.

2. Properties of cluster plasma

2.1 Cluster instability in a homogeneous vapor
We use the liquid drop model for a liquid cluster, so that the
cluster is assumed to be similar to a spherical liquid drop with

the density of amacroscopic system.Within the framework of
this model, the rate constant of atom attachment to a cluster
surface is equal to [19]

nn � Nvsn ; �2:1�
where N is the atom number density, v is the average atom
velocity, and sn is the cross section of atom attachment to a
cluster consisting of n atoms. If we assume that each contact
of an incident atom with the cluster surface leads to
attachment, this cross section is sn � pr2n, where rn � rWn1=3

is the cluster radius, and rW is theWigner ± Seitz radius. In this
approximation, formula (2.1) takes the form

nn � Nk0 n
2=3 ; where k0 �

�������
8T

pm

r
pr2W : �2:2�

Here T is the gaseous temperature, and m is the atomic mass.
Values of the parameters rW and k0 for some elements are
given in Table 1.

Let us analyze the equilibrium of a cluster with an atomic
vapor, assuming that the properties of the cluster surface are
similar to those of the surface of a correspondingmacroscopic
system. The equilibrium near the latter surface occurs at the
saturation vapor pressure when the atom number density is
equal to Nsat�T�, where T is the vapor temperature. The
temperature dependence of this quantity has the form

Nsat�T� � exp

�
ÿ e0

T

�
;

where e0 is the binding energy for surface atoms. The identical
equilibrium for a cluster leads to the following expression for
the atom evaporation rate n nev from the surface of a cluster
consisting of n atoms [19, 20]:

n nev � nn
Nsat

N
exp

�
ÿ en ÿ e0

T

�
; �2:3�

where en is the binding energy for surface cluster atoms. In
fact, this relation expresses the principle of detailed balancing

Table 1. Parameters{ of large liquid clusters based on the data from Ref. [21].

Element Tm, K Tb, K rW, A k0 e0, eV p0, 105 atm A, eV DHf, eV e0=DHf

Ti
V
Fe
Co
Ni
Zr
Nb
Mo
Rh
Pd
Ta
W
Re
Os
Ir
Pt
Au
U

1941
2183
1812
1768
1728
2128
2750
2886
2237
1828
3290
3695
3459
3100
2819
2041
1337
1408

3560
3680
3023
3200
3100
4650
5100
4912
3968
3236
5731
5830
5880
5300
4700
4098
3129
4091

1.67
1.55
1.47
1.45
1.44
1.85
1.68
1.60
1.55
1.58
1.68
1.60
1.58
1.55
1.58
1.60
1.65
1.77

5.82
4.86
4.18
3.96
3.70
5.18
4.23
3.78
3.42
3.50
3.30
2.73
2.64
2.52
2.60
2.65
2.80
2.93

4.89
4.9
3.83
4.10
4.13
6.12
7.35
6.3
5.42
3.67
8.1
8.59
7.36
7.94
6.44
5.6
3.65
4.95

300
46
11
3.5
47
52

360
59
7.7
4.4

250
230
63

230
130
170
12
5.4

3.2
3.7
3.0
3.1
2.9
3.8
4.5
4.5
3.8
2.9
4.7
4.7
5.3
4.7
4.9
3.6
2.5
3.8

4.91
5.34
4.32
4.41
4.46
6.31
7.47
6.82
5.78
3.92
8.12
8.82
7.99
8.16
6.93
5.87
3.80
5.53

0.99
0.90
0.89
0.93
0.93
0.97
0.98
0.92
0.94
0.94
1.00
0.97
0.92
0.94
0.93
0.95
0.96
0.93

{ Tm is the melting point of a metal; Tb is its boiling point; the Wigner ± Seitz radius rW is defined by formula rW � �3m=4pr�1=3; the rate constant of
atom attachment to a cluster k0 is given by formula (2.2) and relates to a temperature of 2000 K, being measured in units 10ÿ11 cm3 sÿ1; the saturation
vapor pressure near themelting point is psat�T� � p0 exp�ÿe0=T�;DHf is the enthalpy of conversion of a solid into amonatomic gas at the pressure 1 atm

and temperature 298 K, and the parameter A characterizes the cluster surface energy according to formula (2.6).
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for processes involving the attachment of atoms to the cluster
surface and evaporation of atoms from its surface.

If the cluster plasma under consideration is in thermo-
dynamic equilibrium, the balance of attachment and evapora-
tion events for atoms leads to the equation

fnÿ1nnÿ1 � fnn nev ;

where fn is the size distribution function of clusters. Thus,
under equilibrium conditions we have

fnÿ1
fn
� Nsat

N
exp

�
ÿ en ÿ e0

T

�
: �2:4�

From this, it follows that the equilibrium cluster distribution
function has a minimum at a critical cluster size when

exp

�
e0 ÿ en

T

�
� N

Nsat
� S ; �2:5�

where S is the degree of supersaturation of the vapor.
The character of the cluster size dependence for the atomic

binding energy en is different for solid and liquid cluster states.
The solid cluster state is characterized by so-called magic
numbers [22 ± 24], which are the numbers of cluster atoms at
which the cluster structures are completed. Maximum values
of the atomic binding energies relate to fully occupied cluster
structures and, correspondingly, to magic numbers of cluster
atoms. In the case of the liquid state, the size dependence en is
monotonic, thus leading to the classical character [25 ± 28] of
the cluster growth when the bulk condensation of a vapor is
determined mostly by the evolution of the size distribution
function of clusters near its minimum.

Figure 1 displays the equilibrium size dependence of the
function (2.5) for these aggregate states of clusters. In the case
of the liquid state, this function goes a minimum for the
critical cluster size. In both cases the size distribution function
of clusters grows when onemoves from the critical cluster size
to large and small clusters. This means that clusters include a
minority of atoms under equilibrium conditions when the
atoms are found mostly in a condensed macroscopic system
or in an atomic gas. Hence, clusters contain the most part of
atoms only under nonequilibrium conditions when the atomic
system undergoes transition from a gas to a condensed
system. Note that the growth process of liquid clusters
proceeds continuously whereas, as follows from Fig. 1, the

growth of solid clusters takes place by jumps and returns, and
there is a large probability to observe magic cluster numbers
at any given instant. Correspondingly, the typical time of
cluster growth for solid clusters is significantly more than for
liquid clusters.

Along with the violation of stable size distribution for
clusters in a uniform plasma, this analysis shows the different
behavior of solid and liquid clusters in a dense buffer gas. For
large liquid clusters, the total atomic binding energyEmay be
separated into volume and surface parts, giving the formula

E � e0nÿ An2=3 : �2:6�

Here n is the number of cluster atoms, e0 is the sublimation
energy per atom in a macroscopic system; the second term in
the right-hand side of this relation corresponds to the surface
energy, and this formula is an expansion of the cluster energy
over a small parameter � nÿ1=3. Parameters of this formula
for large liquid clusters near the melting point are given in
Table 1. Along with the specific atomic binding energy e0 for
the liquid state, this table contains the values of DHf, the
specific enthalpy for conversion of a solid into a monatomic
gas at a pressure of 1 atm and temperature of 298K.Note that
the quantities e0 and DHf characterize the atomic binding
energy under different conditions. Evidently, the quantity
DHf is greater than e0, because it includes also the fusion heat
and the energy of heating of the solid up to the melting point.
But for strong bonds, as is the case for the metals under
consideration, this difference is not large. Hence, though the
ratio e0=DHf is less than unity, it is close to unity. The average
value of this ratio for the elements included in Table 1 is equal
to 0:94� 0:03.

Presence of magic numbers allows one to distinguish the
solid cluster state from the liquid one. As an example of this,
Fig. 2 shows mass spectra of sodium clusters obtained using
the near-threshold photoionization of clusters at different
temperatures [29, 30]. When a cluster melts, the spectrum
structure disappears. This figure shows the size dependence of
the cluster melting point. Note that the melting point of bulky
sodium is 371 K.

2.2 Chemical equilibrium and chemical regeneration
in cluster plasma
A cluster plasma can exist only under certain conditions.
First, clusters or small particles of plasma must not be
destroyed in collisions with charged or neutral plasma
particles, so the plasma temperature has to be restricted.
Second, the energy of plasma electrons must be enough to
support the plasma. These requirements may be fulfilled for
clusters of heat-resistant metals. Due to their high boiling
temperatures, clusters of these metals can exist under
conditions when a stable plasma is supported under the
action of external electric fields. But if a metal vapor is
present in a discharge plasma, its atoms or clusters may
attach to the walls of the discharge tube. In order to prevent
such metal consumption, it is convenient to activate the
regeneration process [31]. Then the metal is introduced into
the plasma in the form of a chemical compound which is
found in the gaseous state at low temperatures and its
decomposition leads to the formation of clusters at higher
temperatures. In this way one can avoid the attachment of the
metal to cold walls.

Probably, the first cluster plasma was created in experi-
ments by Scholl et al. [31 ± 34] in a cluster light source. The

fn

0 n

Figure 1. The equilibrium size distribution function for a solid (�) and
liquid (full line) cluster. Arrows show the cluster magic numbers.
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scheme of this device is given in Fig. 3 together with processes
in this plasma. The source of the plasma is a microwave
discharge of frequencies 2.3 ± 2.5GHz and the power of about
100 W. This microwave discharge creates a plasma in a dense
vapor inside a quartz vessel which typically has a volume of
about 0.25 cm3. This quartz vessel is located inside the
microwave resonator cavity and receives the microwave
power through a coupled antenna, as shown in Fig. 3. The
microwave discharge supports the temperature at the center
of the vessel near 4000 ± 5000 K, which is optimal for the
cluster plasma and its use as a light source.

The processes in this vessel are represented in Fig. 3 in the
case when molecules of WO2Br2 are added to a dense buffer
gas (Ar) with the admixture of CsBr, which provides for the
ionization of the mixture. Molecules of WO2Br2 are evapo-
rated from the walls completely at a wall temperature of
1000 K. At temperatures above 2500 K, these molecules are
destroyed and tungsten clusters are formed at higher
temperatures. These clusters are effective radiators, and
Fig. 4 gives the spectrum of radiation emitted by this cluster
plasma, which is determined mostly by cluster radiation at
temperatures about 3500 K. The chemical regeneration in
these cluster lamps is observed with various heat-resistant

metals and their compounds such as Re2O7, OsO4, MoO2X2,
TaX5, TaOX5, NbX5, NbOX3, HfX4, ZrX4, and TiX4, where
X is a halogen atom. This list testifies to the universal
character of the chemical regeneration process.

Below, we shall take for this purpose a compound MXk,
where M is the metal atom, X is the halogen atom, k is an
integer. We now can find the criteria which provide the above
distribution of components in the arc plasma. The chemical
equilibrium for the gaseous compound corresponds to the
scheme

MXk !M� kX : �2:7�
Let us introduce the binding energy eX per halogen atom, so
that the total binding energy of atoms in the compoundMXk

is keX. Along with reactions (2.7), the equilibrium between
metal atoms and clusters according to reactions (1.1) occurs.
Introducing eM Ð the binding energy per atom for a bulky
metal, we have the following rough criterion for the existence
of the above chemical compound at low temperatures:

eM < keX : �2:8�
From the chemical equilibrium of MXk, one can estimate the
typical temperature T1 at which this compound decomposes
into atoms, and from the chemical equilibrium of clusters Mn

one can find the typical temperature T2 at which clusters are
transformed into atoms, viz.

T1 � eX
ln�N0=�X�� ; T2 � eM

ln�N0=�M�� : �2:9�

Here �X� denotes the total number density of free and bound
atoms X, N0 is a typical atomic quantity, and �M� is the total
number density of free and bound metal atoms. Evidently,
clusters exist in the temperature range [35]

T1 < T < T2 : �2:10�

One can determine the temperature T2 of decomposition of
clusters more precisely using the formula

�M� � Nsat�T3� ; �2:11�

where Nsat�T3� is the atomic density in a saturated vapor at
the temperatureT3.We denote this temperature asT3, though
according to definition it should coincide with the tempera-
ture T2. Evidently, if �X� � �M�, the possibility of existence of
clusters corresponds to the criterion

eX < eM : �2:12�

The data in Table 2 were obtained on the base of results from
Ref. [21] and they allow one to ascertain the conditions
defining the existence of metallic clusters in a plasma. The
corresponding variables eX and eM we denote as DGX and
DGM if they are obtained on the base of free Gibbs
thermodynamic potentials, and also as DHX and DHM if
they are determined on the base of enthalpies. One can see a
shift in temperatures T1, T2 in the second case Ð when they
are given in parentheses Ð by � 200 K. The accuracy in
determining the temperatures for cluster existence is esti-
mated at about 100 ± 200 K, as follows from comparison of
the values of T2 and T3 which must be identical. Thus,
insertion of some metallic compounds into an arc plasma
may lead to the formation of metallic clusters in some arc
region, and these cases are marked in the table by symbol �.

Nan
T, K

193

282

291

296

299

307

2000 4000 6000

Number of atoms, n

8000 10000

Figure 2. Mass spectra of sodium clusters, resulting from near-threshold

photoionization [29, 30]. Disappearance of magic numbers at heating

testifies to the melting of clusters of relevant sizes. Each oscillation in the

spectrum of a solid cluster corresponds to one atomic shell. Variation of

the number of atomic shells from 6 to 14, i.e. the number of cluster atoms

from 923 to 10179, leads to an increase in the cluster melting point from

�288� 4� to �303� 3�K.
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The cluster plasma can be used in producing cluster
lamps, for generation of large clusters and also for extraction
of heat-resistant metals from their gaseous or volatile
compounds. These applications are enhanced due to the
cluster instability [35] which develops due to the low mobility
of large clusters and the high rate of atomic attachment to
clusters. As a result, all the metal is collected in the cluster
region of the gas discharge in the form of clusters.

2.3 Cluster instability in an inhomogeneous vapor
Thus, a uniform cluster plasma is unstable, and the processes
of cluster growth and cluster evaporation lead to the
transformations of clusters into an atomic vapor or a
condensed macroscopic system depending on the tempera-
ture. One can expect this instability to disappear in an
inhomogeneous plasma with a temperature gradient. In this
case, clusters grow in a cold plasma region and evaporate in a
hot plasma region. A flux of clusters from a cold region to a
hot one establishes an equilibrium. This equilibrium corre-

sponds to a stationary spatial distribution of clusters and the
atomic vapor, and the typical cluster size is determined by the
cluster growth time, which is the transport time of clusters
from a cold region to a hot one.

But this scheme is not realized for real metallic vapors in a
dense buffer gas due to the so-called cluster instability [35].
This instability results from the cluster-size dependence of
both the rate of cluster growth and the cluster diffusion
coefficient in the buffer gas. In order to analyze this
instability, we now study the fate of an individual cluster
located in a cold region. In this region, the cluster evaporation
process is not significant, so that the cluster size n (the number
of cluster atoms) varies in time due to the process of atomic
attachment to a cluster:

dn

dt
� k0n

2=3N ; �2:13�

and the right-hand side of this equation is the rate of atomic
attachment which is given by formula (2.2). Concurrent with
the cluster growth, a probe cluster moves away from the
initial point due to the diffusive motion in the buffer gas. The
distance z that the cluster is moved from the initial point in the
temperature gradient direction is determined by the probe
cluster diffusion and is given by the equation

dz2

dt
� 2Dn ; �2:14�

where an average is taken over possible positions of the
cluster, and Dn is the diffusion coefficient in the buffer gas
for a cluster consisting of n atoms. We use the cluster-size
dependence for the diffusion coefficientDn � D0=n

2=3, and in
the Chapman ±Enskog approximation we have [36, 37]

D0 � 3

8
������
2p
p

r 2WNa

����
T

m

r
: �2:15�

Here rW is the Wigner ± Seitz radius, m is the mass of a buffer
gas atom,Na is the number density of atoms of the buffer gas,

1 cm
Mesh

Reêector

Electrodeless
quartz vessel

Quartz wall
1000 K

Cavity Microwave signal
(100 W; 2.45 GHz)

ì Tungsten
ì Halogen
ì Oxygen

Tungsten
cluster

Center of
discharge,
4000 K

WO2Br2

PW 4PW
v

Figure 3. The layout of a cluster lamp using a microwave discharge, and the processes involving tungsten clusters inside the plasma [31].

Na Cs Cs

Cs

Cs Cs

Cs Cs

Molecular
bands
(WO)

Atomic
lines

Cluster continuum

WO2Br2, CsBr
P � 125W

0.10

0.05

0
0.25 0.50 0.75

Wavelength, mm
1.00 1.25 1.50

Figure 4. A typical emission spectrum of a cluster lamp of Fig. 3, which

includes a continuous spectrum of clusters, spectral lines of radiative

transitions in the cesium atom and the molecular bands of the WO

molecule [31].
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T is the gaseous temperature. Table 3 gives the values of D0

for some metallic clusters in argon with the standard number
density of atoms Na � 2:7� 1019 cmÿ3 and at the gaseous
temperature T � 1000 K.

Thus, we have the equation for cluster displacement from
the initial point in a cold plasma region of the form

dz2

dn
� 2D0

k0 n 4=3N
; �2:16�

where N is the number density of free atoms of the metal
vapor in the buffer gas. It follows from this equation that
clusters move more slowly as they increase in size. For a large
cluster, themean value of the distance squared z2�t� at the end
of the process is

z2�1� � D2

n1=3
; D2 � 6D0

k0N
: �2:17�

and a large cluster remains in the cluster region. Because
D0 � 1=Na, we have D � 1=

����������
NaN
p

, i.e. the quantity D
����������
NaN
p

does not depend on the density of the buffer gas. Table 3
contains the values of this quantity at T � 1000 K for argon
as the buffer gas. From data of this table, for typical values
Na � 1019 cmÿ3, and N � 1013ÿ1015 cmÿ3 we have
D � 0:01ÿ0:1 cm. This means that there is cluster instability
under real laboratory conditions.

Neglecting the diffusive motion of large clusters in a
cluster plasma, we consider the cluster growth processes as
follows. There is local thermodynamic equilibrium between
clusters and the atomic vapor at each point, which results
from the processes of evaporation of clusters and attachment
of atoms to their surfaces. In the limit of large cluster sizes, the
number density of free metal atoms tends to the saturation
vapor density at a given temperature. The temperature
gradient in the buffer gas HT; which is supported in the
plasma, creates a gradient of the concentration of metal
atoms, which is equal to

HN � e0
T 2

NHT ;

and the increase in the atomic number density is directed
towards the cold region. As a result, the flux of free metal
atoms is directed towards the cold region, where atoms attach
to clusters. Therefore, clusters evaporate in a hot region, and
the atoms formed take part in the growth of clusters in a cold
region. Finally, metal atoms gather in a cold gas-discharge
region, forming clusters there. Thus, as a result of the above
processes a metal is concentrated in a cold region of a
nonuniform plasma.

Let us estimate the depth of penetration of the atomic flux
into the cluster plasma under favorable conditions for cluster
growth, when one can neglect the cluster evaporation in a cold
region. The atomic flux into a cold region is given by

j � ÿDaHN � ÿDaN
e0
T 2

HT ;

where Da is the diffusion coefficient of metal atoms in the
buffer gas. The rate of atomic attachment to clusters is

Table 2. Parameters of some compounds of heat-resistant metals at the initial number density of the molecules �MXk� � 1� 1016 cmÿ3 [44].

Compound DGX, eV DGM, eV DHX, eV DHM, eV T1, 103 K T2, 103 K T3, 103 K Cluster existence

HfCl4
HfF4

SnBr4
SnCl4
ThCl4
ThF4

TiBr4
TiCl4
UCl4
UF4

VCl4
VF4

ZrCl4
ZrF4

NbCl5
NbF5

VF5

IrF6

MoF6

UCl6
UF6

WCl6
WF6

ì
ì
ì
2.1
ì
6.2
3.0
3.5
3.8
5.7
3.0
ì
4.3
6.5
3.3
5.2
4.1
2.2
3.9
3.0
4.7
ì
4.5

6.0
6.0
2.8
2.8
5.8
5.8
4.4
4.4
5.1
5.1
4.7
4.7
5.9
5.9
7.1
7.1
4.7
6.4
6.3
5.1
5.1
8.4
8.4

4.2
6.3
3.2
2.6
4.7
6.5
3.2
3.8
4.1
5.9
3.3
4.4
4.8
6.9
3.6
5.5
4.4
2.5
4.2
3.3
5.0
3.0
4.9

6.4
6.4
3.1
3.1
6.2
6.2
4.9
4.9
5.5
5.5
5.3
5.3
6.3
6.3
7.5
7.5
5.3
6.9
6.8
5.5
5.5
8.8
8.8

(2.4)
(3.5)
(1.8)
1.2(1.5)
(2.6)
3.5(3.6)
1.7(1.8)
2.0(2.1)
2.1(2.3)
3.2(3.3)
1.7(1.8)
(2.5)
2.4(2.7)
3.6(3.9)
1.8(2.0)
2.9(3.1)
2.3(2.5)
1.2(1.4)
2.2(2.4)
1.7(1.8)
2.6(2.8)
(1.7)
2.5(2.7)

3.0(3.2)
3.0(3.2)
1.4(1.6)
1.4(1.6)
3.0(3.1)
3.0(3.1)
2.2(2.5)
2.2(2.5)
2.6(2.8)
2.6(2.8)
2.4(2.7)
2.4(2.7)
3.0(3.2)
3.0(3.2)
3.6(3.8)
3.6(3.8)
2.4(2.7)
3.2(3.5)
3.2(3.4)
2.6(2.8)
2.6(2.8)
4.2(4.4)
4.2(4.4)

3.15
3.15
1.73
1.73
3.12
3.12
2.28
2.28
2.73
2.73
2.40
2.40
3.08
3.08
3.41
3.41
2.40
3.15
3.19
2.73
2.73
4.04
4.04

�
ÿ
ÿ
�
�
ÿ
�
�
�
ÿ
�
ÿ
�
ÿ
�
�
�
�
�
�
ÿ
�
�

Table 3. Parameters describing diffusion of large clusters in argon as a
buffer gas at T � 1000 K. The reduced diffusion coefficient is given by
formula (2.15) for T � 1000 K, and D is given by formula (2.17).

Element D0, cm2 sÿ1 D
����������
N0N
p

, 1015 cmÿ2

Ti
V
Fe
Co
Ni
Zr
Nb
Mo
Rh
Pd
Ta
W
Re
Os
Ir
Pt
Au
U

0.91
1.05
1.17
1.20
1.22
0.74
0.90
0.98
1.05
1.01
0.90
0.98
1.01
1.05
1.01
0.98
0.93
0.81

1.59
3.51
2.13
2.22
2.31
1.52
1.85
2.05
2.23
2.16
2.19
2.42
2.49
2.60
2.51
2.45
2.32
2.11
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determined by the cluster-size balance equation (2.13), and
the depth l of penetration of free atoms into a cold region is

l � j

k0 n2=3NclN
� Da

k0Nb

e0
T

HT
T

n1=3 : �2:18�

Here, Ncl is the number density of clusters, Nb � nNcl is the
total number density of bound atoms in clusters, and n is the
average number of cluster atoms. It is of importance that the
regime under consideration satisfies the criterion

Nb 4N : �2:19�

This means that the majority of metal atoms are bound in
clusters, so that the number density of free atoms is small
compared to the number density of bound atoms. This
condition corresponds to intense nucleation processes in the
plasma and ensures that metal atoms gather in a narrow
region of the plasma at the end.

For a numerical estimate, we shall consider argon as a
buffer gas at pressure 1 atm and T � 3700 K. This
temperature exceeds slightly the melting point of tungsten,
and the diffusion coefficient Da of tungsten atoms in argon
under these conditionsmay be set 10 cm2 sÿ1.We also take the
total number density of bound tungsten atoms in a cold
region to be Nb � 1� 1016 cmÿ3. Note that the number
density of free tungsten atoms at this temperature and
saturation vapor pressure is 6:4� 1013 cmÿ3, and the
equilibrium number density of free tungsten atoms near
clusters of an average size n � 103 is equal to
1:4� 1014 cmÿ3. For this cluster size and laboratory values
of the temperature gradientHT=T � 1 cmÿ1, we obtain in this
case l � 0:005 cm.

This transport process involving free atoms which are in
equilibriumwith clusters leads to redistribution of the latter in
space. If clusters occupy a region of size Dx, i.e. in this region
the condition (2.10) is fulfilled, a noticeable atom transport
into this region proceeds during a typical time t, which is
estimated by

t � Nb

N

Dx2

Da

T

e0

T

DT
; �2:20�

where DT � T2 ÿ T1, so that HT � DT=Dx. Taking
Dx � 1 cm, we find that under the above conditions t � 1 s.
This process leads to the redistribution of bound atoms in a
region occupied by clusters. Thus, for this regime of transport
processes, when the majority of atoms become bound and
collect in a cold plasma region, it is required that, on the one
hand, the vapor pressure is relatively small, so that the
criterion (2.19) is fulfilled, and, on the other hand, com-
pounds of metal atoms and halogen atoms are not formed at
these temperatures.

2.4 Stability of charged clusters
Along with evaporation, a large charged cluster can be
destroyed under the action of internal electric fields. This
problem is actual for liquid dielectric particles, and below we
shall consider instabilities of liquid clusters as a result of the
interaction of their charges. We assume the cluster to be
similar to a liquid charged drop, so that its destruction is
determined by the Rayleigh instabilities of a charged liquid
drop [38]. For the case of the Rayleigh instability, the cluster
surface tension energy 4pr2g prevents the drop from decaying

due to the Coulomb interaction Z 2e2=�2r� of cluster charges.
Here r is the drop radius, Z is the drop charge expressed in
electron charges e, and g is the surface tension. Here we
assume drop charges to be distributed uniformly over the
drop surface.

The Rayleigh instability gives rise to the separation of a
drop into two identical drops due to large deformations or the
decay of a drop owing to small drop vibrations. Below, we
shall restrict our consideration to drop decay due to small
deformations whose threshold has the form [38]

Z 2e2 � 16pgr3 : �2:21�

This criterion corresponds to the case where the charge is
distributed uniformly over the drop surface and we assume
the Poisson coefficient to be zero, so that a deformation in one
direction does not create deformations in other ones. Notice
that clusters that are stable with respect to this criterion can be
found unstable with respect to large deformations, i.e. these
clusters are in a metastable state.

Let us consider clusters with a short-range interaction of
atoms or molecules, where the cluster binding energy is
determined mostly by interaction of nearest neighbors. In
this situation the solid cluster has the close-packed structure,
and an internal atom is surrounded by its 12 nearest
neighbors. Then we have for the cluster radius r � rWn1=3,
where rW � �3m=�4pr��1=3 is the Wigner ± Seitz radius, m is
the atom mass, r is the density of an atomic macroscopic
system, n is the number of drop atoms, and the surface energy
is represented in the form 4pr2g � An2=3, where A is the
specific surface energy of the cluster (see Table 1). These
parameters for clusters of rare gases are given in Table 4; they
were compiled on the base of data presented in Ref. [15].
Using these parameters, the criterion (2.21) can be repre-
sented in the form

ncr�Z� � Z 2e2

4ArW
: �2:22�

Here ncr�Z� is the critical size of the cluster starting from
which the cluster of the chargeZ is stable with respect to small
deformations. The values of ncr=Z

2 are also given in Table 4.
Note that there are different versions of the Rayleigh
instability [13, 15 ± 17] depending on the instability charac-
ter, the distribution of charges in the drop, the Poisson
coefficient of the drop and its polarizability. It is convenient
to represent formula (2.22) in the form

ncr�Z� � C
Z 2e2

4ArW
: �2:23�

Let us require that this formula fits experimental data. Then,
comparing this formula with the measured values of ncr for
krypton and xenon [39 ± 43] with Z � 2ÿ4, where the
measurements are reliable, we get C � 0:8� 0:1. Using this
value of the coefficient C, one can find the critical cluster size

Table 4. Parameters of rare-gas clusters.

Gas rW, A A, meV ncr=Z
2

Ne
Ar
Kr
Xe

1.74
2.08
2.15
2.40

15.3
53
73
97

135
33
23
15
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at a given charge. As a result of the statistical treatment of the
data, which follow from formula (2.23) with C � 0:8 and
parameters of this formula according to Table 1, we obtain

ncr�Z�
Z 2

� 0:5� 0:1 : �2:24�

It follows from formula (2.24) that the problem of the electric
stability of metallic clusters is not so sharp as it is for rare-gas
clusters. Indeed, in the latter case the energy per bond is
relatively small, which leads to destruction of charged clusters
of rare gases at relatively weak internal electric fields. For
metallic clusters, and the more so for clusters of transient
metals, where the binding energy per bond is relatively high,
this effect is not so significant.

3. Charging of clusters and small particles
in plasma

3.1 Charging due to transport processes
involving plasma particles
Small particles or clusters located in a weakly ionized gas
acquire a charge as a result of attachment of electrons and
negative or positive ions to them. For this reason, small
particles in a gas are charged, and their behavior differs
from the behavior of neutral atomic particles. In particular,
aerosols, i.e. small particles in the atmosphere, are usually
charged, so their fall under the action of gravity creates the
Earth's electric charge and the electric fields in the atmo-
sphere. Hence, small water particles in the atmosphere
determine the character of electrical phenomena in the
atmosphere and near the Earth's surface.

Small particles can emit electrons at high temperatures,
but at low temperatures their charge results from attachment
of electrons and ions to them. This process leads to formation
of chemical bonds between charged atomic particles on the
surface of a small particle and can proceed through several
intermediate stages. For example, dissociative attachment of
electrons to dielectric particles can proceed via formation of
free negative ions. These negative ions later attach to the
surface due to collisions with gaseous atoms or molecules.
When positive ions in the plasma attach to the surface of a
small particle, they can recombine on the surface with
negative charges. The character of such recombination
depends on the type of the particle's material. In the case of
a metallic particle, electrons can move through the entire
particle volume, and the attachment of a positive ion to a
metallic particle decreases by one the total number of particle
electrons. This means the charge exchange of a positive ion on
a small metallic particle, so that one electron transfers from
the small particle to the positive ion. In collisions with a
negative ion, a weakly bound electron of the negative ion
transfers to the small metallic particle as a result of their
contact. Thus, the charging of a small metallic particle in a
plasma proceeds through the interaction of positive or
negative ions on the particle's surface with an electron
subsystem.

In the case of a dielectric small particle, attachment of
positive and negative ions to its surface leads to formation of
bound states of ions at some points on the particle's surface.
We call these points active centers. As this takes place, the
bound states of positive and negative ions can exist simulta-
neously on the particle's surface. Diffusion of these bound
ions across the particle surface leads to their recombination.

Thus, though the recombination of positive and negative
charges on the surface of a metallic particle differs from that
on the surface of a dielectric particle, these processes are
identical from the standpoint of fluxes of charges onto the
particle's surface because opposite charges recombine at the
end. Hence, below we shall not distinguish recombination of
charges on the particle's surface for metallic and dielectric
small particles.

We start with the charging of a spherical particle, when its
radius r exceeds the mean free path l of atoms in the gas:

r4 l : �3:1�

Under this condition, the charging of a small particle as a
result of attachment of electrons or ions to its surface is
hampered by their motion towards the particle. Below we
shall evaluate the currents of plasma ions towards the
particle, when the ion motion is determined by their diffusion
in a gas and their drift under the action of the electric field of a
charged particle. We introduce the boundary conditions
according to which the number density of ions equals zero
on the particle's surface and tends to the equilibrium value at
large distances from the particle in a plasma. Taking the
particle's charge to be Z, we get for the current I of positive
ions towards the particle at a distance R from it the following
relationship:

I � 4pR 2

�
ÿD� dN

dR
� K�EN

�
e :

The first term corresponds to ion diffusive motion, the second
term to ion drift motion, N is the current number density of
ions, D�, K� are the diffusion coefficient and the mobility of
positive ions, respectively, e is the ion charge (usually it is
equal to an electron charge), andE � Ze=R 2 is the strength of
the electric field created by the particle. Using the Einstein
relationship D� � eK�=T, where T is the gaseous tempera-
ture, we obtain for the positive ion current onto the particle's
surface the following expression

I � ÿ4pR 2D�e
�
dN

dR
ÿ Ze2N

TR 2

�
:

This relationship can be considered as the equation for the ion
number density. Taking into account that ions do not
recombine in the bulk, we find that the ion current is
independent of R. Solving this equation with the boundary
condition N�r� � 0, we obtain

N�R� � I

4pD�e

�R
r

dR 0

�R 0�2 exp

�
Ze2

TR 0
ÿ Ze2

TR

�

� IT

4pD�Ze3

�
exp

�
Ze2

Tr
ÿ Ze2

TR

�
ÿ 1

�
:

Using the fact that at large R the ion number density tends to
the equilibrium valueN� in a plasma far from the particle, we
arrive at the following expression for the ion current [45]

I� � 4pD�N�Ze3

T
�
exp�Ze2=�Tr�� ÿ 1

	 : �3:2�

This formula is called the Fuks formula. The latter can be
generalized to other geometric forms of the particle. Then the
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ion current onto the particle surface is equal to

I� � 4pD�N�Ze3

T
�
exp�Ze2=�CT�� ÿ 1

	 ;
whereC is the particle capacity. For a spherical particleC � r
and this formula is transformed into (3.2).

Formula (3.2) describes a positive ion current if the
particle charge has the same sign. In order to obtain the
expression for negative ion current, it is necessary to perform
substitution in this formula: Z! ÿZ, and the parameters of
positive ions must be replaced by the parameters of negative
ions. Then we have for the negative ion current toward the
particle:

Iÿ � 4pDÿNÿZe3

T
�
1ÿ exp�ÿZe2=Tr�� : �3:3�

Equalizing the currents of positive and negative ions in a
plasma, we shall find the equilibrium particle charge. This
gives for a quasi-neutral plasma �N� � N�:

Z � rT

e2
ln

D�
Dÿ

: �3:4�

Thus, the particle acquires a positive charge if D� > Dÿ, i.e.
positive ions have a greater mobility than negative ones.
Notice that this formula is valid for an individual particle
under the condition

r4
e2

T
; �3:5�

when Z4 1. In this case the capture of one ion does not alter
the particle's potential significantly. Thus, as this takes place
the particle charge induces a certain potential which equalizes
the currents of positive and negative ions. Note that the above
formulas are valid under the condition (3.1). At room
temperature, criterion (3.5) takes the form r > 0:06 mm, and
for atmospheric air l � 0:1 mm.

Formulas (3.2) and (3.3) for currents of ions onto an
absorbing sphere may be used in the limit Z! 0 for
determination of the diffusive flux J of neutral particles onto
the surface of an absorbing sphere:

J � I�
e
� 4pD�N�r : �3:6�

This formula is known as the Smoluchowski formula. In the
other limit, Ze2=�rT�4 1, formula (3.3) is transformed into
the Langevin formula [46]

Iÿ � 4pZe3DÿNÿ
T

� 4pZe2KÿNÿ : �3:7�

Notice that formulas (3.2) and (3.3) for ion currents may be
combined by introducing the reduced variable
x � Zj je2=�rT�, so that we have

I �
I0x

exp�x� ÿ 1
; Ze2 > 0 ;

I0x

1ÿ exp�ÿx� ; Ze2 < 0 ;

8>>><>>>: l5 r : �3:8�

Here, I0 is given by the Smoluchowski formula (3.6), which
corresponds to atomic attachment to the neutral particle:
I0=e � 4pDNr, where N is the number density of atoms, and
D is the diffusion coefficient of atoms in a gas. In particular, in
the limiting case x4 1 it is transformed into the Langevin
formula

I � 4pKN0Ze
2 ;

where K � eD=T is the mobility of ions in a gas, N0 is the
mean number density of ions.

Formulas (3.2) and (3.3) for currents of positive and
negative ions include the ion temperature which originated
in these formulas via the Einstein relation. Therefore, formula
(3.3) can be used for the current of electrons onto the particle
surface if the energy distribution function of electrons is not
Maxwellian. In this formula, Te � eDe=Ke is used as an
effective electron temperature Te, where Ke, De are the
mobility and diffusion coefficient of electrons in a gas. In
particular, it is valid for a particle located in a glow discharge,
where the distribution function of electrons over velocities
differs from the Maxwellian distribution function. Corre-
spondingly, the particle charge in this case is equal to

Z � r
De

eKe
ln

Ke

K�
: �3:9�

For amore general form of the particle, this charge is given by

Z � C
De

eKe
ln

Ke

K�
;

where C is the particle's capacity, which coincides with its
radius for a spherical particle. In an equilibrium plasmawhere
the Maxwellian distribution functions of electrons and ions
are characterized by an identical temperature, this formula
transforms to formula (3.4).

Due to its charge, the particle has an electric potential with
respect to the plasma where it is located. This potential is
equal to

j0 �
Ze

C
� T

e
ln

Dÿ
D�

:

It is seen that the potential energy ej0 corresponding to ions
on the particle's surface is of the order of the ion thermal
energy T. This follows from the nature of the process, which
requires the equality of currents of positive and negative ions
onto the particle's surface.

If the criterion opposite to (3.1) is fulfilled, the particle
charge results from individual collisions of plasma ions and
electrons with this charged particle. For simplicity, we assume
that each contact of a colliding ion or electron with the
particle surface leads to transfer of its charge to the particle.
Next we assume the particle radius to be large enough for
collisions to feature a classical character. This allows us to
express the currents of ions and electrons onto the particle
surface through classical cross sections for their attachment
to a charged particle.

Because the distance of closest approach r0 of classical
particles is connected with the impact parameter r of their
collision by the relation [47]

1ÿ r2

r20
� Ze2

r0e
;
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where e is the collision energy in the center-of-mass system, we
have that the cross section of ion collision with the particle's
surface under these conditions is defined as

s � pr2
�
1ÿ Ze2

r0e

�
:

When Z > 0, i.e. the charges of the particle and ions have the
same sign, account must be taken of the fact that if
e4Ze2=r0, then the cross section equals zero, because in
this case the potential energy of repulsion of the particle and a
colliding ion exceeds their kinetic energy near the particle's
surface. From this it follows that the rate constant of contact
between a colliding ion and the particle after averaging over
the ion energies with the aid of the Maxwellian distribution
function for ions is written as

k � hvsi � k0 exp

�
ÿ jZje

2

rT

�
;

where r is the particle's radius, and k0 � pr2
�������������������
8T=�pm�p

. In the
case of attraction of the particle to an ion, the averaged rate
constant of this collision is given by

k � k0

�
1� jZje

2

rT

�
:

Introducing the dimensionless parameter x � Zj je2=�rT�
and the probability x that the ion transfers its charge to the
particle as a result of their contact, we combine the above
formulas for the rate of ion attachment to the particle and
finally obtain [48]

J � xk0Ni
1� x ; Ze2 < 0 ;

exp�ÿx� ; Ze2 > 0 :

�
�3:10�

This formula is valid in the limit l4 r.
Let us consider the charging of clusters in an equilibrium

plasma with identical temperatures of electrons and ions, as
occurs in an afterglow plasma. The current density of
electrons attaching to the particle's surface in this regime is

jat � Ne

�����������
T

2pme

r
exp

�
ÿ jZje

2

rT

�
; �3:11a�

where me is the electron mass, Z is the particle's charge
expressed in electron charges, r is the particle radius, and we
assume that each contact of an electron with the particle's
surface leads to the electron attachment. Assuming fulfill-
ment of the criterion

jZje2
rT

4 1 ;

we have for the current density of ions j� onto the particle
surface:

j� �
����������
T

2pM

r
Ni
jZje2
rT

; �3:11b�

where M is the ion mass, Ni is the number density of
positive ions, and Ni � Ne for the quasi-neutral plasma.
Equalizing these current densities, we get for the particle's
charge under this regime of particle charging the following

expression:

x � ln

�
1

x

������
M

me

r �
; jZj � x

rWn1=3T

e2
; �3:12�

where rW is the Wigner ± Seitz radius. Table 5 gives the
solution of this equation for an inert buffer gas with atomic
positive ions, and for the case when nitrogen plays the part of
the buffer gas and its plasma contains N�2 ions. Table 6
includes the reduced equilibrium charge Z=n1=3 of metallic
particles in an argon plasma with Ar� ions at temperature
T � 1000 K.

One can combine the above results when the criterion (3.1)
is valid or the opposite relation between these parameters
takes place. For this purpose, we shall consider first the
limiting case l4 r with a general boundary condition on the
particle's surface:N�r� � N1 6� 0. Using expression (3.10) for
the current near the particle's surface, we shall find the ion
number density in an intermediate region where it varies from
the value N1 near the particle's surface up to the value Ni far
from the particle. Repeating the operations that we usedwhen
deducing formula (3.2), we arrive at

N�R� ÿN1 � I

4peDi

�R
r

dR 0

�R 0�2 exp

�
Ze2

TR 0
ÿ Ze2

TR

�

� IT

4pDiZe3

�
exp

�
Ze2

Tr
ÿ Ze2

TR

�
ÿ 1

�
:

Employing the second boundary condition N�1� � Ni, we
obtain for the ion current

I � 4pDi�Ni ÿN1�Ze3
T
�
exp�Ze2=Tr� ÿ 1

� :
Taking the boundary value N � N1 for the ion number
density at the particle's surface, we get the following
expression for the ion current:

I �
�
1

I>
� 1

I<

�ÿ1
; �3:13�

where the ion current I> corresponds to the case l4 r and is
given by formula (3.8), while the ion current I< corresponds
to the opposite relation between the mean free path of ions in
a gas and the particle radius, namely, I< � eJ, where J is given
by formula (3.10). Formula (3.13) transforms to formula (3.8)
in the limit I>4 I , and to formula (3.10) for the opposite
relation between these currents. Thus, formula (3.13) includes
any relationships between the problem parameters. Notice
that the ratio of these currents is estimated as

I<
I>
� xr

l
:

The above expressions for currents of ions and electrons
onto the surface of a charged particle allow us to determine
the rate of establishment of the charge equilibrium for the

Table 5. The solution of equation (3.12).

Buffer gas He Ne Ar Kr Xe N2

x 3.26 3.90 4.17 4.47 4.65 4.03
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particle. Let us determine this quantity for a plasma including
ions whose diffusion coefficients D�, Dÿ are close, i.e. DD �
D� ÿDÿj j5D. Introducing themean diffusion coefficient of
ions D � �D� �Dÿ�=2 and using formula (3.9), we obtain
the following expression for the equilibrium particle charge

Z0 � rT

e2
DD
D

:

The charging of the particle is defined by an equation of the
form

dZ

dt
� Iÿ ÿ I�

e
;

where Z is a current particle's charge. Subject to the initial
condition Z�0� � 0 and using formulas (3.2), (3.3) for the
charging currents, we have

dZ

dt
� 4pN0e

2Z

T

�
Dÿ ÿD� exp

�
Ze2

Tr

���
exp

�
Ze2

Tr

�
ÿ 1

�ÿ1
;

where N0 is the average number density of ions in a plasma.
Because Z0e

2=�Tr� � DD=D5 1 and Z4Z0 in the course of
charging of the particle, one can expand the above equation in
a series in powers of a small parameter Ze2=�Tr�. Then the
equation of charging takes the form

dZ

dt
� Z0 ÿ Z

t
;

where

1

t
� 4pN0e

2D

T
� 2pS : �3:14�

Here S � N0e�K� � Kÿ� � 2N0e
2D=T is the coefficient of

conductivity of the plasma.
The solution of the above equation with the initial

condition Z�0� � 0 is written as

Z � Z0

�
1ÿ exp

�
ÿ t

t

��
:

It is seen that the typical time of establishing the equilibrium
charge does not depend on the particle radius.

Though the topic of this review is the cluster plasma, these
results for charging of particles are also valid for other types
of a plasma containing particles or clusters, in particular, for a
dusty and aerosol plasma. For example, from this one can
determine themobilityK of a large particle which is located in
the atmospheric air. According to the Einstein relation, it is
expressed through the particle's diffusion coefficient D by

K � ZeD

T
:

Under the criterion (3.1), the particle's charge (3.9) is
proportional to its radius r, andD � 1=r. From this it follows
that themobility of a large particle in the atmospheric air does
not depend on its size. Taking the ratio of the ion diffusion
coefficients D�=Dÿ � 0:8 which corresponds to atmospheric
air of typical humidity, we find the limiting value K �
1:8� 10ÿ5 cm2 (V s)ÿ1 under the condition r4 l.

In the problem under consideration, we touched with
three parameters of size dimensionality: r, e2=T, l. From this
follows six different regimes for the particle's charging
depending on the relation between these parameters. Briefly,

in the case when the charging results from attachment of
positive and negative plasma ions or positive ions and
electrons to the particle, the character of the process is as
follows. In the case r4 l, the particle's charging process is
limited by the motion of ions in a gas and is determined by the
diffusion of ions in a gas and the drift of ions. The particle
chargemay be large if r4 e2=T; and it can only be unity in the
case r5 e2=T. With the proviso that r5 l, the process of the
particle charging proceeds via pair collisions between plasma
ions or electrons and the particle, and its charge can be large
for r4 e2=T. In all the cases we assume r4 a0, where a0 is the
Bohr radius, and under this condition collisions involving the
probe particle have a classical character.

3.2 The charge distribution function of particles in plasma
In addition to the above analysis of particle charging in a
dense gas, we below shall find the charge distribution function
of small particles. Let us introduce the distribution function fz
of small particles over charges, so that Np fz is the number
density of particles of a charge ze, andNp is the total number
density of small particles. Then the normalization condition
has the formX

z

fz � 1 ;

and the kinetic equation for the distribution function is

fz�Jz; z�1 � Jz; zÿ1� � fzÿ1Jzÿ1; z � fz�1Jz�1; z ;

where Jml is the reaction rate, i.e. the probability per unit time
for the particle charge to change from me to le as a result of
attachment of ions. This kinetic equation takes into account
the fact that the change in the particle charge as a result of an
elementary process of ion attachment can only be one, the
left-hand side of this equation accounts for loss of particles of
a charge ze, and the right-hand side of this equation takes into
account the formation of such particles.

On the basis of formulas (3.2), (3.3), we have the following
expressions for rates of charging

Jz; z�1 � 4pD�N0rzx

exp�zx� ÿ 1
; Jz; zÿ1 � 4pDÿN0rzx

1ÿ exp�ÿzx� ;

where x � e2=rT,N0 is the number density of ions of each sign
far from the particles, and the other notations were explained
above. Thus, we have the following kinetic equation for the
distribution of small particles over charges:�

D� �Dÿ exp�zx�
�
zx

exp�zx� ÿ 1
fz � D��zÿ 1�x

exp
��zÿ 1�x�ÿ 1

fzÿ1

� Dÿ�z� 1�x
exp
��z� 1�x�ÿ 1

fz�1 : �3:15�

In the limiting case x4 1, the average particle's charge is
small, and particles are mostly neutral. Then from the set of
equations (3.15) it follows for the probability f2, if we assume
f3 5 f2, that

f2
f1
� D�

�
exp�2x� ÿ 1

�
2
�
D� �Dÿ exp�2x�

��
exp�x� ÿ 1

� � D�
2Dÿ

exp�ÿx� ;

i.e. fz with z5 2 are exponentially small. The same relation
holds for z4 ÿ 2: Thus, we can restrict our consideration to
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neutral and single-charged particles which give the main
contribution to the total number of particles. Under this
assumption, we obtain from the set of equations (3.15):

f1
f0
� D�

�
exp�x� ÿ 1

��
D� �Dÿ exp�x�

�
x
� D�

Dÿx
;

fÿ1
f0
� Dÿ

�
exp�x� ÿ 1

��
Dÿ �D� exp�x�

�
x
� Dÿ

D�x
;

and in this limiting case f0 � 1. The average charge of
particles equals

�z � f1 ÿ fÿ1 �
D 2
� ÿD 2

ÿ
D�Dÿx

:

In particular, if D� ÿDÿ � DD5D�, this formula gives
z � 2DD=�Dx�.

In the case of a large particle of size r4 l, the average
particle's charge is large according to formula (3.9). We now
determine the distribution function of small spherical
particles over charges if they are located in a quasi-neutral
plasma under the restrictions r4 l, r4 e2=T: Considering fz
to be a continuous function of the particle's charge and
introducing the variable y � zx, we have a normalization
condition of the form�1

ÿ1
f�y� dy � x :

Then the kinetic equation (3.15) takes the form

ÿ f�y��D�F�y� �DÿG�y�
�� f�yÿ x�D�F�yÿ x�

� f�y� x�DÿG�y� x� � 0 ;

where

F�y� � y

exp�y� ÿ 1
;

G�y� � F�ÿy� � exp�y�F�y� � y

1ÿ exp�ÿy� :

Let us expand the equation in a series in powers of a small
parameter x. As a result we get

ÿD�x
d

dy

�
f�y�F�y���Dÿx

d

dy

�
f�y�F�y� exp�y��

�D�
x2

2

d2

dy2
�
f�y�F�y��

�Dÿ
x2

2

d2

dy2
�
f�y�F�y� exp�y�� � 0 :

Restricting ourselves to linear terms, we obtain the equation

d

dy

��
D�
Dÿ
ÿ exp�y�

�
f�y�F�y�

�
� 0 :

The solution of which has the form

f � C
�
exp�y� ÿ 1

���D�=Dÿ ÿ exp�y��� :

We see that the distribution function becomes infinite at

z � 1

x
ln

D�
Dÿ

;

which corresponds to the average particle's charge defined by
formula (3.4).

Accounting for terms of the next order in a power
expansion over a small parameter, we reduce the kinetic
equation to the form

d

dy

��
D�
Dÿ
ÿ exp�y�

�
f�y�F�y�

�
ÿ x

2

d2

dy2

��
D�
Dÿ
� exp�y�

�
f�y�F�y�

�
� 0 : �3:16�

First we consider the case D� � Dÿ, when the average
particle charge is zero and the distribution function is
symmetric about the reflection with respect to y, i.e.
f�y� � f�ÿy�: Then the kinetic equation is written in the form

d

dy

�
y f�y��� x

2

d2

dy2

�
exp�y� � 1

exp�y� ÿ 1
y f�y�

�
� 0 :

Integration of this equation gives

y f�y� � x

2

d

dy

�
exp�y� � 1

exp�y� ÿ 1
y f�y�

�
� C1 :

From the symmetry of the distribution function, f�y� � f�ÿy�
we have C1 � ÿC1 � 0. Integrating this equation yields

f�y� � C

2

exp�y� ÿ 1

exp�y� � 1
exp

�
ÿ 2

x

�
2 ln

1� exp�y�
2

ÿ y

��
;

where the constant of integration C is the normalization
constant of the distribution function. One can see that for
x5 1 the main contribution to the normalization of the
distribution function gives y � ���

x
p

5 1. Expanding this
expression in small y and using the normalization condition,
we reduce the distribution function to the form

f�y� �
��������
1

2px

r
exp

�
ÿ y2

2x

�
:

From this it follows that the probability for the particle to
have a charge ze is given for x5 1 and zx5 1 by

fz �
������
x

2p

r
exp

�
ÿ zx2

2

�
: �3:17�

Here we shall consider the kinetic equation in the general
case D� 6� Dÿ: Let us introduce the parameter y0 �
ln�D�=Dÿ� and recast equation (3.16) in the
range yÿ y0j j5 1. In these new variables the kinetic equa-
tion (3.16) assumes the form

d

dy

��yÿ y0� f�y�
�� y

d2f

dy2
� 0 :

The normalized solution to this equation is

f�y� �
��������
1

2px

r
exp

�
ÿ�yÿ y0�2

2x

�
;

jyÿ y0j5 1 ; x5 1 : �3:18�
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Note that the normalization of the distribution function for
x5 1 is determined by just this range of the variable
yÿ y0j j5 1.

Along with the equilibrium charge distribution function
of particles, the above analysis allows us to describe the
evolution of the charge distribution function. We now
analyze the evolution of the particle's charge in the simplest
caseD � D� � Dÿ. In doing so the kinetic equation takes the
following form

qf
qt
� 4pDN0rx

�
q�yf �
qy
� x

q2f
qy2

�
;

whereN0 is the number density of ions of each charge sign far
from the particle. Multiplying this equation by y2 and
integrating the result over dy, we obtain

dy2

dt
� ÿ 2

t
� y2 ÿ x� ;

where the typical time for the establishment of the equilibrium
charge distribution function is

t � T

4pN0De2
: �3:19�

The solution of the above equation is

z2 � x

�
1ÿ exp

�
ÿ 2t

t

��
:

This solution describes the character of the establishment of
equilibrium for the charge distribution function of particles,
and t is a typical time of this process.

3.3 Ionization equilibrium for clusters in plasma
Above we considered the kinetic regime of charging of
clusters or small particles in a plasma as a result of their
collisions with plasma ions and electrons and under condi-
tions when this process depends weakly on the character of
the interaction of an attaching ion or electron with a cluster or
particle. Apart from these charging processes, other processes
may be responsible for cluster charging, and Fig. 5 lists these
processes. Ionization of clusters by electron impact, recombi-
nation of electrons with positively charged clusters, and
thermoemission of electrons from the cluster surface are
additional charging processes for excited clusters in a
plasma. When analyzing these processes, it is necessary to
take into account the different character of these processes for
small metallic and dielectric clusters. In the case of metallic
clusters, electrons move freely over the entire volume of the
cluster or small particle, so that the ionization equilibrium of
metallic particles is similar to that of atoms and molecules.
The ionization equilibrium in metallic clusters is determined
by the equality of the fluxes of released and attached

electrons. For large and hot metallic clusters, the flux of
released electrons as a result of ionization of the particle
corresponds to the thermoemission flux from the metallic
surface, so that the temperature of internal electrons is
responsible for this equilibrium.

Usually, the ionization potential of small particles is lower
than that of the corresponding atoms and molecules. There-
fore, ionization of small metallic particles occurs at relatively
low electron temperatures or typical electron energies at
which ionization of atoms or molecules is absent. As a
result, small metallic particles located in a plasma can give a
contribution to the formation of free electrons. Next, metallic
particles and clusters emit electrons to and accept them from
the surrounding plasma, and they can be positively or
negatively charged. At high electron temperatures, metallic
particles or clusters have a positive charge, while at low
temperatures they are negatively charged. The character of
the ionization equilibrium for a dielectric particle is different.
Each dielectric particle or cluster has on its surface traps for
electrons that we call active centers. Electrons are captured by
these centers, and this leads to formation of negative ions
located at certain points on the particle's surface. The
ionization equilibrium relevant to dielectric particles in a
plasma corresponds to the equilibrium of these bound
negative ions and free plasma electrons. Though electrons
can transit between neighboring active centers, this process
proceeds slowly. The ionization equilibrium in this case
results from detachment of bound negative ions from the
particle's surface by electron impact and capture of free
electrons by active centers on the particle's surface.

Thus, there are various processes involving clusters and
small particles located in a plasma. At high temperatures,
ionization of metallic particles and clusters can result from
collisions of internal electrons. This leads to the formation of
fast internal electrons which may be released from the
cluster's surface. This process corresponds to the thermo-
emission of electrons from a surface of a macroscopic system.
In parallel with this process, attachment of plasma electrons
to the cluster establishes the charge equilibrium. As a result,
metallic particles or clusters are positively charged at high
temperatures owing to the electron thermoemission. At low
temperatures, they are charged negatively. Usually dielectric
particles are charged negatively, because their ionization
potential greatly exceeds the electron affinity.

Notice that the charge equilibrium due to ionization and
recombination processes takes place if the mean free path of
electrons and ions significantly exceeds the particle size, i.e.
the criterion opposite to (3.1) is fulfilled. In addition, the
ionization processes are noticeable at not very low electron
and particle temperatures, and the ionization equilibrium for
charged clusters results from their collisions with electrons:

A�Z�1n � e$ A�Zn : �3:20�

These processes account for the interaction of a metallic
particle or cluster with plasma electrons, so that the metallic
particle absorbs and emits electrons. For simplicity, we
assume the temperatures of free and bound electrons to be
identical. Then the probability PZ�n� for a cluster consisting
of n atoms to have a charge Z is determined by the Saha
formula [2, 49]

PZ�n�Ne

PZ�1�n� � 2

�
meTe

2p�h2

�3=2

exp

�
ÿ IZ�n�

Te

�
; �3:21�

Thermoemission
of electrons

Ionization
by electron impact

Attachment
of positive ions

Attachment of negative ions
or electrons

Photoionization

Figure 5. The processes of the cluster charging in a plasma.
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where Te is the electron temperature, me is the electron mass,
Ne is the electron number density, and IZ�n� is the ionization
potential of the cluster consisting of n atoms and having a
charge Z.

Note that because the number density of the internal
electrons in metallic clusters greatly exceeds that of the
plasma electrons, the third particle in the recombination
process (3.20) is a bound electron. Moreover, internal
electrons can be responsible for release of initially bound
electrons. Thus, if the temperatures of internal and plasma
electrons are different, the Saha formula is valid, but the
electron release in the equilibrium (3.20) is determined by
processes involving internal cluster electrons.

Let us consider the case of a large cluster where

r4
e2

Te
:

Since the equilibrium (3.20) between the free electrons and
bound electrons of a metallic cluster corresponds to a large
mean free path of electrons in the plasma in comparison with
the cluster radius, the interaction energy of a removed
electron and a charged cluster must be included in the
ionization potential of this cluster. The ionization potential
IZ�n� of a large charged cluster �n4 1� differs from that of the
neutral cluster I0�n� by the energy that is consumed as a result
of the electron removal from the cluster's surface to infinity.
Hence, we have

IZ�n� ÿ IZÿ1�n� � Ze2

r
:

From this it follows that

IZ�n� � Z 2e2

2r
� I0�n� ; �3:22�

where I0�n� is the ionization potential of a neutral cluster.
Substituting this relation into formula (3.21), one can

reduce it to the form of the Gauss formula in the limiting case
Z4 1. We get

PZ

PZÿ1
� A exp

�
ÿZe2

rTe

�
; �3:23�

where

A � 2

Ne

�
meTe

2p�h2

�3=2

exp

�
ÿ I0
Te

�
:

Then one can represent formula (3.23) in the form

PZ

P0
� AZ exp

�
ÿZ 2e2

2rTe

�
:

Expanding this expression near the maximum of the function
lnPZ�n�, one can reduce it to the Gauss formula

PZ�n� � PZ�n� exp
�
ÿ�Zÿ

�Z�2
2D2

�
; �3:24�

where the mean cluster charge �Z and the width of the
distribution function D are given by

�Z � rTe

e2

�
ln

�
2

Ne

�
meTe

2p�h2

�3=2 �
ÿ I0�n�

Te

�
; D2 � rTe

e2
:

�3:25�

This formula is valid if D4 1, which is fulfilled for large
clusters. Note that this formula corresponds to the definition
of the mean cluster charge �Z through the relation
P �Z�n� � P �Z�1�n�.

The cluster ionization potential in the limit n!1 tends
to the work function of the metal, and assuming I0�n� to be a
continuous function of n, we have for a large cluster:

I0�n� �W� const

n1=3
:

For a large metallic cluster, the constant in this formula (in
units e2=rW) is equal to 1=2 [50, 51] or 3=8 [52 ± 54] for
different versions of the theory. In the same manner, we
have for the const in the expression for the electron affinity of
a large cluster the value ÿ1=2 or ÿ5=8 depending on the
relevant version of the theory. According to a more in-depth
theoretical analysis [55 ± 57] and experimental data [58 ± 61],
these constants depend on the cluster material. In particular,
Fig. 6 gives the size dependence for the ionization potential
and electron affinity of aluminium clusters. Below we shall
use a simplified method to determine this constant, assuming
the above expression to be valid even for the atom �n � 1).
This gives const � I0�1� ÿW, where I0�1� is the atomic
ionization potential, and the similar expression we shall use
for the cluster electron affinity. Then employing formula
(3.25) we have for the average cluster charge when it is
positive:

�Z � Ter

e2

�
ln

�
2

Ne

�
meTe

2p�h2

�3=2 �
ÿW

Te
ÿ I0�1� ÿW

Te n1=3

�
: �3:26�

A metallic cluster or particle located in a plasma can be
charged positively or negatively depending on the relation
between the fluxes of electrons emitted from the cluster
surface and absorbed by this surface. An equilibrium
number density of electrons corresponds to the case where
the cluster charge is zero at a given electron temperature. If
the number density of electrons exceeds this value, the cluster
is charged negatively on average, and in the opposite case it
has an average positive charge. Let us denote by N� the
number density of positive single-charged clusters, and byNÿ
the number density of clusters of a unit negative charge.

8

I;
E
A
,e
V

6

4

2

0 0.2 0.4 0.6 0.8
nÿ1=3

1

2

Figure 6. The size dependence of the ionization potentials of aluminium

clusters (curve 1) and the electron affinities of aluminium clusters (curve 2)

according to experimental (marks) and theoretical (curves) data [61].
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Evidently, the sign of the mean cluster charge coincides with
the sign of the quantity ln�N�=Nÿ�. In other words, if
N�=Nÿ > 1, the mean cluster charge is positive, and for
N�=Nÿ < 1 it is negative. Let us employ the Saha relation
for determining the ratio between the number densities of
positively charged N� and neutral N0 clusters:

N�Ne

N0
� 2

�
meTe

2p�h2

�3=2

exp

�
ÿ I0�n�

Te

�
;

where Ne is the electron number density, and I0�n� is the
ionization potential of a neutral cluster consisting of n atoms.
In the sameway one can express the ratio between the number
densities of neutral and negatively charged clusters through
the cluster electron affinity.

Let us connect the cluster ionization potential with the
atomic ionization potential I0�1� and the work functionW of
the corresponding surface as was done above. By the same
method we connect the cluster electron affinity with the
electron affinity EA of the atom and the work function W.
Then we get

N�
Nÿ
� z2 exp

�
ÿ D
Te n1=3

�
;

where

z � 2

Ne

�
meTe

2p�h2

�3=2

exp

�
ÿW

Te

�
; �3:27�

and D � I0�1� � EAÿ 2W. Table 6 contains the parameters
of this formula and the characteristic temperatureT� at which
N� � Nÿ. Thus, a metallic cluster is positively charged at
high temperatures, and negatively charged at low tempera-
tures. As a demonstration of this fact, Fig. 7 gives the average
charge of tungsten clusters in a plasma as a function of the

cluster temperature, and also the cluster temperature T� at
which this cluster becomes neutral on average, i.e.

ln z�T�� � D
2Te n1=3

:

From formula (3.26) it follows that the basic dependence of
the cluster charge on its size is �Z � n1=3, and the coefficient of
proportionality depends on the cluster temperature. In the
limit of large clusters, this formula can be represented in the
form

�Z � zn1=3�Te ÿ T�� ; z �WrW
e2T�

; �3:28�

where rW is the Wigner ± Seitz radius, and T� is the electron
temperature at which the cluster charge is zero. Notice that
the parameter z depends on the electron number density
through the variable T�.

The number density of electrons Ne in formulas (3.26) ±
(3.28) leans upon a free parameter which does not depend on
cluster characteristics. Now we consider another case when
this quantity is determined by the ionization of clusters. This
is realized at a high density of clusters. We shall consider the
case whenT > T�, and the number density of electrons results
from their thermoemission from the cluster surface. Assum-
ing the plasma to be quasi-neutral, we haveNe � �ZNcl, where
�Z is the average cluster charge, and Ncl is the number density
of clusters. The balance of rates per unit volume for the
processes of thermoemission of electrons and attachment of
electrons to clusters takes the form

nemNcln
2=3 � NeNclken

2=3 ;

Table 6. Parameters{ of charged metallic clusters.

Element I, eV W, eV EA, eV D, eV T�, 103 K �Z=n1=3

Ti
V
Fe
Co
Ni
Zr
Nb
Mo
Rh
Pd
Ta
W
Re
Os
Ir
Pt
Au

6.82
6.74
7.90
7.86
7.64
6.84
6.88
7.10
7.46
8.34
7.89
7.98
7.88
8.73
9.05
8.96
9.23

3.92
4.12
4.31
4.41
4.50
3.9
3.99
4.3
4.75
4.8
4.12
4.54
5.0
4.7
4.7
5.32
4.30

0.08
0.52
0.15
0.66
1.16
0.43
0.89
0.75
1.14
0.56
0.32
0.82
0.2
1.1
1.56
2.13
2.31

ÿ0.96
ÿ0.98
ÿ0.57
ÿ0.30
ÿ0.20
ÿ0.53
ÿ0.21
ÿ0.75
ÿ0.90
ÿ0.70
ÿ0.03
ÿ0.28
ÿ1.92
0.43
1.21
0.45
2.94

2.51
2.63
2.75
2.82
2.87
2.51
2.57
2.74
3.00
3.04
2.65
2.90
3.12
3.01
3.03
3.38
2.85

0.084
0.078
0.074
0.073
0.072
0.093
0.085
0.081
0.078
0.080
0.085
0.081
0.080
0.078
0.080
0.081
0.083

{ I is the atomic ionization potential;W is themetal work function; EA is

the atom electron affinity; D � I� EAÿ 2W; T� is the temperature

when the number densities of positively and negatively charged clusters

are equalized at the average cluster size n � 1000 and the electron

number density Ne � 1013 cmÿ3, and �Z is the average cluster negative

charge at temperature 1000 K with argon as the buffer gas if the cluster

charging is determined by processes of attachment of electrons and

positive ions to the cluster.

2000 2500 3000 3500 4000 4500
T, K

2

�Z

1

0

ÿ1

ÿ2

ÿ3

Ne � 1014 cmÿ3
a

4000

T�, K

3500

3000

2500

1012

1013

1014 1015
Ne, cmÿ3

b

Figure 7. Dependence of the mean charge of a tungsten cluster consisting

of n � 1000 atoms on the electron temperature in a plasma with the

number density of electrons Ne � 1014 cmÿ3 (a), and the electron number

density dependence of the electron temperature at which this cluster

charge is zero (b).
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where nem is the rate of the electron thermoemission process,
ke � �8Te=pme�1=2pr2W is the reduced rate constant of elec-
tron ± cluster collisions. From this we have for the average
cluster charge

�Z � nem�T�
keNcl

: �3:29�

It follows from this formula that clusters tend to be neutral at
low temperatures and large densities of clusters.

We now can find the charge distribution for negatively
charged metallic clusters if the temperatures of internal and
free electrons are identical. The cluster radius is small
compared to the mean free path of electrons, and the
Coulomb interaction of an electron with the cluster charge
on its surface greatly exceeds the electron thermal energy.
Assume the identical character of electron thermoemission
for charged and neutral metallic clusters.

As above, the balance of reaction rates for formation and
destruction of negatively charged metallic clusters has the
form

NÿZNepr2
�
vÿ 2Ze2

rmev

�
� Nÿ�Z�1�4pr2

emeT
2
e

2p2�h2
exp

�
ÿEA

Te

�
;

where the bar means averaging over electron velocities. Here
we assume that the electron release proceeds near the cluster's
surface, and hence it is determined by the electron affinity EA
of the neutral cluster. The cluster field accelerates the released
electron and removes it from the surface. Therefore, the
difference in the electron thermoemission process for clusters
of different charges is observed far from the cluster's surface.

In the limit Ze2=r4Te, the above formula takes the form

NÿZNe

Nÿ�Z�1�
� 2

�
meTe

2p�h2

�3=2

exp

�
ÿEA

Te

�
exp

�
ÿZe2

rTe

�
:

Note that Z in this formula is a positive quantity. A low rate
constant of electron attachment to a strongly, negatively
charged cluster does not allow for a metallic cluster to have
very high negative charge in a rarefied ionized gas.

Let us find the charge of a negatively charged metallic
cluster on the basis of the above formula. We shall define the
average cluster charge to be ÿ�Z� 1=2� if NÿZ � Nÿ�Z�1�.
Then the above formula yields

�Z � 1

2
� rTe

e2
ln

1

z
�3:30�

for the average negative charge ÿ �Z of a metallic cluster,
where the quantity z is defined by formula (3.27). It is seen
that a metallic cluster can have large negative charge at high
electron temperatures, large cluster sizes or small number
densities of electrons when z5 1. Because we neglect here the
formation of positive ions, this formula differs from formula
(3.27) near z � 1.

3.4 Ionization processes involving metallic clusters
Above we considered the ionization equilibrium for ametallic
cluster or particle, which is established as a result of ionization
and recombination processes. Now we consider the character
of ionization processes in detail, which allows us to analyze
the regimes of cluster charging when this equilibrium is
violated. First we evaluate the density of electric current

from a large metallic surface by leaning upon the equilibrium
between this process and the process of electron attachment
to the surface, proceeding in a surrounding plasma.

We assume that particles containing n atoms are located in
a hot gas, and electrons are emitted into this gas from the
particle surfaces. In the limit of large particles, the parameter
Ze2=�rTe� becomes small. Taking the formulas (3.25), (3.26)
to the limit Z! 0, n!1, we obtain

Ne � 2

�
meTe

2p�h2

�3=2

exp

�
ÿ I0�n�

Te

�
for the equilibrium number density of free electrons near the
particle surface. We take into account in this case that the
electron temperature Te coincides with the particle tempera-
ture T, i.e. the temperature of free and bound electrons is the
same. Correspondingly, from the equality between the
currents of attached and emitted electrons, for the density of
current emitted from a large surface of this metallic particle
we get

i � eNe

�����������
Te

2pme

r
� emeT

2
e

2p2�h2
exp

�
ÿW

Te

�
; �3:31�

where Ne

����������������������
Te=�2pme�

p
is the flux of electrons attached if the

probability of attachment as a result of the electron's contact
with the surface is close to unity. Next, we replaced in this
formula the ionization potential of a large metallic particle by
the work function W of the corresponding metallic surface.
This formula is called the Richardson ±Dushman formula
and describes the thermoemission current from a hot metallic
surface.

It is convenient to rewrite the Richardson ±Dushman
formula (3.31) for the thermoemission current density in the
form

i � ART
2
e exp

�
ÿW

Te

�
; AR � eme

2p2�h3
; �3:32�

and the Richardson parameter AR according to formula
(3.32) is equal to 120 A (cm2 K2)ÿ1. Table 7 contains values
of this parameter for some real metals.

In order to understand the nature of the thermoemission
process at hand, we shall evaluate the thermoemission current
from a metallic surface using the properties of a metallic
plasma inside the particle. We assume the metallic plasma to
be similar to a degenerate electron gas, and that the

Table 7. Parameters of the electron current for thermoemission of metals
[21, 62]; ib is the electron current density at the boiling point, and Tb is the
metal boiling point.

Metal AR, A (cm2 K2)ÿ1 W, eV Tb, K ib, A cmÿ2

Ba
Cs
Cu
Mo
Nb
Pd
Re
Ta
Th
Ti
W
Y
Zr

60
160
60
51
57
60

720
55
70
60
75

100
330

2.49
1.81
4.4
4.3
4.0
4.8
5.0
4.1
3.3
3.9
4.5
3.3
3.9

1910
958

2868
5070
5170
3830
5870
5670
4470
3280
5740
3478
4650

600
0.045
4.6
8.8� 104

2.1� 105

240
2.3�106
3.3� 105

2.2� 105

750
2.8� 105

3.5� 103

2.4� 105
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distribution function of electrons over momenta is given by
the Fermi ±Dirac formula

f�p� dp � 2dp

�2p�h�3
�
1� exp

�
eÿ m
T

��ÿ1
:

Here, p � mev is the electron momentum, v is the electron
velocity, e � p2=�2me� is the electron kinetic energy, and
m � eF is the chemical potential or the Fermi energy for this
distribution. The electron is liberated if its kinetic energy in
the direction toward the metal surface exceeds the quantity
eF �W, whereW is themetal's work function. Hence, the flux
of electrons released from the metal surface is equal to�
vx f�p� dp, where the integral is taken over velocities of

electrons satisfying the inequality mev
2
x=25eF �W, and vx

is the component of the electron velocity normal to the
surface.

Notice that because W4T, one can neglect unity
compared to the exponent in the denominator of the
Fermi ±Dirac formula, so that it takes the form of the
Boltzmann formula. In this case, the number density of
electrons in the momentum interval from p up to p� dp and
in the energy range eÿ m4T is given by

f�p� dp � 2dp

�2p�h�3 exp

�
ÿ eÿ m

T

�
:

Using cylindrical coordinates dp � 2ppr dpr dpx and
e � p2x=�2me� � p2r=�2me�, we obtain for the flux of released
electrons

j � 2pmeT

�
mevx dvx

4p3
exp

�
ÿmev

2
x

2T
� m
T

�
� meT

2

2p2�h3
exp

�
ÿW

T

�
:

Considering that the electron current density i � ej, we
find that this expression coincides with (3.32). Thus, we
obtained identical results for the electron thermoemission
current densities both from the equilibrium of a metal surface
with a surrounding plasma and from the evaporation of
bound electrons from an internal metallic plasma modelled
by a degenerate electron gas.Note that the energy spectrum of
electrons released as a result of thermoemission is described
by the factor � exp�ÿe=T�, as follows from the above
formulas. In reality, along with this spectrum, a resonant
tail is observed in the electronic spectrum [63, 64], which is
determined by the cluster electronic structure. The resonant
structure of the electronic spectrum, which is defined by
positions of cluster electronic levels, is more essential for the
photoabsorption electronic spectrum (see, for example, Refs
[65 ± 69]).

We now ascertain the role of internal and plasma electrons
in cluster ionization. Release of electrons from the surface of a
metallic particle or cluster is determined by two processes Ð
thermoemission of electrons and cluster ionization by plasma
electrons. Below we shall find the contribution of these
processes to the release of bound electrons from a metallic
cluster. If the temperature of internal electrons is not equal to
the temperature of free electrons, the thermoemission current
of electrons from the surface of a metallic cluster is
determined by the cluster temperature, while the current of
electrons released due to cluster ionization by the plasma
electrons is defined by the electron temperature of the plasma.

Below we shall estimate the role of plasma electrons in
ionization of a metallic cluster.

We take a simple model for the interaction of electrons
with a metal surface, according to which the surface effective
potential has the form of rectangular walls in a space region,
and the depth of this potential well is W, the metal's work
function. For collisions of plasma electrons with internal ones
we use the Thomson model of pair collisions. Within the
framework of this model, the internal electron energy is zero
at collision with an incident electron, and interaction with
surrounding electrons and ions is absent in the course of
collisions between the plasma and internal electrons. The
energy e of an incident electron satisfies the relation
e � Te 5W, where Te is the temperature of the plasma
electrons. Penetrating the metal region, this electron obtains
the energy e�W. The collision cross section resulting in that
a plasma electron transfers to an internal electron an energy in
the interval from De to De� dDe is given by the Rutherford
formula

ds � pe4

e�W

dDe
De2

:

An incident electron is captured by the metal surface if the
energy transfer to an internal electron exceeds e but does not
exceed W, so that both colliding electrons are closed in the
metal potential well. Hence, the rate constant of this process is

kcap �
�
f�e� de

�W
e

ds :

Here f�e� is the Maxwellian distribution function of plasma
electrons, which is normalized to unity. Introducing
x � e=Te, we have

f�e� de � 2pÿ1=2x1=2 exp�ÿx� dx :

From this it follows

kcap � pe4

WTe

���������
8Te

pme

s
for the effective rate constant of capture of a plasma electron
due to its collision with an internal electron of the metal
surface, if we take into account Te 5W.

Let us compare this rate constant with that of the
ionization process affecting internal electrons under action
of plasma electrons, which is given within the framework of
the Thomson model by the formula

kion �
�1
W

f�e� de
�e
W

ds � pe4

W 2

���������
8Te

pme

s
exp

�
ÿW

Te

�

� kcap
Te

W
exp

�
ÿW

Te

�
: �3:33�

Note that release of an internal electron takes place if the
energy obtained by this electron exceeds W, but does not
exceed the energy of the incident electron e, so that both
colliding electrons leave the metal potential well. Next, since
the cluster temperature is relatively small, the thermal energy
of internal electrons does not influence this process.

From this it follows that the ionization rate constant is
small compared to that of electron capture, becauseW4Te.
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We shall obtain the cluster equilibrium charge from the
equality between the rate of thermoemission of internal
electrons and the rate of capture of plasma electrons.
Because the rate of capture of plasma electrons is large
compared to the rate of release of internal electrons in
collisions with plasma electrons, the cluster ionization
process due to plasma electrons turns out to be weak
compared to the thermoemission process. Hence, plasma
electrons do not influence the charge equilibrium of metallic
clusters.

Let us analyze now the character of recombination of free
electrons with a small metallic particle. Above we considered
various conditions for the charging of a small particle. If the
particle radius r is large compared to the mean free path l of
ions and electrons in the buffer gas where the particle is
located, the charging process is determined by collisions of
ions and electrons with gaseous atoms. This proceeds at large
distances from the particle's surface compared to l, so that
the character of interaction of electrons and ions with the
particle's surface is not essential for the charging process.
Hence, the particle's charge is determined by plasma para-
meters only, and the character of the charging process is
identical both for metallic and dielectric particles.

In the case l4 r, the character of charging of a particle is
determined by processes near the particle's surface and is
different for dielectric and metallic particles. At high
temperatures, metallic particles have a positive charge due
to the electron thermoemission process. At low temperatures,
the charging process is determined by attachment of electrons
and positive ions to the particle's surface, and this process is
identical in character for metallic and dielectric particles.

Considering the charge equilibrium for a charged metallic
particle of small size, we assumed the processes of electron
evaporation and electron attachment to be similar to those for
a neutral metallic particle. We now find the correction to the
average particle charge due to the difference between the
electron attachment cross sections for charged and neutral
metallic particles. In the equilibrium conditions (3.20), we
have the following equality between the rates of formation
and destruction of particles of a given charge:

NZ�1Nekat � NZ 4pr2i :

Here, NZ is the number density of metallic particles having a
charge Z, r is the particle's radius, kat is the rate constant of
electron attachment to a particle of a chargeZ� 1, and i is the
thermoemission current density. According to the definition,
we have

NZ

NZ�1
� PZ

PZ�1
;

where PZ is the probability for a particle to have a charge Z.
We first consider the charge equilibrium for a neutral

particle, when the rate constant of electron attachment is
given by formula (2.2). Using formula (3.32) for the
thermoemission current density and replacing in this formula
the metal's work function W with the cluster ionization
potential I, we obtain from the above balance equation:

NZ�1Ne

NZ
� 2

�
meTe

2p�h2

�3=2

exp

�
ÿ I

Te

�
: �3:34�

This is the Saha formula (3.21) for the charge distribution of
particles.

Now let us take into account the particle charge in the
electron attachment process. Accounting for the Coulomb
interaction between an electron and particle, which is
modelled by a spherical liquid drop, we have for the rate
constant of this process

kat � pr2
�
v� 2Ze2

rmev

�
;

where the over-line means an average over electron velocities
v. Using the Maxwellian velocity distribution function of
electrons, we obtain

NZ�1Ne

NZ
�
�
1� Ze2

rTe

�ÿ1
2

�
meTe

2p�h2

�3=2

exp

�
ÿ I

Te

�
from the equilibrium condition for the charging processes. It
is seen that this formula coincides with the Saha formula in
the limit Ze2=r5Te. Violation of this criterion leads to a
decrease in the mean particle charge because the cross section
of electron attachment to a positively charged particle
increases. Note that we assumed an identical character for
thermoemission of charged and neutral metallic particles.

3.5 Charging of dielectric particles in plasma
Above we discussed the different character of charging of
metallic and dielectric particles in a plasma when the particle
size is small in comparison with the mean free path of
electrons and ions. In the case of metallic particles, the
ionization equilibrium is established due to processes (3.20),
so the recombination process involves free and bound
electrons. In the case of dielectric particles, the ionization
equilibrium results from the processes

e�AÿZn ! ÿ
Aÿ�Z�1�n

���
;ÿ

Aÿ�Z�1�n

��� �A! Aÿ�Z�1�n �A ;

B� �Aÿ�Z�1�n ! B�AÿZn ; �3:35�

so an autodetachment state
ÿ
Aÿ�Z�1�n

���
is quenched in

collisions with surrounding atoms. Because the rate constant
of pair attachment of an electron to a dielectric particle
greatly exceeds the ionization rate constant of the particle by
electron impact, this particle is charged negatively.

In contrast to metallic particles, the binding energies for
active centers do not depend on particle size because the
action of each center is concentrated in a small region of
space. Evidently, the number of such centers is proportional
to the area of the particle's surface, and for particles ofmicron
size this quantity is large compared to that occupied by the
ions captured. Hence, above and below we consider the
regime of charging of a small dielectric particle as being far
from the saturation of active centers. Then positive and
negative charges can exist simultaneously on the particle's
surface. They travel over the surface and can recombine there.
Usually, the binding energy of electrons in negative active
centers falls in the range EA � 2ÿ4 eV, and the ionization
potential needed for the production of positive active centers
is of order J0 � 10 eV. Hence, a small dielectric particle has a
negative charge in a weakly ionized gas.

Due to its charge Z, the particle obeys the electric
potential j � Ze=r with respect to a surrounding plasma,
where r is the particle's radius. If ej < EA, the electronic state
is stable, while in the case ej > EA an electron tunnel
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transition is possible that leads to decay of the electronic state.
Hence, an isolated charged particle may emits electrons until
its charge exceeds the limiting value

Z� � r
EA

e2
: �3:36�

In particular, for a dielectric particle of radius r � 1 mm,when
EA � 3 eV, this charge is Z� � 2� 103, and the particle's
electric potential is equal to 3 V.

Notice that for the regime under consideration the
number of active centers is large in comparison with the
occupied ones, i.e. with the particle's charge. This is valid for
micron particles. In particular, the above numerical example
corresponds to distances between neighboring charged
centers of about 0:3 mm, which are larger by one or two
orders of magnitude than the typical distance between
neighboring active centers. One more condition is required
in the case when the particle's negative charge exceeds Z�.
Then the bound states of captured electrons become auto-
detachment states and can decay as a result of tunnel electron
transitions. In this case the rate of capture of electrons must
exceed the rate of decay of autodetachment states, i.e. the
lifetime of the autodetachment state must be fairly large.

Let us estimate the lifetime of the autodetachment state of
a negatively charged center locating on the surface of a
dielectric particle. Its decay results from the electron tunnel
transition, and the probability per unit time for an electron
penetration through the potential barrier has the following
exponential dependence

1

t
� exp�ÿ2S� ; S �

�Rc

r

dR

����������������������������������������������������
2me

�h2
�
EAÿU�r� �U�R��r

:

Here EA is the electron binding energy in the active center,
U�R� � Ze2=R is the interaction potential of an electron with
the Coulomb field of the particle if its distance from the
particle's center is R, and Rc is the turning point, i.e.

Rc � r

1ÿ EA=e0
;

where e0 � Ze2=r. Thus we have

S � p
2
r

��������������������������������
2me

�h2
e0

1ÿ EA=e0

s
: �3:37�

Assuming e0 to be of the order of a typical atomic value,
we obtain S � r=a0, where a0 is the Bohr radius. For small
particles of micron sizes, we obtain a very high lifetime for the
surface negative ions with respect to the electron tunnel
transition. Hence, under real conditions a particle's charge
can exceed the limiting value Z� resulting from processes
(3.35).

Let us determine the charge of a small dielectric particle
that emerges from the equilibrium of this particle with a
surrounding electron gas. This equilibrium is similar to the
Langmuir isotherm for the equilibrium of a surface with a gas,
when gaseous atoms or molecules are absorbed by the active
centers on the surface. In this case, the equilibrium state is
described by the scheme

A� e ! Aÿ ; �3:38�

where A denotes an active center of the surface, and Aÿ is a
bound negative ion. Denoting the total number of active

centers on the particle's surface by p and the electron binding
energy by EA, we have from this equilibrium

�pÿ Z�Ne

Z
� g

�
meTe

2p�h2

�3=2

exp

�
ÿEA

Te

�
:

Here, Ne is the number density of free electrons, Z is the
particle charge or the number of bound electrons in the active
centers, and g � 1 is the combination of the statistical weights
of an electron, active center, and bound negative ion. Below,
for simplicity, we shall take g � 1. From this we have for the
particle charge in the limit Z5 p:

Z � Ne p

�
2p�h2

meTe

�3=2

exp

�
EA

Te

�
: �3:39�

Because the number of active centers on the surface is
proportional to its area, we obtain

Z � n 2=3 :

Since the particle's radius is r � n1=3, the electric potential of a
large dielectric particle is

j � Ze

r
� n1=3 :

Therefore, the interaction of surface electrons with the electric
potential of a negatively charged dielectric particle may be
responsible for the negative charge of the large particle.

Let us analyze the character of the detachment of the
surface bound negative ions from a dielectric particle as a
result of interactionwith a surrounding plasma, providing the
mean free path of electrons and ions in a gas is large compared
to the particle size. In the first channel of this process,
detachment of surface negative ions is determined by
collisions with free electrons according to the scheme (3.38).
Another mechanism for this process is determined by the
charge exchange process involving positive ions of the
plasma, when loss of a bound electron of the negative ion
results from its transfer to the field of the positive ion. Let us
compare the rates of detachment of surface negative ions due
to these processes. The rate of detachment of a bound
negative ion in collisions with electrons is estimated as

ne � Zves0 exp
�
ÿ e0
Te

�
Ne ;

where ve �
�������������
Te=me

p
is a typical electron velocity, where Te is

the electron temperature, me is the electron mass; s0 is of the
order of the cross section of the negative ion, and e0 is the
electron binding energy on the surface of the particle. There
are two ways for the recombination of free positive ions with
bound negative ions. Via the first one, a positive ion captures
a weakly bound electron of a surface negative ion as a result of
the charge exchange process. The rate constant of this
recombination process is defined to an order of magnitude as

ni � Zvi sexNi ;

where vi �
�����������
T=mi

p
is a typical ion velocity, so thatT is the ion

temperature, mi is the ion mass; sex is the cross section of the
charge exchange process for an incident positive ion and a
bound negative ion, and Ni is the number density of positive
ions. Assuming sex � s0 and accounting for the plasma's
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quasi-neutrality conditionNi � Ne, we obtain forTe > T that
the criterion ne 4 ni assumes the form

Te 4 2e0

�
ln

�
Te

T

mi

me

��ÿ1
: �3:40�

From this it follows that formula (3.39) for the charge of a
dielectric particle can be valid at high electron temperatures.

In the case of the second channel for the recombination of
positive and bound negative ions, each contact between a
positive ion and the particle's surface leads to ion attachment.
Then recombination takes place as a result of the drift of a
bound electron along the particle's surface. In this situation
the rate of the recombination process for free positive and
bound negative ions is equal to

ni � pr2viNi ;

where r is the particle's radius. In that event detachment of
bound negative ions as a result of capture of positive ions by
the particle's surface is preferable.

Comparing the cases of strongly negatively charged
metallic and dielectric particles, note that all the electrons of
a metallic particle participate in the charging process, while in
the event of a dielectric particle, electrons are captured by
active centers independently. Hence, the negative charge of a
dielectric particle may greatly exceed that of a metallic
particle. A typical negative charge of a dielectric particle is
of the order of the critical charge Z� below which a stable
surface negative ion exists. This charge is given by formula
(3.36), while formula (3.30) for the charge of a negatively
charged metallic particle can be represented in the form

�Z � Z� � 1

2
� rTe

e2
ln

1

w
; where w � 2

Ne

�
meTe

2p�h2

�3=2

: �3:41�

Since

1

w
5Nea

3
0 5 1 ;

where a0 is the Bohr radius, we have

Z� ÿ �Z4 1

for a strongly negatively charged metallic particle located in
an ionized gas.

Thus, the character of cluster charging and its charge
equilibriumwith a surrounding plasma are determined by the
processes of thermoemission of electrons from the cluster
surface and collision processes which establish the cluster
charge. These processes and possible regimes of cluster
charging are given above.

4. Processes in cluster plasmas

4.1 Cluster growth in cluster plasmas
The growth of clusters in a cluster plasma proceeds via an
atom attachment to the cluster and inverse processes which
are characterized by the scheme (1.1), and also by a
coagulation process according to the scheme

Mnÿm �Mm !Mn : �4:1�

For coagulation, evolution of the size distribution function fn
is described by the Smoluchowski equation [70]

qfn
qt
� ÿfn

�
k�n;m� fm dm� 1

2

�
k�nÿm;m� fnÿm fm dm : �4:2�

Here, k�nÿm;m� is the rate constant of the process (4.1), the
multiplier 1=2 accounts for the fact that collisions of clusters
consisting of nÿm and m atoms are present in the equation
twice, and the distribution function is normalized as�
fn dn � Ncl, where Ncl is the number density of clusters. If

the rate constant of cluster association does not depend on
cluster size, the Smoluchowski equation has a simple solution
fn�t� � exp�ÿn=�n� [71, 72], where the average cluster size is
introduced as

�n � Nb

Ncl
�4:3�

andNb is the total number density of bound atoms in clusters.
In this situation the average cluster size varies as [71, 72]

�n � Nbkast

2
; �4:4�

if one resorts to the definition (4.3) of the average cluster size.
For large clusters or particles, when the condition (3.1) is
fulfilled, the rate constant of cluster association does not
depend on size, and this is realized for nucleation of particles
in the Earth's atmosphere [73]. In the opposite case, when the
typical cluster size is small in comparison with the mean free
path of gaseous atoms, the rate constant of association of two
clusters k�n;m� of sizes n and m, which within the framework
of the liquid drop model for clusters is the rate constant of
their approach up to contact, is given by

k�n;m� � k0�n1=3 �m1=3�2
������������
n�m

nm

r
; �4:5�

where k0 is defined by formula (2.2).
Integrating the Smoluchowski equation (4.2), we now

obtain

d�n

dt
� k0NbI �n 1=6;

I � 1

2

�1
0

�1
0

�x1=3 � y1=3�2
�����������
x� y

xy

r
exp�ÿxÿ y� dx dy � 3:4 ;

�4:6a�

which leads to

�n � 3:5�Nbk0t�1:2 : �4:6b�

According to numerical calculations [74], the coefficient in
this formula is equal to 3.2 for the definition (4.3) of the
average cluster size. Because this consideration relates to large
clusters, the above formulas are valid under the condition

k0Nbt4 1 : �4:7�

Notice that cluster growth processes (1.1) and (4.1) are
different in nature. First, the process (4.1) usually proceeds in
one direction, whereas attachment and evaporation processes
(1.1) balance out each other. Second, the process (4.1) is
practically forbidden for charged clusters because the repul-
sion of clusters prevents them from approaching. Third, the
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processes (1.1) proceed in a plasma containing an atomic
vapor, whereas the process (4.1) is not concerned with the
presence of an atomic vapor.

In the regime of cluster growth, when we start from an
atomic vapor, the first stage in the transformation of an
atomic vapor into a gas of clusters centers around the three-
body process [19] which proceeds according to the scheme

2M�A!M2 �A ; �4:8�

where M is a metal atom, and A is an atom of the buffer gas.
Correspondingly, the number density of diatomic molecules
N2 is determined by the balance equation

dN2

dt
� KNaN

2 ; �4:9�

where K is the rate constant of the three-body process of
interest, Na is the number density of atoms of the buffer gas,
and N is the number density of free atoms of a nucleating
vapor. We assume that starting from diatomic molecules, the
cluster growth process goes as a result of pair processes (1.1),
(4.1). Then the diatomic molecules that form are the
condensation nuclei for clusters. Provided that

KNaNt5 1 ;

formation of diatomic molecules does not influence the
balance of metal atoms. Below we shall consider this regime
of nucleation in order to estimate a typical time for the
transformation of an atomic vapor into clusters.

According to equation (4.9), the number density of
diatomic molecules formed in a time t from the start of
nucleation is estimated as

N2 � KNaN
2t :

Then each molecule is a center of condensation at which a
cluster grows with the rate constant (2.2), so that after a time t
a typical cluster size is

n � �k0Nt�3 :

The nucleation process is finished when all atoms are bound,
viz.

N2n � N :

From this we find the typical time t for the nucleation of an
atomic vapor in the buffer gas and the typical cluster size n at
this point in time:

t � 1

k0N

�
k0
KNa

�1=4

; n � �k0Nt�3 �
�

k0
KNa

�3=4

: �4:10�

Taking typical values of the parameters of this formula
k0 � 10ÿ11 cm3 sÿ1, K � 10ÿ33 cm6 sÿ1, Na � 1018 cmÿ3 , we
obtainNt � 1012 cm3 s and n � 103. Hence, large clusters are
formed under such conditions.

Another regime of nucleation is realized when metal
atoms are formed in the course of cluster growth, and the
typical time tch of formation of free atoms as a result of decay
of molecules is large compared to an atomic lifetime with
respect to their attachment to clusters. In this regime, like the
case above, the first step of the nucleation process centers

around formation of diatomic metal molecules in three-body
collisions between metal atoms and the atoms of the buffer
gas, and further these diatomic molecules become the nuclei
of condensation for cluster growth. The set of balance
equations describing this regime of cluster growth has the
form

dN

dt
�MÿNclk0n

2=3Nÿ KN 2Na ;

dNcl

dt
� KN 2Na ;

dn

dt
� k0n

2=3N ;

where M is the rate of formation of free metal atoms as a
result of molecular decomposition. The second equation is
similar to equation (4.9), where we account for diatomic
molecules acting as nuclei of condensation and being
transformed into clusters later.

The ratio between the second and third terms in the right-
hand side of the first equation is of the order of the current
cluster size n and, since n4 1, one can neglect the third term.
In this regime of cluster growth, the quantities N, Ncl grow
during the first stage of the process. During the second stage,
the number density of clusters does not vary, and that of free
atoms drops. Denoting by tmax the time when the number
density of free atoms reaches a maximum, we have for the
parameters of this process:

tmax � A1=8����������
Mk0
p ; N�tmax� �Mtmax � A1=8

�����
M

k0

r
;

Ncl � Aÿ5=8
�����
M

k0

r
; n�tmax� � A3=4 ; �4:11a�

where

A � k0
KNa

4 1 :

Thus, the following estimate for the rate of decay of
molecules: M � Nb=tch can be made, where Nb is the total
number density of bound atoms in clusters when the
nucleation process finishes, and tch is a typical time of decay
of molecules containing metal atoms. At the end of the
nucleation process we are dealing with a typical cluster size

n � Nb

Ncl
� A5=8

����������
Mk0

p
tch : �4:11b�

Thus, according to this analysis, two limiting regimes of
nucleation of an atomic metal vapor in a buffer gas take place
at different stages of nucleation. When criterion (4.7) is valid,
clusters are mostly large but metal atoms themselves may be
free or bound. Cluster growth proceeds due to processes (1.1)
for free metal atoms and according to the scheme (4.1) when
these atoms are bound in clusters. In the regime when the
cluster growth is determined by attachment of free atoms to
nuclei of condensation and a pair process of the cluster
growth starts from diatomic molecules, the average cluster
size is estimated on the base of formulas (4.10) or (4.11b)
when all the atomic vapor is transformed into clusters.
Thereafter the cluster growth is determined by cluster
coagulation (4.1), and the average cluster size is given by
formula (4.6b). Subject to the condition N4Nb, the cluster
growth is dictated by the processes (1.1), and in the other
regime, when the opposite criterion N5Nb holds true, the
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cluster growth proceeds according to the process (4.1). The
character of cluster growth does not depend on the charge of
clusters in the first case, whereas for clusters of an identical
charge sign the coagulation process stops.

Concluding, the above analysis allows us to distinguish
the following stages in the transformation of an atomic vapor
located in a buffer gas into a gas of clusters. At the first stage
of nucleation when atoms are mostly free, the process of
formation of clusters is delayed due to three-body formation
of diatomic molecules. The diatomic molecules formed
become nuclei of condensation, and the subsequent growth
of clusters from them proceeds fast. Therefore, when all the
atomic vapor is transformed into clusters, the clusters formed
are large. The second stage of the nucleation process, the
coagulation process (4.1), proceeds until clusters become
charged, and their charge prevents contacts between clus-
ters. Then cluster growth proceeds through an atomic vapor
which is in an equilibrium with the clusters. The interaction
between the atomic vapor and the clusters leads to evapora-
tion of small clusters and growth of large clusters. As a result,
clusters grow and their number decreases. In this case the rate
of cluster growth is lower than for the coagulation process,
and the temperature dependence of this rate is sharp.

4.2 Properties of gas-discharge plasmas
For metallic clusters to exist in a gas-discharge plasma, a high
density of the buffer gas is required. This condition is fulfilled
in a high-pressure arc, and below we shall focus on this
plasma. Clusters do not influence the electric parameters of
this discharge, with the exception of the energy balance in a
light source where the radiation of clusters can give a
contribution to the plasma power. Hence, for this analysis
of the arc positive column in a cylindrical tube we neglect the
presence of clusters.

This plasma is characterized by a local thermodynamic
equilibrium because of the high density of buffer gas and the
slowness of transport processes. The electron concentration is
high enough to cause an intense exchange of energy between
electrons and allows us to introduce separately the electronTe

and gaseous T temperatures in this plasma. In the case of
electron energy exchange as a result of elastic electron ± atom
collisions, this corresponds to the criterion

Ne 5N
m

M

sea
see

;

where m,M are the electron and atom masses, sea is a typical
cross section for electron ± atom collisions, see is the same
quantity for electron ± electron collisions, and usually
see 4 sea. This regime of two-temperature plasma takes
place at the degrees of ionization of discharge gases
Ne=N4 10ÿ6 ± 10ÿ5; a condition that is usually fulfilled in
high-pressure arc discharges.

Equally with the local thermodynamic equilibrium, the
local ionization equilibrium

M$M� � e

exits in this plasma, so that the electron Ne and atom Na

number densities are connected by the Saha formula [2, 49]

N 2
e

Na
� gegi

ga

�
mTe

2p�h2

�3=2

exp

�
ÿ I

Te

�
; �4:12�

where I is the atomic ionization potential, ge, gi, ga are the
statistical weights of an electron, ion and atom, correspond-

ingly; we also assume the plasma to be quasi-neutral. Because
of the high statistical weight of states of the continuous
spectrum, viz.

�mTe=2p�h2�3=2
Ne

in gas-discharge plasmas, a high degree of ionization is
reached when

Te 5 I : �4:13�

This criterion is satisfied well for gas-discharge plasmas, so
that Te=I � 0:1 for high-pressure discharge plasmas.

For the criterion of the local ionization equilibrium to be
met, the typical time of electron recombination trec has to be
small compared to the time tdr of their drift to a plasma region
with other number density. Let us take trec � �KeN

2
e �ÿ1,

where Ke is the rate constant of three-body electron ± ion
recombination, and tdr � r20=�5:8Da�;where r0 is the radius of
a cylindrical region occupied by the plasma, and Da is the
ambipolar diffusion coefficient of ions in the plasma. Then
the criterion of the ionization equilibrium takes the form

x � tdr
trec
� KeN

2
e r

2
0

5:8Da
4 1 : �4:14�

The three-body electron recombination rate constant is equal
toKe � C=T

9=2
e [75], whereC � 2� 10ÿ8 cm6K9/2 sÿ1 [76]. In

the case of a plasma of inert gases at high temperatures,
ambipolar diffusion is determined by the resonant charge
exchange process involving atomic ions. The cross section of
this process varies weakly with the temperature. In particular,
in the case of xenon for ion and gaseous temperatures in the
order of thousands of kelvins, we have for the cross section of
resonant charge exchange sres � 110 A2, and for argon this
quantity is equal to sres � 59 A2. This gives the following
expression for the ambipolar diffusion coefficient at such
temperatures:

DaN � d0

����������
T

1000

r �
1� Te

T

�
: �4:15�

Here, d0 � 2:6� 1018 cmÿ1 sÿ1 for argon and d0 �
7:6� 1017 cmÿ1 sÿ1 for xenon, and the temperatures are
taken in kelvins. In the case of xenon, Table 8 gives the
boundary values of the electron N �e and atom N �a number
densities which follow from the relation x � 1 for a given
electron temperature Te and for the gaseous temperature
T � Te=2. The regime under consideration corresponds to
conditions where Ne 4N �e and Na 4N �a . Because of the
relation (4.12), this regime is also realized at Te > 4000 K.

Analyzing the electric properties of the plasma, we shall
use the general formulas [77 ± 79] for the drift velocity of
electrons we and the difference between the electron Te and

Table 8. Boundary values for the electron and atom number densities in
xenon, when the local ionization equilibrium takes place.

Te, 103 K 4 5 6 7 8

N �a r0, cm
ÿ2 2:4� 1018 1:1� 1017 1:4� 1016 3:4� 1015 1:2� 1015

N �e
����
r0
p

, cmÿ5=2 2:5� 1012 2:1� 1013 9:0� 1013 2:1� 1014 6:2� 1014
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gaseous T temperatures in a weakly ionized gas:

we � eE

Te

�
v2

n

�
; Te ÿ T �M

3

�
eE

m

�2
v2=n

v2n
; �4:16�

where E is the electric field strength, an average is made over
the Maxwellian distribution function of electrons, v is the
electron velocity, and the rate of elastic electron ± atom
collisions is n�v� � Navs��v�, where s��v� is the diffusion
cross section of electron ± atom collisions. These quantities
depend on the electric field strength in the combinationE=Na,
and the electron drift velocity at a given reduced electric field
strength in the case of relation (4.12) differs from that in the
limit of a small density of electrons. This was demonstrated in
Ref. [80] for xenon.

It is convenient to write out formula (4.16) in the form

Te ÿ T � M

6m
�eEl0�2F�Te� �4:17�

with l0 � �pa20N�ÿ1; where a0 is the Bohr radius, and the
function F�Te� for xenon as the buffer gas is presented in
Fig. 8a. Because of the Ramsauer effect, this function has a
maximum. This suggests that the stable regime of the plasma
exists if T > Tcr, and E > Ecr. Indeed, Fig. 8b illustrates the

graphical method for the solution of equation (4.17). From
this it is inferred that at the limiting value of the electric field
strengthEcr, the left-hand side of equation (4.17) as a function
ofTe is a tangent to the curve described by the right-hand side
of this equation. The point of tangency determines the critical
values of the electric field strength and electron temperature.
In particular, in the xenon case and for Te 4T we have
Tcr � 2400 K and Ecr=N � 0:003Td [80].

The distribution of a plasma over the cross section of a
discharge tube is governed by processes of heat balance in the
plasma. We shall consider the regime of not very high
currents, when the heat removal is determined by the thermal
conductivity due to transport of atoms and electrons. The
equation of the heat balance, known as the Elenbaas ±Heller
equation [81, 82], in this case has the form

1

r
d

dr

�
r
�
k�T� dT

dr
� ke�Te� dTe

dr

��
� p�r� � 0 : �4:18�

Here, r is the distance from the tube axis, k�T� and ke�Te� are
the thermal conductivity coefficients for a gas and electrons in
the plasma, and p�r� � i�r�E � eENe�r�w is the specific
power of heat release, where i�r� is the electric current
density. The first term in equation (4.18) corresponds to
heat transport due to gaseous thermal conductivity, the
second term describes heat transport due to electron thermal
conductivity, and the third term corresponds to heat release
as a result of the passage of the electric current through the
plasma. This equation is responsible for the temperature
distribution of an arc plasma over a discharge tube and
hence it is of importance for the analysis of an arc plasma.

Because of the criterion (4.14) met for the considered
regime of ionization equilibrium in the plasma, the plasma is
concentrated for the most part in a tube region where the
electron temperature differs only a little from its value on the
axis. Then it is convenient to use a new variable

y �
�
Te�0� ÿ Te�r�

�
I

2T 2
e �0�

: �4:19�

Because of the strong dependence of the electron number
density on the electron temperature, which has the form
N�r� � N�0� exp�ÿy�, one can neglect the temperature
dependences for other quantities, taking them at the tube
center. Then p�r� � p�0� exp�ÿy�, ke � Ne � exp�ÿy� and,
introducing a new variable x � r2=r20, where r0 is the tube
radius, we reduce equation (4.19) to the form

d

dx

�
x
�
exp�ÿy� � z

� dy
dx

�
ÿ A exp�ÿy� � 0 �4:20�

with the following parameters which govern the plasma
distribution over the tube cross section:

z � k�T�a
ke�Te� ; A � p0 r

2
0I

8T 2
e ke�Te� ; �4:21�

where

a � dT�r�
dTe�r� �

�
1ÿ �Te ÿ T� d lnF�Te�

dTe

��
2Te

T
ÿ 1

�ÿ1
:

Equation (4.20) uses an additional condition E � const
fulfilled over the tube cross section and the temperature

b
Te ÿ T

const� E2 � F�Te�

32
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Tcr Te
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a

Figure 8. The function described by formula (4.17) for the example of

xenon (a), and a graphic solution of equation (4.17) for the electron

temperature (b). Arrows indicate the resultant electron temperatures, and

Tcr is the minimum electron temperature.
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dependence for the atom number density is N � 1=T: This
consideration allows us to express the output parameters of
the discharge plasma through the plasma parameters at the
tube axis.

The analysis of equation (4.20) shows that plasma
contraction Ð when the discharge current occupies only a
part of the cross section of the discharge tubeÐ takes place at
small currents, so that heat transport is determined by
gaseous thermal conductivity. At high currents when both
heating and heat transport are determined by electrons, the
electron current occupies the entire cross section of the
discharge tube. In the limiting case of dominant gaseous
thermal conductivity �z4 1�, the solution of equation (4.20)
takes the form

Ne�r� � Ne�0� exp�ÿy� � Ne�0�
�
1� r2

a2

�ÿ2
;

a2 � 16T 2
e k�T�a
p0I

: �4:22�

If the parameter a, which characterizes the size of the plasma
region, is small compared to the tube radius r0, contraction of
the discharge takes place. Easy calculations give for the power
of an arc discharge per unit length of the tube:

P �
�
p0 exp�ÿy�2pr dr � 16pT 2

e k�T�a
I

:

This relationship establishes the connection between the
discharge specific power and the plasma parameters at the
center of a discharge tube. In the general event of both
mechanisms of heat transport, this equation has the form
[80, 83]

P � 16T 2
e ke�Te��1� 3:2z�

I
: �4:23�

Generally, the electric current radius r0 can be introduced
by the relation�

Ne2pr dr � 1:36Ne�0�r20 ;

so that r0 � r0 in the Schottky case of small electric currents
in a discharge tube. Accounting for both mechanisms of heat

transport, we obtain in a general way for the plasma radius:

r20 �
12T 2

e ke�Te��1� 3:2z�
p0I

: �4:24�

Equation (4.20) makes it possible to deduce one more
convenient integral relation for a new variable

Z �
�Te

ke�T 0e � dT 0e �
�T

k�T 0� dT 0 � 2T 2
e

I
ke�Te� � Tk�T�

1� g
;

where T, Te are the gaseous and electron temperatures on the
tube axis, respectively, g � d lnk�T�=dT (for xenon g � 0:7
[84]). Twice integrating the heat balance equation (4.20) gives

Z �
�r0
0

p�r�r dr ln r0
r
� 2T 2

e

I
ke�Te� � Tk�T�

1� g
: �4:25�

This expression can be used for determination of plasma
parameters.

The above relations and equations (4.16), (4.23) ± (4.25)
with E � const and p � const (p is the gas pressure) allow one
to determine the parametersT,Te,N, andNe on the tube axis,
the plasma size r0 and the discharge current I. These relations
must be supplemented by the relationship E � const and the
equation of gas state p � NT. We shall demonstrate this
capability in the limiting case when the heat removal is
determined by the electron thermal conductivity, so that the
electron current occupies the entire discharge tube. Then
relation (4.25) takes the form

Z � 0:235p0r
2
0 �

2T 2
e

I
ke�Te� ;

where

p0 � eEweNe ; ke�Te� � k0
Ne

Na

����������
Te

1000

r
and k0 � 1:23W (cmK)ÿ1. Together with the relations (4.13),
(4.15) and the equation of gas state p � NaT we now have
4 equations for determining the quantitiesNe,Na,Te, andT at
a givenE. Note that all the values are taken at the center of the
discharge tube.

Some parameters of a xenon plasma are given in Fig. 9
[80]. Figure 9a displays the dependence of the gaseous
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Figure 9.Relations between parameters of the positive column of the xenon arc discharge in a cylindrical tube of radius r0 [80]: (a) connection between the

gaseous and electron temperatures; (b) the electric field strength versus the electron temperature; (c) the electric field strength versus the electric current.
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temperature on the electron temperature for the discharge
regime considered. It is seen that an increase in the electron
temperature leads to a decrease in the difference between the
electron and gaseous temperatures [85]. Hence, in the limit of
high temperatures or high discharge currents, the electron
and gaseous temperatures of an arc plasma coincide. Figure
9b shows the electron temperature dependence for the electric
field strength in the positive column, and Fig. 9c plots the
current ± voltage characteristic of this discharge. Notice that
in the regime of high currents when Te � T, the electric field
strength is independent of the electron and gaseous tempera-
tures (see Fig. 9b), and the increase in the discharge power is
due only to an increase in the electron current (or in the
electron number density).

Along with ionization of atoms of the buffer gas, at high
electron temperatures ionization of a metal atomic vapor
proceeds according to the scheme

M� e !M� � 2e :

Some of the atoms which are transformed into atomic ions do
not take part in nucleation processes. In order to prevent
ionization of metal atoms, it is necessary to restrict the
electron temperature. In particular, in the case of a tungsten
vapor this temperature is restricted to 6000 K, and less than
10% of the atoms are ionized at this temperature. Hence,
xenon is suitable as a buffer gas in this event.

4.3 Cluster radiation
Usage of clusters as radiators in a cluster plasma under
consideration is advantageous due to the high radiative
absorption cross section of clusters. The basis of the method
for measuring the absorption cross section of metallic clusters
is the concept of photo-induced evaporation [86]. According
to this concept, the absorption of photons leads to the decay
of a cluster and hence to variation in its mass. The cluster
radiative absorption cross section follows from the measure-
ment of the mass spectrum of a cluster ion as a function of the
laser intensity. Below we shall use data for the radiative
absorption cross sections of lithium [87], potassium [88, 89]
and silver [90] clusters when the absorption cross section sabs

can be approximated by the formula

sabs�o� � smax
G 2

�h2�oÿ o0�2 � G 2
: �4:26�

Table 9 contains the parameters of this formula. The data
from this table will be used as a model for clusters of heat-
resistant metals in order to analyze the radiative properties of
the cluster plasma of a light source.

In addition to this information, various spectroscopic
measurements [91 ± 98] help us to understand individual
aspects of radiative processes involving clusters, and the
theory allows us to comprehend the details of these pro-
cesses. Below we shall use the data of Table 9 as model

parameters for radiation of hot metallic clusters. Within the
accuracy of measurements and based on this dependence, the
maximum cross section smax is proportional to the number n
of cluster atoms. These data allow one to evaluate various
parameters of a gas containing hot clusters. In particular,
Table 10 gives the specific power of radiation and light output
Z for hot clusters with the radiative parameters of lithium,
potassium and silver clusters presented in Table 9. It is seen
that such clusters are more effective radiators than a black
body due to a more advantageous spectrum of radiation.

We consider the nature of cluster radiation as a result of
the interaction of an electromagnetic wave and the electron
subsystem of the metallic cluster. The dipole Mie resonance
[99] and the model of free electrons may provide the basis of
this interaction if we consider the cluster as a bulky particle.
In this case, the resonance in the radiative absorption cross
section of the cluster results from reflection of the electro-
magnetic wave from a particle boundary [100, 101]. The
various theoretical versions of radiation absorption by
metallic clusters [102 ± 112] are developed from this concept.
Considering the radiative process as a result of interaction of
an electromagnetic wave and the cluster electron subsystem,
one can represent two limiting versions of the theory. In the
first case we neglect the interaction of electrons with the
environment, so that the resonance in the radiative absorp-
tion cross section is due to a plasmon and results from the
collective degrees of freedom of the electron subsystem. The
other approximation for this process takes as a basis the
interaction of a probe electron with a parent core that allows
one to introduce an oscillator strength for radiative transi-
tions [96] like that of free atoms. Then the total oscillator
strength of the cluster is proportional to the total number of
valent electrons, or to the number of cluster atoms. These
approximations lead to different sum rules, and the analysis
shows the validity of the second version [18, 113], while the
plasmon approximation leads to contradiction with available
experimental data [18, 113].

Useful information for radiation by hot clusters follows
frommeasurements of the spectral power of radiation emitted
by hot clusters [114 ± 116]. In these experiments [114 ± 116],
spectra of radiation of Nb, Hf and W clusters were measured
after irradiation of a cluster beam by a laser pulse. The
resultant signal was accumulated during many pulses, which
restricts the accuracy of measurements. From these measure-
ments it follows that the radiation spectrum of clusters within
a given time after a laser pulse is approximated by the
blackbody spectrum with a certain radiation temperature.
Figure 10 plots some spectra for the radiation of these
clusters, and Fig. 11 gives these spectra for tungsten clusters
at different delay times, i.e. at different radiation tempera-
tures. The analysis [117] shows that the cooling of an

Table 9. Parameters of formula (4.26) for the radiative absorption cross
section of metallic clusters [19].

Element �ho0, eV G, eV smax=n, 10ÿ17 cm2 Dn

Li
K
Ag

3:1� 0:1
2:00� 0:05
3:9� 0:1

1:12� 0:15
0:26� 0:10
0:59� 0:03

5:2� 0:8
3:4� 0:6
9� 1

139 ë 1500
9 ë 900
9 ë 21

Table 10. The specific power of cluster radiation expressed in 107 W gÿ1,
and the light efficiency Z which is expressed in lm Wÿ1 and is given in
parentheses. The data of Table 9 are used when constructing a model for
metallic clusters at high temperatures.

Element T, 103 K

3.0 3.5 4.0

Li
K
Ag
Black body

2.0(51)
4.0(108)
0.71(51)
(22)

4.9(80)
8.6(141)
1.6(75)
(39)

10(102)
17(165)
3.5(88)
(57)
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irradiated cluster is determined by its emission, and the rate of
such cooling allows one to find the radiative absorption cross
section of a hot cluster.

Treatment of these measurements under the assumption
that the absorption cross section is independent of the photon
frequency over some range of frequencies gives for the
radiative absorption cross section per atom the value
�5� 1� � 10ÿ18 cm2 for tungsten clusters [117] if they emit
radiation in the temperature range T � 3170ÿ3550 K, which
corresponds to the emission wavelengths lmax � 0:68 ±
0:76 mm for the maximum spectral powers. In the case of
niobium clusters, the absorption cross section per one atom is
�6� 1� � 10ÿ18 cm2 [117] under assumption that clusters emit
radiation in the temperature range T � 3200ÿ3600 K, which
corresponds to the emission wavelengths l � 0:67ÿ0:75 mm
for the maximum of the spectral power. These values of the

specific absorption cross sections are less than those for the
above cold clusters.

Clusters inserted into an arc plasma are effective radia-
tors. Alongwith the above parameters characterizing the light
efficiency of metallic clusters, we introduce also as this
parameter the quantity

x �
�
nev

dE

Prad
;

where E is the binding energy of cluster atoms, and Prad is the
cluster radiation power, and nev is the evaporation rate.When
inserted into a plasma of a given temperature in the absence of
an atomic vapor, the cluster evaporates and emits radiation.
The parameter x characterizes the efficiency of radiation of
this cluster, and small values of this parameter correspond to
a high efficiency of cluster radiation. Table 11 contains values
of x for the initial tungsten cluster size n � 1000, and the data
of Table 9 for the radiative absorption cross sections of Li, K,
and Ag clusters were used in modelling the tungsten clusters
at high temperatures. From the data of Table 11 it follows
that the optimal temperature of tungsten clusters in the
cluster plasma of a light source is about 4000 K.

4.4 Heat equilibrium of clusters in plasmas
Metallic clusters under consideration are located in a plasma
where the electron temperature Te differs from the gaseous
temperature T. The cluster temperature Tcl must lie between
these values because it results from collisions of atoms and
electrons with clusters. The cluster temperature refers to the
motion of cluster atoms, and just this temperature determines
the evaporation rate of cluster atoms and the rate of electron
emission from the cluster's surface. In addition, the cluster
temperature is responsible for radiation of hot clusters. Below
we shall connect the temperature of a cluster located in an arc
plasma with the gaseous and electron temperatures on the
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T � 3510K

T � 3800K
T � 2970K

l, nm l, nm
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Figure 10. Radiation spectra of hot clusters of niobium (a), tungsten (b) and hafnium (c) [115, 116]. An appropriate radiation temperature is indicated,

which follows from the spectrum.
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Figure 11.Radiation spectra of hot tungsten clusters [115] versus the delay

time Dt with respect to the time of cluster heating by laser radiation. The
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Table 11. The efficiency x of cluster radiation in the course of evaporation
[118].

Element T, 103 K

3.5 4.0 4.5

Li
K
Ag

0.008
0.005
0.03

0.1
0.06
0.3

0.7
0.4
2
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basis of a simple model of collisions such that an atomic
particle after collision with a cluster obtains the cluster's
average thermal energy. This means that for Te > T an atom
obtains on average the energy �3=2��Tcl ÿ T� from the cluster,
and an electron transfers on average to the cluster the energy
�3=2��Te ÿ Tcl� after each collision. Then the power which a
cluster takes from electrons is �3=2��Te ÿ Tcl�veNese, where
ve is the average electron velocity,Ne is the number density of
electrons, and se is the cross section of electron ± cluster
collisions. The power which atoms obtain from the cluster is
equal to �3=2��Tcl ÿ T�vaNasa, where va is the average
velocity of atoms, Na is the number density of atoms, and sa
is the cross section of collisions of atoms with the cluster. The
stationary condition combined with the use of formulas (2.2),
(3.10) for the rate constants of collisions of atoms and
electrons with clusters leads to the following expression for
the cluster temperature Tcl [119]:

Tcl � T� zTe

1� z
; �4:27�

where for a positively charged cluster of charge Z one finds

z �
����������
TeM

Tme

r �
1� Ze2

rTe

�
Ne

Na
: �4:28�

Here me and M are the electron and atom masses, respec-
tively. On the basis of formula (3.10) one can find the
temperature of a negatively charged cluster. It is seen that
the cluster temperature can depend both on the cluster size
and charge.

Because we are dealing with a three-temperature system,
where the gaseous, electron and cluster temperatures are
different, it is necessary in each case to ascertain which
temperature should be used. In particular, formula (4.28)
relates to a positively charged cluster, and its ionization is
determined by the electron thermoemission which is con-
nected with the cluster temperature. Therefore, the strongest
dependence in formula (3.21) is governed by the cluster
temperature, if an electron leaving the charged cluster core
does not collide with plasma electrons. Hence, in the case
r5 l , where r is the cluster radius, and l is the mean free path
of electrons in a plasma, formula (3.26) for the average charge
of a large cluster has the form

�Z � rTcl

e2
ln

�
2

Ne

�
meTcl

2p�h2

�3=2�
ÿ rW

e2
; �4:29�

so that the electron temperature in formula (3.26) is replaced
by the cluster temperature. Correspondingly, the character-
istic temperature T� at which the ratio (3.28) of the densities
of single-charged clusters equals unity, relates to the cluster
temperature. In Table 6 the cluster temperature T� is
indicated, at which the average cluster charge is zero.

In the samemanner, the two-temperature regime of an arc
plasma can be taken into account for the cluster charge when
it is negative. In the situation when the cluster charge is
determined by attachment of electrons and positive ions to
the cluster, we have the following equation for the cluster
charge instead of (3.12):

x � ln

�
1

x

����������
MTe

meT

r �
; jZj � x

rW n1=3Te

e2
:

Practically, the two-temperature regime of the plasma is not
of principal significance for the cluster charge in this case. For
example, for argon as a buffer gas and atomic argon ions in
the plasma, the solution of this equation yields x � 4:17 for
Te � T, and x � 4:45 for Te � 2T.

4.5 Character of growth of charged clusters in plasma
The local equilibrium established between clusters and their
atomic vapor is determined by the equality between the total
rate of atomic attachment to clusters and the total evapora-
tion rate of atoms. But this system is not stable because small
clusters evaporate and large clusters grow, i.e. the size
distribution function fn of clusters varies in time. Normal-
izing the size distribution function to the number density of
clusters Ncl by the relation

�
fn dn � Ncl, we shall study the

evolution of charged clusters in a plasma. If a typical cluster
charge is large enough, one can neglect the coagulation
process (4.1), and the cluster growth is determined by
attachment and evaporation processes (1.1). Using the
expressions (2.2) and (2.3) for the rate of atom attachment
and atom evaporation, we obtain the following expression for
the collision integral resulting from processes (1.1) [16, 35]:

Icol� fn� � ÿ q
qn

�
k0�T�n2=3fn

�
NÿNsat�Tcl� exp

�
De

Tcln1=3

���
;

�4:30�

and we took into account here that the atom attachment
process is governed by the gaseous temperature, whereas the
cluster temperature determines the rate of the evaporation
process. This form of the collision integral provides that small
clusters evaporate, large clusters grow, and the critical size ncr,
at which the rates of attachment and evaporation processes
are equalized, is determined by the relation

N � Nsat�Tcl� exp
�

De

Tcln
1=3
cr

�
: �4:31�

Here, De � 2A=3, and A is the specific surface energy of a
liquid cluster, which is defined by formula (2.6), and Table 1
gives its values for some metals at the melting point. One can
divide clusters into two groups by size whose boundary is
n � ncr. Denoting the number densities of bound atoms in
clusters of the first and second group by N1 and N2,
respectively, we have N1 �N2 � Nb. In the course of cluster
size evolution, transitions of clusters from one group to the
other group are absent.

Assuming local equilibrium, we neglect the inhomogene-
ity of this plasma and, correspondingly, the transport
processes. Hence, in this approximation the evolution of the
size distribution function of clusters is described by the kinetic
equation

qfn
qt
� Icol� fn� : �4:32�

The additional relation follows from the conservation of the
number density of free and bound atoms. In particular, we
have

dNb

dt
�
X
n

n
qfn
qt
�
�1
0

k0�T�n2=3fn

�
�
NÿNsat�Tcl� exp

�
De

Tcln1=3

��
dn � 0 ; �4:33�

May, 2000 Cluster plasma 479



where Tcl is the cluster temperature and, for simplicity, we
below shall take it to be identical with the gaseous tempera-
ture T. Equation (4.33) accounts for the balance of attaching
and evaporating atoms, thus establishing the connection
between the equilibrium number density of free atoms N
and the number density of free atoms Nsat�T� at saturation
vapor pressure for a given temperature.

Let us analyze the evolution of the size distribution
function fn on the basis of equation (4.32) in the equilibrium
conditions cited above. This distribution function tends to
zero in the limits of small and large cluster sizes, so that we
may approximate it by

fn � exp

�
ÿ
�
n

n0

�a

ÿ
�
n0
n

�a�
; �4:34�

where n0, a are the parameters. Evidently, the critical cluster
size ncr and the average cluster size �n are of order n0. We
assume this shape of the distribution function to be conserved
during the cluster evolution when the parameter n0 varies.
Then the bound atom balance equation for clusters with
n < ncr has the form

dN1

dt
� ncr f�ncr� dncr

dt
ÿ k0�T�

�
�ncr
0

�
NÿNsat�T� exp

�
De

Tn1=3

��
n2=3fn dn � 0 : �4:35�

We obtain one more integral relation by multiplying Eqn
(4.32) by n2 and integrating the result over n. This gives

dn2

dt
ÿ n2

�n

d�n

dt

� 2k0�T�
Ncl

�1
0

�
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�
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�n1=3
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��
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where a � De=T �n1=3. From this it follows

d�n

dt
� gk0Nsat�T��n2=3 : �4:37�

Assuming the quantities xcr � ncr=n0, �x � �n=n0 and
x2 � n2=n20 to be conserved in time and denoting x � n=n0,
we obtain from formulas (4.35) and (4.36):

g � �x 1=3

x2cr f�xcr�
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�4:38�

with the quantity N=Nsat following from equation (4.33).
Solution of Eqn (4.38) gives the parameter a of the distribu-
tion function (4.34) and the coefficient in formula (4.37) for
the rate of cluster growth.

The character of cluster evolution depends on the
parameter a � De=�Tcl�n

1=3�. In particular, Fig. 12 plots the
dependence of ncr=�n and the portion s of bound atoms in
evaporating clusters (i.e. among clusters of the first group) as
a function of the parameter a. Next, if we introduce the
reduced rates of evaporation nev and attachment nat for
clusters of the first group and denote these quantities for
clusters of the second group by bev and bat, correspondingly,

we obtain

nev � bev � 1 ; nat � bat � 1 ;
nev
nat

> 1 ;
bev
bat

< 1 :

�4:39�

Then, for the equilibrium conditions under consideration, the
quantity

�nev ÿ nat�Nk0

�
n2=3fn dn

is the number of bound atoms which change from clusters of
the first group to clusters of the second group per unit time
and volume. Figure 12a displays the dependence of the
quantity n � nev ÿ nat on the parameter a. In particular, for
a � 1 we have ncr � 0:94�n, s � N1=Nb � 0:32, n � 0:085; and
the dependence g�a� is given in Fig. 12b.

The general character of the process of cluster formation,
when a gaseous compound of a heat-resistantmetal is inserted
into an arc plasma, was described in Section 2.2. The
compound decomposes at temperatures T > T1, and stable
metallic clusters can be formed at temperatures T < T2.
Hence, clusters can exist in the temperature range (2.10):
T1 < T < T2. Nucleation of an atomic vapor and cluster
growth proceed according to processes (1.1) and (4.1). The
cluster plasma exists if the number densityNb of bound atoms
in clusters greatly exceeds the number densityN of free atoms,
which according to Eqn (4.33) is of the order of the saturated
vapor number density Nsat�T� at a given temperature. At the
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Figure 12. The parameters of an equilibrium of clusters with the parent

atomic vapor versus the parameter a: ncr=�n is the ratio of the cluster critical
size to its average size; s is the portion of evaporating clusters, a is the ratio
of the flux of atoms passing from evaporating clusters to growing ones to

the total flux of evaporating atoms, and g is the parameter entering

equation (4.37).
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stage of cluster growth when clusters are neutral, they grow as
a result of coagulation process (4.1). Then the average cluster
size is determined by formula (4.6b), and from the latter it
follows for the rate of cluster growth:

d�n

dt
� 3:8Nbk0�n 0:2 : �4:40�

This equation describes the growth of neutral clusters, while
Eqn (4.37) relates to the growth of both neutral and charged
clusters, provided that an equilibrium of a cluster with the
parent atomic vapor occurs. One can see that the rates of
cluster growth for the regimes which are given by formulas
(4.37) and (4.40) are expressed in terms of different para-
meters. We emphasize the strong temperature dependence of
the growth rate in the first regime, whereas the temperature
dependence of the rate of the coagulation process (4.1) is
weak.

Let us consider as an example the case when the WF6

compound with a mean molecular number density
1� 1016 cmÿ3 is introduced into a plasma. According to
Table 2, tungsten clusters are formed in the temperature
range between 2600 and 4100 K. For definiteness, we take a
temperature of about 3700K, as in the example of Section 2.3,
and the average cluster size �n � 1000. At this temperature
Nsat � 6:4� 1013 cmÿ3, and the equilibrium number density
of free atoms isN � 1:3� 1014 cmÿ3:Under these conditions
a � 1. Assuming that the other metal atoms in a plasma form
clusters, we have for the number density of bound atoms
Nb � 1� 1016 cmÿ3, which significantly exceeds the number
density of free atoms. According to formulas (4.37), (4.40),
the cluster growth rate d�n=dt is equal to 1� 105 and
1:6� 107 sÿ1 in the first and second cases, correspondingly.
When clusters get a charge, the coagulation process stops
because of repulsion forces between identically charged
clusters. Then the growth of clusters is determined by the
first growth regime only, and the rate of the cluster growth
process given by formula (4.37) decreases.

Transport processes involving free atoms promote cluster
growth and redistribution of a metal over the tube cross
section. The first type of transport processes corresponds to
displacement of atoms to the region where clusters can grow.
The other transport process results from the gradient of the
equilibrium number densities of free atoms due to the
temperature gradient. The first process proceeds during a
typical time tdif � r20=Da � 0:1 s, where r0 is the tube radius,
andDa is the diffusion coefficient of metal atoms. The typical
time of the second transport process resulting in collection of
clusters in a narrow region is determined by formula (2.20)
and is equal to t � 1 s.

One more transport process involving clusters takes place
in an arc discharge due to transverse electric fields. Indeed, in
hot regions of the plasma the clusters are positively charged
due to the thermoemission process, while in cold regions of
the plasma, where the cluster charge is determined by the
attachment of electrons and ions to its surface, clusters have a
negative charge, so that near the boundary of these regions at
temperatures close to T� clusters are neutral. Because under
the action of transverse electric fields positive ions move to
the walls, these fields cause motion of clusters to a region
where clusters are neutral. The typical time of redistribution
of clusters in space as a result of this effect is t � Dx=�EK�,
where Dx is the size of the region occupied by clusters,
E � Te=�er0� is the typical transverse electric field strength,

andK is the clustermobility. For a typical cluster size n � 103,
this estimate gives t � 10ÿ100 s.

Thus, we observe a special type of equilibrium in a cluster
plasma where transport processes are weak in comparison
with kinetic processes. Various processes establish a local
equilibriumbetween clusters and plasma, which is determined
by the hierarchy of times characteristic for these processes.

4.6 Cluster plasma in light sources
Effective interaction of metallic clusters with light and the
advantageous shape of the radiative absorption spectrum
make metallic clusters effective radiators for a light source.
Hence, starting from theWeber and Scholl paper [31] of 1992,
several types of cluster light sources have been analyzed both
by experimental and theoretical methods [18, 31 ± 34, 119,
120]. In all the cases clusters were located in a plasma. The
first scheme of a cluster light source byWeber and Scholl [31]
used tungsten and rhenium clusters in a microwave discharge
with a power of 100 W. An important element of this scheme
is the regenerative chemical cycle which turns a metal into a
gaseous compound at low temperatures, and into clusters at
high temperatures. Within the framework of this scheme, the
light efficiency of the cluster lamp, obtained in the tungsten
case, was 56 lm Wÿ1, and in the rhenium case 62 lm Wÿ1.
These values testify to the good prospects of the above
experiments. This experimental research was later broadened
[32 ± 34]. The theoretical analysis of a cluster lamp is guided
by an arc plasma [18, 119, 120]. We shall give below the basic
peculiarities of this device which follow from the above
analysis of the cluster plasma.

First, clusters are formed and exist at higher temperatures
than solids, and because the efficiency of radiation increases
with the temperature of radiators, cluster lamps are more
efficient than incandescent lamps. Second, the cluster
instability in cluster lamps, which leads to collection of a
metal in an intermediate region of discharge in the form of
clusters, promotes an increase in the efficiency of cluster
lamps. Third, a cluster plasma is not stationary, and this is
simultaneously a drawback and advantage of cluster plasma
as a light source. Governing transport processes involving
clusters when clusters move to hot regions of a discharge, one
can increase the light efficiency of this system. Evidently, light
efficiencies of the order of 100 lmWÿ1 are available for cluster
lamps, and in the tungsten case the optimal temperature of
radiating clusters falls in the range 3600 ± 4200 K.

5. Cluster generation

5.1 Methods of cluster generation and applications
Methods of cluster generation use the fact that clusters are an
intermediate state of matter in the course of transition from
the gaseous state to a condensed state. Therefore, the
transformation of a gas or vapor into a condensed phase is
usually employed in thesemethods, and the process is stopped
at a certain stage. In order to prevent subsequent coagulation
of the forming clusters, they are taken in the form of a cluster
beam. This beam is subsequently used for film deposition and
cluster applications.

Table 12 lists the methods of cluster generation and some
their peculiarities. Let us analyze them briefly. The first
method of cluster formation is based on bombardment of a
target with ions of keV energies [69, 121 ± 130]. The fragment-
clusters formed result from an ion impact and may have a
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charge. They are separated and accelerated. This method
allows one to obtain a beam of small clusters of not high
intensity. Usually this method is used for generation of
selective beams of small clusters which are applied for
research.

A cluster beam is formed as a result of the evolution of an
expanding vapor. There are various methods for the forma-
tion of an expanding vapor depending on the cluster material
and parameters of the output cluster beam. An oven is used
for fusiblemetals, so that an atomic vapor forming in the oven
expands through a nozzle into a vacuum together with a
buffer gas. The cooling of this mixture during expansion
causes nucleation of the vapor and formation of clusters. This
method provides generation of fairly intense cluster beams,
which are deposited onto a substrate for production of thin
films [131 ± 154]. In the case of heat-resistant metals, a laser
beam is used to evaporate them and form free atoms [155 ±
159]. The evaporating atoms are mixed with a flow of the
buffer gas, and the subsequent expansion of the mixture leads
to formation and growth of clusters.

Notice some peculiarities of these methods. The efficiency
of vapor formation may be high if a vapor is to be formed
from a condensed state. In particular, erosion of metals must
be high during their transformation into a vapor which is to
be used further for cluster production. We shall characterize
the efficiency of evaporation by the ratio of the energy
consumed to the number of atoms formed, that is by the
energy cost of one atom. One can demonstrate it in the case of
the vaporization of a tungsten wire which simultaneously
loses energy as a result of light emission. In this situation the
cost of one atom is e � 28 keV at the wire temperature
T � 3300 K, and e � 4:2 keV at T � 3600 K [18]. The
binding energy per one tungsten atom for these temperatures
according to Table 1 is 8.5 eV. It is seen that this method of
metal evaporation is characterized by a low efficiency. The
sharp temperature dependence of the atomic energy cost is
due to the exponential temperature dependence for the
evaporating atomic flux and also due to the fact that the
radiation from the surface determines the energy balance at
these temperatures. For materials with a low temperature of
evaporation, for example, for copper, a heated wire can be
effective for generation of an atomic vapor.

Laser evaporation of surface atoms can provide highly
efficient generation of atomic vapor of heat-resistant metals
due to the nature of this process. In addition, gas discharge
methods may be used for this purpose if a discharge provides
high erosion of the materials. In particular, a magnetron
discharge leads to a high erosion of the cathode and therefore
it can provide the basis for an effective generator of cluster
beams [160 ± 163]. A hollow cathode discharge is character-
ized by even higher efficiency of cathode sputtering by ion
currents and is also suitable for production of an atomic
vapor which is converted further into clusters. The effective-

ness of the method of atom formation in a vacuum is due to
the explosive electron emission which takes place in a vacuum
discharge [164, 165]. Then at the basic stage of the process, an
ion current forms an atomic vapor by vaporization of the
cathode and propagates through this vapor. Each evaporat-
ing atom is ionized further in a plasma, so that it generates one
ion and one electron. If we suppose ions to be singly charged,
this gives the relation i � 2ej between the atom flux j and the
discharge current density i, so that the atomic energy cost is
equal to e � 2eV , where V is the discharge voltage. Usually,
V is of the order of the atomic ionization potential, i.e.V � 10
eV. Thus, this method of creation of an atomic vapor is rather
effective.

The method of cluster generation depends on the sort of
atoms or molecules constituting clusters. Figure 13 shows a
layout of a cluster source for generation of molecular clusters
[166, 167]. At the first stage of the process, clusters of rare
gases (for example, argon clusters) are formed as a result of
the adiabatic expansion of the gas through a small orifice
(300 mm in diameter). These clusters pass through a scattering
chamber where thematerial of resultant clusters (for example,
NaCl) is evaporated in a resistively heated oven. Molecules
are captured by rare gas clusters and finally evaporate them.
As a result, molecular clusters are formed, which can contain
rare gas atoms or not depending on the conditions of
aggregation. This type of cluster generator is called the
cluster aggregate source [167].

Clusters have a high reactivity so that contact of two
clusters leads to their joining, and the properties of the
incident clusters are lost in the resulting cluster. Therefore,
clusters are used in the form of a beam where they are
separated. There are various applications of cluster beams
and we shall consider them briefly. The advantage of using a
cluster beam for film deposition consists in the possibility to
charge clusters and accelerate cluster ions. Fast cluster ions
can be employed even in thermonuclear fusion reactions
[168 ± 172]. It is convenient to use cluster beams to make
holes in foils [162]. Each fast cluster is like a bullet, and the
ultimate hole size depends on the cluster size and energy, so
that the density and size of holes on the resulting sieve can be
adjusted. As a flux of energetic particles, a cluster beam is
used for cleaning surfaces. The surface atoms then evaporate
under the action of fast clusters [139, 140].

Themain application of cluster beams is the production of
so-called cluster-assembled materials which have specific
properties and are nanostructures [173]. There are two
methods for using cluster beams for the purpose. The first
one, the `ion cluster beam' method [175], involves a beam of
charged liquid clusters which is used for fabrication of thin

Supersonic
expansion Skimmer

Crucible

Slit

Figure 13. Scheme of the cluster aggregation source. A rare gas is found in

a chamber, and its clusters are formed as a result of the supersonic

expansion of a rare gas. Molecules evaporating in a crucible attach to

clusters and substitute for atoms of rare gases in them [167].

Table 12.Methods of generation of cluster beams and their peculiarities.

Method Object Peculiarities

Bombardment of a
target with keV-ions
Free jet expansion of
a vapor from an oven
Laser evaporation
and free jet expansion
Stream from
a cluster plasma

ë

Low-evaporated

Heat-resistant

Heat-resistant

Small-size clusters

Medium cluster size
and intensity
Low intensity

Large-size clusters,
high intensity
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films. In fact, this method is similar to the method of film
deposition by atomic beams. The advantage of the ion cluster
beam method consists in the possibility to govern the energy
of charged clusters and also in the more technological regime
of film formation. A drawback of the ion cluster beam
method is the relatively low intensity of beams. For exam-
ple, the maximum rate of silver deposition by the ion cluster
beam method is 74 nm sÿ1 [137, 138]. This rate of film
deposition corresponds to an atomic beam generated by a
laser beamwith intensity of the order of 1W cmÿ2. Because of
the small intensity, the ion cluster beam method is only used
for manufacturing small elements of microelectronics. The
other method of application of cluster beams uses the low-
energy cluster beam deposition (LECBD) technique and
involves a beam of neutral solid clusters of small energy
[175]. The advantage of this method is that the size
distribution function of clusters in a beam is rather narrow
because clusters with magic numbers are formed by this
technique. Hence, this method allows one to create nan-
ometer films with embedded clusters of identical sizes. It is
impossible to produce such structures by other methods, and
clusters of various materials and sizes can be used for this
purpose (see, for example, Refs [175 ± 179]).

5.2 Generation of clusters from a cluster plasma
Below we shall consider the method of cluster generation on
the base of a high-pressure flowing afterglow plasma with a
small admixture of a metal to the buffer gas. In standard
methods for generation of a cluster beam, clusters are formed
in the course of gas expansion in the nozzle region, and the
typical time of this process is of order t � 10ÿ7ÿ10ÿ6 s. The
advantage of generation of clusters in a plasma [180, 181] is
connected with the relatively high times of their growth.
Therefore, this method is convenient for materials with a
low saturation vapor pressure, namely, for refractory metals.
One more advantage of this method is a high intensity of the
resulting cluster beam because of a high density of the plasma
used. Notice that the optimal parameters of a cluster plasma
invoked for generation of clusters differ from those of cluster
lamps. Indeed, a light source requires a high temperature of
clusters and a high density of buffer gas in order to hamper
transport processes. The cluster plasma in a cluster beam
generator is characterized by a lower temperature and
pressure of the buffer gas.

A general scheme for the cluster beam generator is given in
Fig. 14. The generator of cluster beams under consideration
includes three basic elements. The first is a plasma generator
of low power (below 1 kW), and in the second part of this
generator a narrow beam of molecules is directed along the
axis of the flowing afterglow plasma.Molecules decompose in
this region, and metallic clusters are formed. Metal atoms
transported from all the plasma volume attach to clusters, so
that the metal is collected near the flow axis in the form of
clusters. In the last stage, the central part of a plasma flow
containing clusters is extracted and directed into a vacuum
where the atoms of the buffer gas are removed by pumping,
and the cluster beam is governed by external electric fields.

Along with the cluster growth process, the charging of
clusters takes place. Usually clusters obtain negative charge,
which allows one to separate the cluster flow from the buffer
gas and create a cluster beam. Under the conditions realized
in this scheme, the cluster growth and cluster charging
processes proceed in the afterglow plasma simultaneously
with plasma relaxation. Below we shall analyze these

processes in order to prove that this method of cluster
generation is realistic. This method, along with generation
of metallic clusters, allows one also to extract refractory
metals from their gaseous or volatile compounds.

In the case of refractory metals, it is convenient to
combine generation of clusters with chemical regeneration
[31 ± 34] when a gaseous compoundMXk is introduced into a
gas (M is a metal atom, X is a halogen atom). This simplifies
the introduction of a refractory metal into a plasma and
allows one to prevent attachment of metal atoms to the walls
of the tube through which the plasma flows. A gaseous
compound MXk exists only at low temperatures. Starting
from a temperature T1, the compound MXk decays, and the
metal condensed phase becomes advantageous thermodyna-
mically. At temperatures above T2, the metal condensed
phase consisting of clusters decays into an atomic metal
vapor. Thus, clusters exist in the temperature range (2.10) if
thermodynamic equilibrium is attained in this plasma. Table
2 contains these temperatures under typical conditions in this
plasma.

The method of chemical regeneration [31] for introduc-
tion of metal atoms into a plasma allows us to attain a high
density of metal atoms in a hot region, which leads to the high
intensity of the resultant cluster beam. In standard methods
of cluster generation on the basis of vaporization of atoms
from a metal surface, the number density of atoms is
restricted by the atom number density at the saturation
vapor pressure complying with the surface temperature.
Table 13 contains the values of this atom number density
Nsat�Tm� at the melting point. It is seen that these values are
less than those obtained by decomposition of gaseous or
volatile compounds of these metals.

The diffusion coefficients of large clusters in a buffer gas
are inversely proportional to their surface area:
Dn � D0=n

2=3. Within the framework of the liquid drop
model for clusters, the parameter D0 is determined by
formula (2.15) and its values for refractory metals are
collected in Table 3. From this, on the basis of the Einstein
relation, one can find the cluster mobility K which is the ratio
of the cluster drift velocity w in an external electric field to the
field strength E. We have

K � ZeD

T
; �5:1�
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Figure 14. Scheme of a generator of clusters from an arc afterglow: 1 Ð

plasma generator; 2 Ð plasma flow; 3 Ð introduction of a gaseous

compound of a heat-resistant metal; 4 Ð cluster beam in a plasma flow;

5 Ð afterglow discharge tube; 6 Ð output plasma flow; 7 Ð nozzle for

plasma expansion into a vacuum; 8Ðvacuum camera; 9Ðelectron beam;

10Ðskimmers; 11Ðexpanding buffer gas; 12Ðelectric field optics; 13Ð

cluster beam of a buffer gas; 14Ð pumps.
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whereZ is the cluster charge. For definiteness, we consider the
regime of cluster charging as a result of the attachment of
electrons and ions to the cluster's surface, which proceeds
according to the schemes

e�MÿZn  !MÿZÿ1n ; A� �M
ÿZ
n  ! A�MÿZ�1n ;

�5:2�

where M is the metal atom, and A is the buffer gas atom. We
have negatively charged clusters, and their charges are given
in Table 6 together with the boundary temperatures T� below
which this regime of cluster charging takes place. One can see
that the negative cluster charge depends weakly on the type of
the heat-resistant metal, so that an average over the cluster
materials of Table 6 yields for the cluster charge

�Z � �0:080� 0:005�
�

T

1000

�
n1=3 ; �5:3�

where the temperature T is expressed in K.
For large clusters and an afterglow plasma of not high

temperature, we can find the cluster charge on the basis of
formula (3.12). Because Z � T and Z � n1=3; we have in this
case K � ����

T
p

nÿ1=3. Table 13 contains values of the mobility
of large metallic clusters in an argon plasma at temperature
T � 1000K. Averaging over the cluster materials of Table 13,
we arrive at the following expression for the cluster mobility
[in cm2 (V s)ÿ1 at the normal number density of argon atoms]:

K � �0:46� 0:03�nÿ1=3
����������
T

1000

r
; �5:4�

where the temperature is expressed in K. From this one can
conclude that displacements of clusters in the plasma flow
under the action of transverse electric fields are relatively
small.

Since even in the regime (5.2) of cluster charging, which
leads to a high cluster charge, the cluster displacement during

the flow time is small, clusters conserve their locations with
respect to the flow axis during the motion of the plasma.
Hence, one can create a narrow cluster beam if clusters are
formed close to the flow axis, as occurs when decay of
molecules containing metal atoms proceeds near the flow
axis.

Analyzing the character of formation and evolution of
clusters in a plasma flow, wewill be guided by two examples in
order to ascertain the real parameters of this scheme of cluster
beam generation. In the first case, a beam of iridium clusters
results from the introduction of the compound IrF6 with the
average concentration of 0.1% into argon at a pressure of 100
Torr, so that the iridium clusters formed may be applied for
fabrication of rhodium± iridium thermocouples. In the
second example, molybdenum clusters are formed from
MoF6 introduced with an average concentration of 0.1%
into argon at a pressure of 1 atm, and these clusters are
deposited onto a target for fabrication of molybdenum
mirrors [160]. According to Table 2, iridium clusters are
produced at temperatures below T2 � 3200 K, whereas IrF6

molecules decompose at temperatures above T1 � 1300 K. In
the same way, we have that molybdenum clusters exist at
temperatures below T2 � 3200 K, whereas MoF6 molecules
decompose at temperatures above T1 � 2300 K. The accu-
racy of these data is 100 ± 200 K. We take an initial
temperature of 3300 K at the flow center in both cases.

5.3 Gas-dynamic and heat processes in a plasma flow
Because of its small concentration, a metallic compound does
not influence the gas-dynamic and thermal parameters of a
plasma flow, and we take account of the buffer gas only. A
noticeable variation in the temperature T over the cross
section of the plasma flow is of importance and, for
simplicity, we shall use the parabolic temperature profile

T�r� � T0 ÿ T0 ÿ Tw

r 20
r2 ; �5:5�

where r is the distance from the tube center, r0 is the radius of
the discharge tube, and T0, Tw are the temperatures at the
tube center and on the walls.

From the Navier ± Stokes equation [182, 183] it follows
that the distribution of the flow velocity uz over the tube cross
section is given by

uz�r� � dp

dz

�
ln

r0
r

�r
0

r 0 dr 0

Z�r 0� �
�r0
r
ln

r0
r 0

r 0 dr 0

Z�r 0�
�
; �5:6�

where the axis z is directed along the flow, Z is the viscosity of
the buffer gas, and p is the gas pressure. In reality, the
coefficient of viscosity decreases by several times when we
move from the tube center to walls, but it is convenient to
connect the flow velocity with that in the case where the
temperature is constant over the tube cross section. In this
case we have [182, 183]

u�r� � u0

�
1ÿ r2

r 20

�
; u0 � u�0� � r 20

4Z
dp

dz
;

and the flow rate is equal to

G �
�
Nauz�r�2prdr � pr 20

2
Nau0 ;

Table 13. Parameters{ of atomic metal vapors and characteristics of
cluster scattering in argon.

Metal Nsat�Tm�, 1013 cmÿ3 Kn 1=3, cm2 (V s)ÿ1 yn 1=3

Ti
V
Fe
Co
Ni
Zr
Nb
Mo
Rh
Pd
Ta
W
Re
Os
Ir
Pt
Au
U

2.4
11
17
3.5
2.1
0.005
0.39
13
1.9
22
2.3
13
8.1
9.6
3.2
0.081
0.017
5.4� 10ÿ7

0.44
0.48
0.50
0.51
0.52
0.40
0.44
0.46
0.48
0.47
0.44
0.46
0.47
0.48
0.47
0.46
0.45
0.39

0.58
0.63
0.66
0.67
0.67
0.52
0.58
0.61
0.63
0.62
0.59
0.61
0.62
0.63
0.62
0.61
0.59
0.55

{ Nsat�Tm� is the number density of atoms at the melting point and
saturation vapor pressure; K is the cluster mobility at a temperature of
T � 1000K and the atomic number density 2:69� 1019 cmÿ3 in argon; n
is the number of cluster atoms, and y is the angle of cluster beam
deêection.
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where Na is the number density of atoms of the buffer gas.
When the gas temperature varies over the tube cross section,
we introduce an effective temperature Teff, such that the flow
rate is equal to that at a constant temperature Teff over the
tube cross section, i.e.

G �
�
Nauz�r�2prdr � pr 40Na�Teff�

8Z�Teff�
dp

dz

� Na�Teff� u0�Teff�
2

pr 20 : �5:7�

The values of Teff depending on T0 (the temperature on the
axis) are given in Table 14 for argon, where the temperature
dependence for the coefficient of viscosity is Z�T� � T 0:71[84],
and the atomic number density is Na�T� � 1=T. Usage of the
effective gas temperature simplifies the analysis of the
problem at hand.

Another effective temperature corresponds to the power
transferred by the flow. Neglecting the contribution of the
flow kinetic energy to its enthalpy because of the small flow
velocity in comparison with the sound speed, we have for
enthalpy per unit volume: h � cpT�r�Na�r� � cp p, where
cp � 5=2 is the heat capacity per one atom for an atomic gas,
and we used the equation of state p � NaT for an ideal gas.
From this we have for the powerPwhich is transported by the
flow:

P �
�
huz�r�2pr dr � h

u0�T 0�
2

pr 20 ;

where T 0 is the effective temperature for this process, and its
values are given in Table 14. It follows from the data of this
table that the effective temperatures for the flow rate Teff and
transferred energy T 0 practically coincide, and this allows us
to connect the transport parameters of interest:

P � cpTeffG : �5:8�

Assuming heat transport to be determined by the thermal
conductivity of the buffer gas, we obtain the heat balance
equation of the flow:

dP

dz
� 2pr0k�Tw� dT

dr
�r0� � 4pk�Tw�DT ;

where k�Tw� is the thermal conductivity of the buffer gas near
the walls, and DT � T0 ÿ Tw is the temperature difference
between the flow center and the walls. From this it follows for
this quantity along the flow:

DT � C exp

�
ÿ z

l

�
; l � aG : �5:9�

It follows from Table 14 that the quantity �Teff ÿ Tw�=DT �
0:57� 0:01 in the region of interest for this analysis. Table 15
gives values of the coefficient a for various buffer gases when
the walls of the flow tube are at room temperature. It follows
from the analysis that the flow rate must be not small in order
to provide this regime of plasma relaxation. Parameters of the
plasma flow in the examples of iridium and molybdenum
clusters under consideration are collected in Table 16. In
particular, the tube length l which provides a decrease in the
buffer gas temperature in a tube of constant radius up to the
temperature T1 is large in comparison with a typical
laboratory size. One can decrease this length by using an
expanding tube.

Table 16 contains also the values of the Reynolds number
of the flow for the examples under consideration. We
introduce the Reynolds number as

Re � u0r0ma
Na�Teff�
Z�Teff� ;

wherema is the atomicmass, r0 is the tube radius. Under these
Reynolds numbers the flow is laminar, and the thermal
conductivity mechanism determines heat transport. The
values of the pressure gradient dp=dz follow from formula
(5.7). Because this quantity is relatively small, p � const
downstream.

When gaseous molecules containing a refractory metal
atom are introduced into a plasma, they decay in collisions

Table 14.Effective temperatureTeff of argon flow in a cylindrical tube, and
the ratio of the velocity on the axis u0�Teff� to that at room temperature
over all the flow cross section and with the same pressure gradient.

T0, 103 K 0.3 0.5 1 1.5 2 2.5 3 3.5 4

Teff, 103 K 0.3 0.428 0.721 1.00 1.27 1.54 1.80 2.06 2.32

T 0, 103 K 0.3 0.429 0.731 1.02 1.31 1.59 1.87 2.15 2.43

u0�Teff�
u0�Tw�

1 0.755 0.501 0.390 0.324 0.281 0.249 0.225 0.206

Table 15. The coefficient a in formula (5.9).

Buffer gas He Ne Ar Kr Xe N2 O2

a, 10ÿ21 cm s 1.0 3.2 8.8 16 27 6.0 5.9

Table 16. Parameters of the plasma flow and processes in the plasma for the iridium and molybdenum clusters under consideration.

Parameter Ir Mo Parameter Ir Mo

p, atm
T0, K
u0, 103 cm sÿ1

GAr, g sÿ1

tch, 10ÿ3 s
D, cm2 sÿ1

w, cm2 sÿ1

l, cm
dp=dz, atm cmÿ1

Re
GM, mg sÿ1

jM, mg (cm2 s)ÿ1

I, A

0.13
3300
12
0.7
0,1
50
90
60
3� 10ÿ6

300
3
20
3� 10ÿ4

1
3300
6
2
2
7
15
260
2� 10ÿ5

1000
5
100
3� 10ÿ5

dT, K
rh, cm
A

tmax, 10ÿ5 s
N�tmax�, 1015 cmÿ3
Ncl, 1012 cmÿ3

n�tmax�, 103
n�tch�, 103
n

r0, cm
tat, s
Ne, cmÿ3

N 0e, cm
ÿ3

60
0.1
1� 105

9
6
1
6
7
7� 103

0.2
2� 10ÿ5

3� 1012

1� 1010

100
1
2� 104

5
5
3
2
70
1� 106

0.1
2� 10ÿ6

4� 1012

2� 1010
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with buffer gas atoms. The condition for molecules to decay
while located in the central region of the flow has the form

1

tch
� kgNa exp

�
ÿ ech

T

�
>

1

t0
; �5:10�

where kg � 10ÿ10 cm3 sÿ1 is the gas-kinetic rate constant, ech is
the binding energy for a halogen atom in the molecule, t0 is a
typical transport time of the molecule leaving the central
region of the tube, where DT � T 2=ech, i.e. the rate of the
chemical process has the same order of magnitude there as at
the center. Thewidth of this region for the temperature profile
(5.5) andT0 4Tw takes the form r � r0

�������������
T0=ech

p
. Because the

formed metal atoms quickly join to clusters, we require the
relation (5.10) to be valid at the temperature T2 (see Table 2)
below which clusters exist. In particular, in the MoF6 case,
when ech � 4 eV, the criterion (5.10) is valid at pressures
p > 0:1 atm. In addition, a size r of the region where
molecules decay effectively is more than the typical size of
the region where clusters are formed. This follows from the
subsequent estimates.

Next, the decomposition of molecules leads to a decrease
in the buffer gas temperature. Table 16 contains the values of
the decrease in the buffer gas temperature dT for the examples
under consideration, if the average molecule concentration is
10ÿ3 and the temperature profile (5.5) is conserved after the
temperature decrease. In reality, the temperature decrease
may be higher than that of Table 16, because during the time
of molecular decay the heat propagates a restricted distance
rh � 6wtch. This allows one to use a more high temperature in
the beginning of the process at the flow center.

5.4 Nucleation processes in afterglow plasmas
Formation of clusters from metal atoms can proceed
according to the regimes described by formulas (4.10) and
(4.11). Indeed, if the time tch of decay of molecules is small
compared to the typical time t of transformation of an
atomic vapor into a gas of clusters, the system develops
according to the first scheme with the parameters (4.10). In
the opposite limiting case, the parameters of the clusters
formed are determined by formulas (4.11). In the iridium
example under consideration we have tch � t, and in the
molybdenum case tch 4 t. Therefore, we will keep the
second regime for the data of Table 16. Notice that the
delay in the nucleation process is due to the formation of
diatomic molecules in three-body collisions. In the next
phase of this process, diatomic molecules are nuclei of
condensation, and cluster growth proceeds faster than
formation of diatomic molecules. Hence, when transforma-
tion of an atomic metal vapor into clusters finishes, the
clusters are large.

Table 16 contains the parameters of cluster growth which
include: tmax Ð the maximum lifetime of atoms with respect
to attachment to clusters; the number density of free metal
atoms N�tmax� and the typical cluster size n�tmax� reached at
this moment; the number density Ncl of clusters which is
attained by the time tmax and later varies weakly, and, finally,
the typical cluster size n�tch� when all the atoms are
transformed into clusters. In the beginning we consider
molecules to be located at the flow axis, so that they
propagate across the flow as a result of diffusion along with
metal atoms formed. But, because of their low mobility, the
clusters that form conserve their positions with respect to the
flow center during the plasma evolution.

An arising metal atom attaches to a cluster, and the
characteristic lifetime of this process is

ta � n 1=3

k0Nb
; �5:11�

where Nb is the number density of bound atoms. The
maximum in the number density of free metal atoms is
reached by the time tmax during which clusters are formed.
Hence, the width of the resultant cluster beam is determined
by the distance that molecules and atoms pass during time
tmax. The atoms which are formed later attach to clusters
located in the region of size r0 �

���������������
6Dtmax

p
, which is small in

comparison with the tube radius r0. If an atom is formed
outside a region occupied by clusters, it returns and attaches
to clusters. Only a small part of atoms can reach the tubewalls
because

r0 4 r0 : �5:12�

Thus, the tube radius r0 is an arbitrary parameter of the
problem, which must satisfy the condition (5.12) only.

When all the molecules decayed and atoms formed were
transformed into clusters, the subsequent cluster growth
proceeds via coagulation of clusters (4.1). We assume
clusters to be neutral and use formula (4.6b) for the average
cluster size. The values of this parameter at the exit of the
afterglow tube for the examples under consideration are
given in Table 16 where the tube length was set equal to 30 cm.
Note that the final cluster size depends greatly on the initial
number density of metal atoms.

5.5 Relaxation of an afterglow cluster plasma
Because an afterglow plasma is not supported by an
external power source, the temperature and density of
electrons and ions in this plasma decrease with time. We
now analyze the character of plasma relaxation, assuming
this plasma to be in equilibrium in the beginning. At the
first stage of plasma evolution, the number densities of
electrons and ions unambiguously correspond to the plasma
temperature, which is assumed to be identical for electrons
and the buffer gas. Below a particular temperature Teq,
evolution of the electron number density is controlled by the
rate of plasma cooling, which we describe by the parameter
dT=dt. In addition, the electron number density in the
course of this regime of plasma relaxation is determined by
the processes

e�A ! 2e�A� ; �5:13�

and the balance equation for the electron number density Ne

has the form [184, 185]

dNe

dt
� Ke

�
N 2

S�T� ÿN 2
e

�
Ne ; �5:14�

where Ke is the rate constant of three-body electron ± ion
recombination (see formula (4.14)), NS�T� is the equilibrium
number density of electrons under ionization equilibrium.We
used the principle of detailed balancing to obtain the rate
constant of atomic ionization by electron impact. It follows
from this equation that at slow cooling Ne � NS�T�, i.e.
ionization equilibrium is supported, and the temperature Teq

at which this equilibrium is violated is given by the relation-
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ship [184, 185]

Ke�Teq�N 2
S�Teq� � eC

2

I

T 2
eq

dT

dt
; �5:15�

where C � 0:577 is the Euler constant, and I is the ionization
potential of a buffer gas atom. At temperatures belowTeq, the
solution of equation (5.13) in the case dT=dt � const has the
form

1

N 2
e �t�
� 4TKe

7 dT=dt
; T5Teq ; �5:16�

whereT is the current temperature at instant t. It is convenient
to rewrite this formula in the form

Ne � N0

������
dT

dt

r �
T

1000

�7=4

; �5:17�

where N0 � 1:6� 109 cmÿ3, the temperature is expressed in
K, and dT=dt in K sÿ1.

It follows from the relation (5.15) and the Saha formula
(3.21) for the electron number density that the boundary
temperature is determined by the combination of parameters

1

Na

dT

dt
;

where Na is the number density of the buffer gas atoms.
Table 17 gives the values of the boundary temperatureTeq as a
function of this product for plasma relaxation in argon and
xenon. Comparing this temperature with a typical range of
temperatures (2.10) for cluster growth (see Table 2), one can
see that nucleation processes proceed in a nonequilibrium
plasma.

The above character of plasma relaxation takes place in
the absence of clusters in the plasma. Attachment of electrons
and ions to clusters leads to cluster charging and recombina-
tion of plasma electrons and ions according to the scheme
(5.2). As a result, the number density of electrons and ions
drops with the typical rate of this process following from
formulas (3.11):

1

tat
� k0xNb

n 1=3
; �5:18�

where x is the solution of equation (3.12) (see Table 5). When
clusters are forming, attachment of electrons and ions to
clusters proceeds fast (see Table 16 for the examples under
consideration). Hence, the number density of electrons and
ions in the region occupied by clusters drops sharply, and
later it is determined by transport of a plasma from regions
free from clusters.

Let r0 be the radius of a region containing clusters, N 0e be
the electron number density in this region, and Ne be the

electron number density in other regions where clusters are
absent. Because of this character of the equilibrium, we have
the following balance equation for plasma transport and
decay:

r20
N 0e
ta
� DaNe ; �5:19�

whereDa is the ambipolar diffusion coefficient of the plasma.
Table 16 presents the number density of electrons and ionsN 0e
at the exit of the afterglow discharge tube in the case when this
quantity is determined by transport of electrons and ions
from plasma regions which are free from clusters for the
examples under consideration.

5.6 Charging of clusters
When clusters are formed, attachment of electrons and ions to
the cluster surface as a result of processes (5.2) governs the
negative cluster charge. This charge is equal approximately to
Z � 0:08n1=3 for clusters of heat-resistant metals at
T � 1000 K. Let us introduce a typical time trel of decrease
of the plasma density. The criterion for charging of clusters on
the basis of processes (5.2) is such that the rate of electron
thermoemission from the cluster surface varies faster than the
number density of electrons. This gives

1

trel
5

dT

dt

W

T 2
; �5:20�

whereW is the metal work function, which coincides with the
ionization potential of a large cluster. The right-hand side of
this criterion is equal to 1� 104 sÿ1 in the iridium case at the
exit of the afterglow discharge tube (T � 1200 K), and
3� 103 sÿ1 in the molybdenum case (T � 2200 K at the exit
of the afterglow discharge tube). The rates of electron and ion
attachment to clusters are significantly greater than the term
in the right-hand side of this formula, and hence at the first
stage of evolution of an afterglow plasma the processes (5.2)
of plasma recombination and cluster charging become
dominant. The cluster charge is given in Table 6 for this
regime of cluster charging, which lasts a short time.

When the number density of electrons and ions drops
significantly, i.e. T > T� (T� is the temperature of the cluster
neutrality, see Table 6), clusters get a positive charge. But
because the number density of clusters is high and released
electrons remain in the cluster region, this charge is small, so
that clusters are practically neutral. Indeed, the equilibrium
establishes in this case:

Mn  !M�n � e ; �5:21�

and the average cluster charge Z follows from the balance of
rates of these processes. Then we have

Z � nem
Nclken 2=3

; �5:22�

where nem�T� is the rate of electron thermoemission,Ncl is the
number density of clusters, ke is the reduced rate constant for
electron collisions with a cluster (ke � 2:4� 10ÿ8 cm3 sÿ1 at
T � 2200K).We used the relationNe � ZNcl for the electron
number density, i.e. we neglected the transport of released
electrons from the cluster-occupied region. In particular, in
the molybdenum case at the exit of the afterglow discharge
tube (T � 2200 K) we have near the flow axis Z � 0:1. The

Table 17. The boundary temperature Teq of an equilibrium plasma for
plasma relaxation in argon and xenon according to formula (5.15).

1

Na

dT

dt
; K cm3 sÿ1 10ÿ16 10ÿ15 10ÿ14 10ÿ13 10ÿ12

Teq; 10
3 K

Ar 4.8 5.2 5.6 6.0 6.5

Xe 3.7 3.9 4.2 4.5 4.9
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rates nem�T� of electron thermoemission are given in Table 18
for iridium and molybdenum clusters together with the
number densities of electrons which provide cluster neutral-
ity at a temperature indicated.

The next stage of cluster charging is due to transport of
electrons and ions to the cluster region. The relaxation time in
this case is trel � r20=�6Da� � 0:1 s, and the criterion (5.20) is
valid, but the time of establishment of the equilibrium (5.2)
turns out to be large [this time equals � 1=nem�T� for a given
temperature]. As a result, clusters are charged negatively, but
their charge is less than that in the equilibrium case (5.2).

5.7 Processes in expanding afterglow plasma with clusters
At the last stage of plasma evolution, the central part of a
plasma flow, which contains clusters, can be separated from
the plasma flow, and this flow part sets off to a vacuum.
Thereafter atoms of the buffer gas are extracted by pumping,
and the beam of charged clusters is governed by external
transverse and longitudinal electric fields. This is possible at
small pressures of the buffer gas. At this stage, it is possible to
give clusters an additional charge, if the cluster beam is
crossed by an electron beam or passes through a region of a
glow discharge. If the cluster charge is determined by
processes (5.2), the charging currents I for the examples
under consideration are given in Table 16. The mobility of
charged clusters reduced to the normal density of argon
atoms is determined by formula (5.4) and is shown in Table
13 at T � 1000 K. This is an excessive value, because the
regime of cluster charging (5.2) is established partially, andwe
use it for estimates. On the basis of these values one can see
that transport of charged clusters is negligible in a plasma
flow and can be noticeable, when the gas pressure becomes
small. Then the cluster beam can be focused and accelerated.

A cluster beam moving in a longitudinal electric field in
the flux of a cluster plasma is dispersed as a result of collisions
with atoms of the buffer gas. Let us introduce the typical angle
y of disassembly of a cluster beam in a buffer gas.We take it as

y � Dx
wt
�

��������
2Dt
p

wt
;

where Dx2 � 2Dt is the beam disassembly squared in a time t,
the cluster drift velocity in an electric field of strength E is
w � KE; and this formula gives

y � Dx
wt
� 2D

EKDx
: �5:23�

This deflection angle does not depend on the number density
of atoms Na and gas temperature T, and y � nÿ1=3. Table 13
lists the values of this deflection angle in argon for
Dx � 0:5 cm, and E � 10 V cmÿ1. These values confirm the
possibility to control a beam of charged clusters.

It is necessary to keep in mind that cluster charges set up
high electric fields, which lead to additional dispersion of the

cluster beam. Table 16 contains the charging currents Iwhich
provide the cluster charge under conditions of reactions
(5.2). On separation of the cluster beam from a plasma, a
noncompensated negative charge of 3� 1010e cmÿ1 and
4� 109e cmÿ1 arises for the iridium and molybdenum cases
under consideration if the cluster beammoves with the sound
speed of argon. This charge establishes large electric fields on
the beam surface, which lead to its dispersion. Therefore, in
reality a cluster charge proves to be lower than that during the
charging regime (5.2)

Above we neglected the presence of halogen atoms in the
plasma flow. Indeed, at high temperatures �T > T1� the
halogen atoms do not react with clusters, and at low
temperatures these atoms are pumped after passing the
nozzle. Nevertheless, the presence of halogen atoms and
molecules in the plasma creates a technological problem and
requires a special material for the walls and a careful
purification of the buffer gas pumped. Interaction of clusters
with electrons removes halogen atoms from the cluster
surface in the form of negative ions. In addition, attachment
of electrons to halogen atoms, if it proceeds effectively,
produces a plasma consisting of positive and negative ions,
which changes the character of cluster charging. Thus, the
presence of halogen atoms in the plasma can influence the
character of physical processes in it, which requires additional
analysis.

When the afterglow plasma with clusters flows out of the
nozzle and expands into the vacuum, atomic particles are
scattered and pumped from the plasma stream, whereas
collisions of clusters with atoms of the buffer gas do not
create a noticeable transverse momentum for an individual
cluster because of its large mass. Hence, buffer gas atoms are
removed from the plasma flow as a result of their scattering.
Pumping allows one to remove the atoms which move
towards the walls. As a result, after a while the plasma
stream is transformed into a beam of clusters. It is of
importance in this method that clusters collect near the
center of the discharge tube, which permits us to use only
the central part of the plasma flow for generation of a cluster
beam.

It follows from the above analysis that the plasmamethod
of cluster generation provides a high-intensity cluster beam.
Indeed, the maximum specific intensity of cluster flux is 80 mg
(cm2 s)ÿ1 [137, 138] for the standard method and silver
clusters, whereas the cluster outward flux intensity GM in the
plasma method exceeds this value by two-three orders of
magnitude (see Table 16). Chemical regeneration [31] is
significant for this method since it provides a high number
density of metal atoms. If they result from vaporization of the
metal surface, the number density of atoms cannot exceed
that at the saturation vapor pressure at the melting point (see
Table 13), which leads to a low-intensity cluster beam.
Nevertheless, such a method of producing metal atoms can
be successfully employed because of its technological simpli-

Table 18. The neutrality temperature T� and the rate of electron thermoemission for large iridium and molybdenum clusters.

Ne, cmÿ3 108 10 9 1010 1011 1012 10 13 10 14 10 15

Ir
T�, 10 3 K 1.85 2.00 2.19 2.41 2.69 3.03 3.47 4.07

nem=n 2=3, sÿ1 1.2 13 170 2:0� 103 2:6� 104 3:3� 105 4:2� 106 5:9� 107

Mo
T�, 10 3 K 1.59 1.71 1.86 2.04 2.25 2.51 2.84 3.26

nem=n 2=3, sÿ1 0.059 0.68 8.1 96 1:2� 103 1:5� 104 1:9� 105 2:5� 106
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city. In addition, the gathering of clusters near the flow axis
simplifies the extraction of clusters from the plasma flow in
this method, and the size of clusters is adjusted by the buffer
gas pressure. Therefore, this method for generation of cluster
beams of heat-resistant metals provides high yield parameters
for the cluster beams.

Concluding, generation of a cluster beam from a plasma is
determined by competition between several processes and is
possible in a narrow range of plasma parameters. In
particular, at the first stage of the process, on the one hand,
plasma parameters on the flow axis must provide a fast
decomposition of molecules with formation of metal atoms
and, on the other hand, a fast nucleation of metal atoms must
proceed in this region. The method under consideration
allows us to concentrate clusters in the central part of the
plasma flow, which increases the density of the resultant
cluster beam and simplifies further extraction of clusters.
Though the competition of various processes in a plasma
means that this method requires a special analysis for each
particular case, it can be used for generating cluster beams of
various heat-resistant metals. Because all the atomic vapor in
this method is transformed into clusters, this technique of
generation of cluster beams can provide the same rate of
deposition of atoms on targets as that in the case of beams of
atoms or atomic ions. But, due to their large mass, charged
clusters are more easily focussed and controlled than atomic
ions. This means that the cluster technology of film deposi-
tion of heat-resistant metals has advantages over the employ-
ment of neutral atomic beams and atomic ion beams.

6. Conclusions

A cluster plasma is a specific physical object where clusters
can grow and evaporate in a dense ionized gas. Though this
plasma is found in local thermodynamic and ionization
equilibria due to the weakness of transport processes, such a
system is nonequilibrium with respect to processes of cluster
growth and cluster evaporation. The processes of cluster
growth are combined with the processes of charging of
clusters and, depending on the conditions, this system may
evolve in different ways. Cluster plasma can be used for light
sources and for generation of cluster beams, which are
applied for deposition and fabrication of nanostructure
materials. In addition, generation of cluster beams may be
employed for extraction of heat-resistant metals from their
compounds. Therefore, a cluster plasma can form the basis of
a high technology having to do with nanostructure materials.

The author thanks V P Kra|̄nov for valuable discussions.
This study was supported in part by RFBR grant #99-02-
16094.
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