
Abstract. A review is presented of the experimental work on the
influence of quantum fluctuations on the magnetization and the
mean spin of magnetic sublattices in quasi-one-dimensional
triangular antiferromagnets. The principal results in this area
are the strong magnetic-field dependence of magnetic sublattice
mean spins; anisotropy of mean spin values in magnetically
nonequivalent antiferromagnetic chains; the reduction of mag-
netization compared to the classical spin case; the nonlinear
growth of the parallel magnetic susceptibility; a residual mag-
netization anisotropy at high fields. The results obtained are
explained based on the spin-wave theory of quantum fluctua-
tions in antiferromagnets. A new magnetic phase was observed
in CsMnI3 forH jjC6 and shown to be due to the anisotropy of
the mean spins of the sublattices.

1. Introduction

The problem of determining the ground magnetic state of
antiferromagnetic insulators has a long and dramatic history.
The simplest theory, developed by Louis NeÂ el, describes this
state by the antiparallel ordering of neighboring magnetic
moments with definite values of the mean spin at each site of
the magnetic lattice, hSi � S (the spin of the magnetic ion).
However, one can easily show that the wave function

corresponding to this state is not an eigenstate of the
Heisenberg exchange interaction operator. Borovik-Roma-
nov very clearly explains the essence of the problem [1]: ``The
state of ideal antiferromagnetic order of a crystal lattice does
not correspond to the minimum of the lattice energy. The
reason is that, in contrast to the ferromagnetic case, an
interchange of two neighboring spins in an antiferromagnet
(AF), disturbs the strict order in the alternating spins. Thus,
the very nature of the exchange interaction makes the state
with strong separation of the spins into two sublattices
unstable.''

The wave function of a true ground state can be
represented as an expansion in the orthonormal set of wave
functions corresponding to a definite set of spin flips. Here,
the modulus of the mean value of the projection of the site
spin on the quantization axis, hSi, is smaller than the nominal
spin value S. Such spin flips reduce the energye, although the
diagonal part of the exchange energy increases [2]:

ÿNjS 2z > eg > ÿNjS 2z

�
1� 1

zS

�
: �1�

Here, the left-hand side is the energy of the NeÂ el state,N is the
total number of spins, and z is the number of nearest
neighbors.

For many years this phenomenon, known as spin
reduction in antiferromagnets, has attracted the attention of
both theoreticians and experimenters. The procedure of
calculating spin reduction can be illustrated with the example
of a simple Hamiltonian with Heisenberg exchange interac-
tion and single-ion anisotropy:

h � 2
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�Ŝ 2
z �2 : �2�

B S Dumesh Institute of Spectroscopy, Russian Academy of Sciences

142092 Troitsk, Moscow region, Russian Federation

Tel. (7-095) 334-02 39

E-mail: dumesh@isan.troitsk.ru

Received 3 July 1999, revised 9 February 2000

Uspekhi Fizicheskikh Nauk 170 (4) 403 ± 418 (2000)

Translated by E Yankovsky; edited by S N Gorin

REVIEWS OF TOPICAL PROBLEMS PACS numbers: 75.25.+z, 75.30.Cr, 76.60. ±d

Influence of quantum fluctuations on the magnetic properties

of quasi-one-dimensional triangular antiferromagnets

B S Dumesh

DOI: 10.1070/PU2000v043n04ABEH000636

Contents

1. Introduction 365
2. Magnetic properties of quasi-one-dimensional triangular antiferromagnets 366

2.1 Magnetic structures and phase diagrams; 2.2 Antiferromagnetic resonance

3. Quantum fluctuations and magnetization 369
3.1 Influence of quantum fluctuations on the magnetization; 3.2 Anisotropy of spin reduction in nonequivalent

antiferromagnet chains

4. 55Mn NMR in quasi-one-dimensional triangular antiferromagnets 370
4.1 Features of NMR in multisublattice antiferromagnets; 4.2 55Mn NMR in CsMnBr3; 4.3 55Mn NMR in CsMnI3;

4.4 55Mn NMR in RbMnBr3

5. Spin reduction in Mn2+ and its suppression by a magnetic field in quasi-one-dimensional triangular
antiferromagnets 376

6. The nature of the intermediate magnetic phase in CsMnI3 378
7. Conclusions 379

References 380

Physics ±Uspekhi 43 (4) 365 ± 380 (2000) #2000 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



To determine the ground state of this system, one must first
use the Holstein ± Primakoff transformation to expand the
state in spin-wave creation and annihilation operators �a�k ,
ak�,

H 0 �
X
k

Aka
�
k ak �

1

2

X
k

�Bka
�
k a
�
ÿk � B�kakaÿk� ; �3�

and then find the ground state by diagonalizing this
Hamiltonian (the Bogolyubov transformation). The result is
the following expression for DS � Sÿ hSi [2]:

DS � 1

2

� �
Ak

�ho�k� ÿ 1

�
dk ; �4�

where

ho�k� � ÿA2
k ÿ jBkj2

�1=2 �5�

is the spin-wave energy. Thus, the reduction of mean spins in
antiferromagnets is related to spin-wave quantum fluctua-
tions.

The degree of the spin reduction for three-dimensional
antiferromagnets is not large. According to Anderson's
calculations [2] for a simple cubic lattice, DS � 0:078, i.e.,
the effect is noticeable only for small spins, S � 1=2.
However, it is difficult to interpret experiments with such
ions (Cu2+) due to the complexity of exactly allowing for
orbital effects, which are of order gÿ 2 (here g is the electron
gyromagnetic ratio) and are comparable to the sought spin
reduction. The situation is much simpler for ions in the S
state, such as Fe3+ and Mn2+ (6S5/2), but for these ions the
reduction is only 3 to 5%.

There are two regular methods of measuring the mean
values of magnetic moments: one uses the amplitude of the
Bragg peaks of elastic neutron scattering, and the other uses
the values of the hyperfine fields at the nuclei of the magnetic
ions. The accuracy of the first method is limited by the need to
allow for extinction effects (attenuation and rescattering) in
the neutron beam and usually does not exceed 3 to 5%. The
accuracy of measuring hyperfine fields and the magnetic
resonance involving the nuclei of magnetic ions in magnetic
insulators is roughly ten times higher. But to calculate hSi,
one needs to independently determine the hyperfine constant
A. This constant is found from the hyperfine splitting of the
EPR spectrum of the same ion incorporated as a weak
impurity into a nonmagnetic matrix isomorphic to the given
substance (e.g., MnO$Mg0.999Mn0.001O). However, the
accuracy of measuring the hyperfine constant is also too low
for studying fine effects.

As a result of this complex experimental situation, the
interest in the problem of spin reduction in antiferromagnets
waned considerably in the 1970 ± 1980s, and we know of no
reviews on this topic published in the period between the mid-
seventies and 1993 [3]. The problem of measuring spin
reduction began its `second life' at the end of the 1980s in
connection with experiments involving quasi-one-dimen-
sional antiferromagnets, where the related effects proved to
be much larger and reliably observable in neutron scattering
experiments. Moreover, calculations of integrals of type (4)
are much simpler when j 0=j4 10ÿ2 (here, j 0 is the interchain
exchange). The results of calculations involving square and
triangular lattices with allowance for kinematic interaction [4]
and of comparison with the experimental data on five quasi-

one-dimensional antiferromagnets were given byWelz [3] and
were found to coincide within 10%.

In view of the large spin reduction in quasi-one-dimen-
sional antiferromagnets, it became possible to investigate
higher-order effects, specifically, the field dependence of the
mean spin. The qualitative features of the effect of a magnetic
field on hSi are readily revealed by equation (4). Here, the
poles of the integrand, i.e., the region oe�k� � 0, contribute
substantially to the reduction. When a field is applied, gaps
appear in the spin-wave spectrum and the magnitude of the
integral (and spin reduction, respectively) diminishes. This
effect, known as suppression of quantum fluctuations by a
magnetic field, has been under intensive theoretical study in
recent years. From the viewpoint of experimenters, this type
of study is preferable, since it reduces to relative measure-
ments, which have higher accuracy.

Spin reduction and, correspondingly, the effects asso-
ciated with suppression of quantum fluctuations have a
greater magnitude in quasi-one-dimensional triangular anti-
ferromagnets. We will see that quantum fluctuations not only
lead to sizable renormalization of the magnetic parameters of
these substances but also initiate new magnetic phase
transitions. The present review is devoted to these subjects.
The plan is as follows. Section 2 discusses the magnetic
properties of these compounds. Section 3 deals with the
results of magnetization measurements in CsMnBr3 and
CsNiCl3, where for the first time the effects of suppression
of quantum fluctuations were found. Section 4 describes
measurements of the mean spins of Mn2+ ions and the field
dependence of these spins in CsMnBr3, RbMnBr3, and
CsMnI3 using the 55Mn NMR, and the new magnetic phase
discovered in the last substance. Section 5 interprets the
results on mean-spin measurements and the mean-spin field
dependence. The nature of the new magnetic phase is
discussed in Section 6.

2. Magnetic properties of quasi-one-dimensional
triangular antiferromagnets

2.1 Magnetic structures and phase diagrams
About two dozen compounds with the chemical formula
ABX3 belong to the class of quasi-one-dimensional antiferro-
magnets with a triangular magnetic structure (here, A is Rb or
Cs, B is an atom of a transition metal, and X is a halogen
atom). All these antiferromagnets have a similar crystal-
lographic structure [5] (Fig. 1). The B2+ ions are surrounded
by octahedrons of halogen atoms, which, being connected via
a common face, form chains along the C6 axis. These chains
are hexagonally packed in the basal plane of the crystal, while
the voids that are formed in the process are filled by atoms of
the alkali metal. The unit cell consists of two formula units; its
symmetry is D4

6h. Crystallographically, all the B2+ ions are
equivalent.

The distance between neighboring B2+ ions along the
chain is approximately half the distance between neighboring
ions in the plane. Accordingly, the exchange integral j
involving neighboring ions in the chain is several hundred
times larger than the interchain exchange integral j 0. Here, we
will examine only the case where both exchanges are
antiferromagnetic. Due to the interchain exchange (j 0),
magnetic ordering emerges in these substances at T � 10 K.
Here, the spins of the B2+ ions in the chains are ordered
antiferromagnetically, while the mutual polarization of the

366 B S Dumesh Physics ±Uspekhi 43 (4)



chains is determined by j 0 and the crystal anisotropy. Due to a
frustration of the AF exchange on a flat hexagonal grid, six-
sublattice triangular magnetic structures are realized in these
substances: in weak fields, the spins of the neighboring B2+

ions in the plane lie on the sides of isosceles triangles.
Due to the nontrivial nature of such magnetic structures,

much attention has been paid to their studies. For instance, in
their review of magnetic properties of such substances,
Collins and Petrenko [6] mention about 300 studies. To the
first approximation, the magnetic properties of these com-
pounds with V, Mn, and Ni ions are described by the model
Heisenberg Hamiltonian of a system of equivalent spins with
allowance for single-ion anisotropy and the Zeeman energy of
the magnetic moments in an external magnetic field H:

h � 2j
X
i

SiSi�Dx
� 2j 0

X
i

SiSi�D?

�D
X
i

�Sz
i �2 ÿ gmBH

X
i

Si ; �6�

where g is the LandeÂ g factor, mB is the Bohr magneton, j > 0
and j 0 > 0 are the integrals representing the antiferromag-
netic exchange interaction, and D is the anisotropy constant.
The first term on the right-hand side describes the exchange
interaction along the C6 axis, and the second term describes
the exchange interaction in the plane perpendicular to C6.

In CsMnBr3 and in the vanadates, D > 0 (easy-plane
anisotropy), with the result that the spins of B2+ are oriented
in the hexagonal plane of the sample and in a zero magnetic
field form regular triangles. Since the anisotropy in this plane
is negligible, in weakmagnetic fields the spin structure orients
itself in such a way that one of the bisectors of the triangle is
directed along H? (Fig. 2) (the field projections are desig-
nated in relation to the C6 axis).

The behavior of easy-plane triangular antiferromagnets in
a strong magnetic field is determined by the ratio of the
interchain exchange j 0 to the anisotropy. The compound
CsMnBr3 (and RbMnBr3, which will be discussed later) is a
case of strong anisotropy: D > 3j 0. Hence, for any magnetic
fields applied in the basal plane, all the spins of Mn2+ lie in
this plane, and the spin triangle is deformed in such a way that
the angle at its base decreases according to the law [7]

cos a � 1

2ÿ z
; z � H2

H2
C

; �7�

vanishing in a field HC � �48 jj 0�1=2S (for CsMnBr3,
HC � 64 kOe at T � 1:8 K [8]). In such a field (HC), a

second-order phase transition occurs to a collinear structure
consisting of antiferromagnetically ordered ferrimagnetic
planes with a spin ratio of 2:1. When the magnetic field does
not lie in the hexagonal plane, the position of the transition is
given by the formula

H 2
C�f� � H 2

C

dÿ 1

d cos2 fÿ 1
; �8�

where d � D=3j 0, and f is the angle between the field and the
hexagonal plane. The magnetic structure and phase diagram
of CsMnBr3 have been thoroughly studied via magnetization
and neutron scattering measurements [8 ± 11]1.

In nickelates and CsMnI3, D < 0 (easy-axis anisotropy),
with the result that the spins of B2+ tend to align themselves
along the C6 axis. However, the interchain exchange (j 0)
obstructs the formation of such a collinear structure. A real
magnetic structure is the result of a trade-off between
anisotropy and exchange. Here, in a third of the AF chains,
the spins are directed along the C6 axis (spins SA), while the
remaining spins (SB) make an angle with the axis given by the
equation [6]

cosY � 1

2ÿD=3 j 0
: �9�

In this way, a coplanar six-sublattice magnetic structure 2 is
created in which the antiferromagnetic chains (A and B) are
magnetically nonequivalent (Fig. 3). In a zero magnetic field,
the spin plane can freely rotate with respect to the C6 axis,
while in a nonzero field it rotates in such a way that its normal
becomes parallel to H?.

When H jjC6, such a structure is energetically unfavor-
able, and in a field Hsf��16DjS 2�1=2 a spin-flop transition
occurs, as a result of which all spins of B2+ are oriented in the
hexagonal plane.When the external field makes an angle with
the C6 axis, the rotation of the spin plane proceeds gradually,
so that [13]

tan 2c � H 2 sin 2j
H 2 cos 2jÿH 2

sf

; �10�

where c is the angle between the normal n to the spin plane
and theC6 axis, andj is the angle betweenH andC6 (Fig. 3b).

A direct transition from the paramagnetic phase to the
low-field phase is impossible; so, the two phases are separated
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Figure 1. Crystal structure of ABX3-type quasi-one-dimensional triangu-

lar antiferromagnets.
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Figure 2. Low-temperature magnetic structure of quasi-one-dimensional

triangular antiferromagnets with strong easy-plane anisotropy (CsMnBr3)

for jHj5HC (a) and jHj > HC (b).

1 The critical properties of triangular antiferromagnets were discussed in

Kawamura's review [12].
2Wewill call the plane to which the spins of B2+ are parallel the spin plane.
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by an intermediate phase, in which only the spin projections
on the C6 axis are ordered. Accordingly, there are two NeÂ el
temperatures, TN1 and TN2. All three magnetically ordered
phases and the paramagnetic phase coexist in a single
multicritical point (Tm � 10 K and Hm � 60 kOe for
CsMnI3). Thus, we have described the HÿT phase diagram
of easy-axis triangular antiferromagnets, which for CsMnI3 is
depicted in Fig. 4 [14].

The magnetic susceptibility of triangular antiferromag-
nets in weak fields is anisotropic. This anisotropy is con-
veniently described by the phenomenological parameter
Z � �wjj ÿ w?�=w?, where wjj and w? are the susceptibilities in
fields parallel and perpendicular to the normal to the spin
plane, respectively. For classical spins,

w? �
1

16Dj
; Z � 1 : �11�

Below, we discuss the specific features of susceptibility
associated with suppression of quantum fluctuations by a
magnetic field.

2.2 Antiferromagnetic resonance
The resonance properties of triangular AFs have been studied
fairly thoroughly. Here, we will discuss only the results of
studies of low-lying modes of antiferromagnetic resonance

(AFMR) in easy-plane compounds with strong anisotropy
(CsMnBr3) and easy-axis substances. Chubukov [7] and
Tanaka et al. [15] developed the theory of AFMR in easy-
plane triangular antiferromagnets, while Zaliznyak et al. [16]
and Kimura et al. [17] conducted experiments with CsMnBr3.
There exists a gapless (Goldstone) AFMR mode oe1 (in the
notation of Ref. [16]) related to torsional vibrations of the
spin triangle. ForH jjC6, we have oe1 � 0, while forH ? C6,
the frequency of this mode in weak fields is given by the
expression

oe1

ge
�

���
3
p

2

H 3

H 2
C

: �12�

AsH! HC, we haveoe1 ! geHC, and after the transition
we obtainoe1 � geH. When the field strength is intermediate,
there is no analytical expression for oe1, and the spectrum is
calculated using an equation derived by Chubukov [7].

Furthermore, there is a respiratory AFMR mode oe5

related to vibrations of the angle at the vertex of the spin
triangle. AtH � 0 the frequencyoe5 � 190 GHz (CsMnBr3).
However, as H! HC, the gap in this branch tends to zero
according to the law

o2
e5 � g2e�H 2

C ÿH 2� : �13�

Only spins that are directed obliquely to the magnetic fields
participate in this mode and themode is excited only when the
dc and hf magnetic fields are parallel [15]. Both modes have
been observed in experiments, and the spectra are in
satisfactory agreement with the theoretical results. The other
AFMR branches in CsMnBr3 are fairly high.

In easy-axis triangular antiferromagnets, there are three
AFMR modes whose activation nature is related to the
relativistic anisotropy or the external magnetic field [13, 18].
In the present review, we mainly follow the work of Abarzhi
et al. [13], who base the theory of antiferromagnetic resonance
on the macroscopic dynamics of magnetic substances [19].

One of the modes (e2 in the notation of Abarzhi et al. [13])
corresponds to the torsional vibrations of the spin plane in
relation to the C6 axis and is gapless in a zero field. Its
spectrum is given by the equation

o2
e2 � g2e

Z
2

h
�H 4 �H 4

sf ÿ 2H 2H 2
sf cos 2j�1=2 �H 2 ÿH 2

sf

i
;

�14�
which becomes much simpler whenH5HC:

oe2

ge
�

���
Z
p

HHsf sinj�������������������
H 2

sf ÿH 2

q : �15�

What is important is that only the spins SB participate in this
mode.

The gaps in the other modes are determined by relativistic
invariants of the second order

o2
e1�0� � g2eZH

2
sf �16�

and sixth order (the mode e3). Since there are four such
invariants, the behavior of oe3 in a field is fairly arbitrary:

o2
e3�H� �

g2e
w?

36Z
1� Z

H 2
sf ÿH 2

ZH 2
sf �H 2

F�H� ; �17�
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Figure 3. Low-field magnetic structure of easy-axis quasi-one-dimensional

triangular antiferromagnets (a), and the position of the spin plane in

relation to the magnetic field and the crystallographic axes (b).
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55Mn NMR spectrum.
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where

F�H� � b1 � b2H
2 � b3H

4 � b4H
6 : �18�

The relativistic invariants of the sixth order also determine
the orientation of the spin triangles in the spin plane and can
be calculated for systems described by the Hamiltonian (6).
The calculations of Abarzhi et al. [13] atH jjC6 yield

F�H� � D3S2

216j 02

�
1ÿH 2

H 2
sf

�3

: �19�

The AFMR spectra measured in the experiments of Zaliz-
nyak et al. [16] for CsNiCl3 and of Abarzhi et al. [13] and
Kambe et al. [20, 21] for CsMnI3 are in fairly good agreement
with the results of calculations, but for the second substance
the value of D=j 0 obtained from the gap ratio oe1=oe3 differs
substantially from that derived from the spin-triangle angle
[equation (9)].

3. Quantum fluctuations and magnetization

3.1 Influence of quantum fluctuations
on the magnetization
Quantum fluctuations and their suppression by a magnetic
field greatly affect the magnetic properties of quasi-one-
dimensional magnetic materials. This effect manifests itself
most strikingly in the renormalization of the constants in the
spin Hamiltonian (6) and in the substantial difference
between the magnetization values and those calculated for
classical spins [equation (11)]. Figures 5 and 6 show the field
dependence of the magnetizations of CsMnBr3 and CsNiCl3
measured at low temperatures by Abarzhi et al. [8] and
Zaliznyak [22]. Note three special features of this depen-
dence: the small value of magnetizations compared to the
limit for classical spins; the nonlinear growth of m? in a
strong magnetic field, which is especially noticeable for
CsNiCl3; and the residual anisotropy of magnetization
above the reorientational phase transition. Zaliznyak [22]

related the first feature to the renormalization of the
constants in the spin Hamiltonian and the second, to the
field-induced increase of the mean spins of the magnetic
sublattice caused by suppression of spin fluctuations. The
data on the magnetization were used by Zaliznyak [22] to
calculate the field behavior of the mean spins. In the next
section, we will see that the order of the effect was determined
correctly but that reality proved to be much more interesting.

The magnetization anisotropy was also explained by
Abanov and Petrenko [23] by allowing for quantum correc-
tions to the ground state of quasi-one-dimensional triangular
antiferromagnets. More thorough numerical calculations
were done by Ohyama and Shiba [24], while analytical
calculations were done by Zhitomirsky and Zaliznyak [25].
According to the analytical calculations, in easy-plane quasi-
one-dimensional triangular antiferromagnets, the quantum
corrections to hSi and m for the case where H jjC6 are given
by the equations

hSi � S

�
1ÿ 1

2pS

�
ln
16j

3j 0
ÿ pÿ 1

2
hln�1ÿ gk�i

ÿ 1

2

�
ln

�
1� 2gk �

D

3j 0
� H 2

48jj 0S2

����
;

m � H

8j

�
1ÿ 1

2pS

�
ln
16j

3j 0
ÿ 2

ÿ 1

2

�
ln

�
1� 2gk �

D

3j 0
� H 2

48jj 0S2

����
; �20�

where gk � �1=3��cos kx � 2 cos kx=2 cos ky�, and the aver-
aging is done over the two-dimensional Brillouin zone. The
numerical values in the isotropic case, hln�1ÿ gk�i � ÿ0:176
and hln�1� 2gk�i � ÿ0:452, are fairly small, and for j4 j 0 the
main additional term ln�16j=3j 0� is common to both equa-
tions. What is essential is that the term with the field
dependence is normalized to the reorientational transition
field HC, which is fairly moderate in triangular antiferro-
magnets. Hence, the field effects become appreciable in fields
H � HC. Zhitomirsky and Zaliznyak [25] also calculated the
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Figure 5. Field dependence of the magnetization of CsNiCl3 forH jjC6 (�)
and H ? C6 (�) [22]. The solid curves represent the results of calculations

done by Zhitomirsky and Zaliznyak [25].
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field dependence of mjj and m? for easy-axis triangular
antiferromagnets (the solid curves in Fig. 5). We see that the
results of the experiment involving CsMnBr3 are described
quite well by the theory, while those involving CsNiCl3 are
described only qualitatively. The discrepancy may be due to
the relatively high temperature (compared to TN � 4:4 K) at
which the experiment with this substance took place
(T � 1:8 K). The numerical calculations of the field behavior
of the mean spins and the magnetization in CsNiCl3 done by
Ohyama and Shiba [24] correlate sufficiently well with the
results of Zhitomirsky and Zaliznyak [25].

Thus, the theory of suppression of quantum fluctuations
by a magnetic field provides a good description of the field
dependence of magnetization in triangular antiferromagnets.
However, since magnetization is an integral characteristic
and, generally, depends on many parameters, there could be
other explanations of the observed phenomena. Hence, the
direct measurements of spin reduction and its field depen-
dence are quite important.

3.2 Anisotropy of spin reduction in nonequivalent
antiferromagnet chains
There is an interesting effect that has been predicted for easy-
axis triangular antiferromagnets but cannot be observed in
direct magnetization measurements. Watabe et al. [26] used a
numerical construction of Bogolyubov's transformations to
calculate spin reduction in easy-axis triangular antiferro-
magnets and found that this reduction is different for
magnetically nonequivalent AF chains of the same sub-
stance. Figure 7 depicts the results of spin reduction
calculations for a model hexagonal structure with the
Hamiltonian

h � 2j 0
X
i

SiSi�D? �D
X
i

�Sz
i �2 �21�

depending on the anisotropy-to-exchange constant ratio
D=2j 0. In the easy-axis case (D > 0) with D=2j 0 < 1:3, the
reduction for spins SA parallel to the symmetry axis is smaller
than for the other spins. The change of sign of the reduction
difference at high anisotropy is due to the approach of the
transition to the collinear structure at D=2j 0 � 1:5.

Figure 8 illustrates the calculation of spin reduction for a
real six-sublattice antiferromagnetic structure (the Hamilto-
nian (6) with a zero magnetic field) depending on the
exchange-constant ratio j=j 0 at D=2j 0 � 0 (solid curve) and
D=2j 0 � 1 (dashed curves). Clearly, for quasi-one-dimen-
sional antiferromagnets (j=j 0 > 0) (including CsMnI3), the
difference in spin reduction in nonequivalent AF chains is
substantial. This effect can easily be understood by using the
linear theory of spin reduction in antiferromagnets. For the
spins SB, there is a pole in the integral (4) that is related to the
vanishing of the electron spin mode e2. Since the spins SA do
not participate in this mode, the magnitude of the integral
and, respectively, the reduction is smaller for these spins.

In what follows, we will show that the real anisotropy in
this substance is much smaller. Nevertheless, the predicted
effect is interesting enough to merit attempts at detecting it in
experiments. Moreover, there is a need to study the process of
suppression of spin reduction by a magnetic field directly. To
this end, 55Mn NMR in CsMnBr3, RbMnBr3, and CsMnI3
was investigated. We will devote the remainder of the review
to this aspect.

4. 55Mn NMR in quasi-one-dimensional
triangular antiferromagnets

4.1 Features of NMR in multisublattice antiferromagnets
The main contribution to the effective field at the nuclei of
magnetic ions is provided by the hyperfine interaction. The
hyperfine field caused by this interaction for 3d ions is
Hni � AhSii � 102ÿ103 kOe, where A is the hyperfine
constant, and hSii is the mean spin of the ith magnetic
sublattice. The NMR frequencies are determined by the
effective field, which is the vector sum of the hyperfine and
external magnetic fields at a given nuclei:

oni

gn
� jHni �Hj : �22�

We see that the NMR frequencies in a zero field determine the
mean spins of the sublattices, while the field splitting
determines the angle between the spins and the field. The
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complex magnetic structure of triangular antiferromagnets
leads to a rich NMR spectrum. For instance, forH ? C6, the
55Mn NMR spectrum in the triangular phase of CsMnBr3
consists of three twofold degenerate branches,

oni

gn
� jHni �Hj � Hn �H sin a ;

Hn ;

�
�23�

while in the collinear phase all the branches merge:

on � gnHn

�
1�H 2

H 2
n

ÿ 2
H 2
?

HnHE

�1=2

� gnHn : �24�

For the sake of simplicity, equation (23) is reduced to an
approximation that is linear in H. The quadratic terms have
also been taken into account in calculations of the spectrum.

For the low-frequency phase of CsMnI3, the NMR
spectrum generally consists of two nondegenerate (for the
spins SA) and two twofold degenerate (for the spins SB)
branches:

oAi

gn
� HnA �Hjj ;

oBi

gn
� HnB �Hjj cosY :

8><>: �25�

Here, Hjj � H sin�cÿ j� is the projection of the field on the
spin plane.

The real NMR spectrum is much more complex at low
temperatures due to the interactionwith the low-lyingAFMR
branches. This phenomenon emerges because of the effect of
nuclear spins on themotion of the electronmoment due to the
same hyperfine interaction and has become known as the
dynamic shift of the NMR frequency (pulling). The theory of
the phenomenon for two-sublattice antiferromagnets was
built by de Gennes et al. [27], who showed that the frequency
shift is proportional to the mean nuclear magnetization
hmni � wnHn:

On � on

�
1ÿ 2

�
oT

2oe

�2�
; �26�

where On is the realistic NMR frequency,
oT � ge�2HEAhmni�1=2 is the coupling frequency, and HE is
the exchange field. The equation is valid foroT=oe 5 1. Since
the coupling incorporates a strong exchange field, for some
manganese-based antiferromagnets the dynamic NMR fre-
quency pulling already manifests itself at T � 4:2 K. Later,
Turov and Kuleev [28] derived an equation for the spectrum
of coupled vibrations of the electron and nuclear moments in
two-sublattice antiferromagnets over the entire frequency
range:

�o2
ej ÿ O2��o2

n ÿ O2� ÿ �oT O�2 � 0 : �27�

This equation provides a good description of all the known
examples of the NMR frequency pulling due to the interac-
tion of a single NMR mode with different AFMR modes oej

in two-sublattice antiferromagnets [29].
The dynamic frequency pulling for several NMR modes

has been calculated for only two special cases: a classical
antiferromagnet with two nonequivalent positions of
nuclear spins [30], and an easy-plane triangular antiferro-
magnet in weak fields [31, 32]. In Ref. [33], an equation
combining these two cases of dynamic NMR frequency

pulling was proposed:

o2
ej ÿ O2 � O2o2

T

Sri

Xm
i�1

ri
o2

ni ÿ O2
; �28�

where ri is the number of spins (per unit magnetic cell) in the
ith NMR mode, and m is the number of these modes. This
equation provides a good description of all the known
experimental examples of the dynamic frequency pulling of
several NMR modes [30, 33 ± 37] and at i � 1 becomes the
Turov equation (27). It has one electron-like solution
O2

ej � o2
ej � o2

T and m nucleus-like solutions satisfying the
condition on iÿ1 < Oni < oni. Only the lower branch of the
NMR spectrum, Onm, is shifted considerably; for
onmo2

T=o
2
ej 4on1 ÿ onm this branch is described by an

equation close to the nuclear-like solution (27):

O2
nm � ~o2

n0

1

1� o2
T=o

2
ej

; �29�

where

~oÿ2n0 �
1

Sri

Xm
i�1

ri o
ÿ2
ni : �30�

Thus, to describe coupled electron±nuclear vibrations in
multisublattice antiferromagnets, one needs only a single
additional constant oT, which can easily be found from the
value of the temperature-dependent gap in the AFMR
spectrum. For CsMnBr3, it was found by Zaliznyak et al.
[31], and for CsMnI3, by Prozorova et al. [38]. Below, we will
show that a good description of the experimental NMR
spectra is provided by the theory of dynamic frequency
pulling with these constants.

The NMR technique in strong fields, which are discussed
in the sections that follow, also has its own special features.
To excite a spin-echo signal in an ordinary pulse spectro-
meter, the following condition must be met:

gnZrf ht �
p
2
;

where h is the amplitude of the hf field, t is the pulse length,
and Zrf � Hn=H is the gain. For ordinary t � 1 ms and
Zrf < 10, it is difficult to attain the required field amplitudes
h � 102 kOe. At the same time, the optimum condition for
observing continuous NMR,

gnZrf h
�����������
T1T2

p
� 1 ;

where T1 and T2 are the longitudinal and transverse
relaxation times, respectively, is satisfied at realistic field
strengths of 1 ± 10 Oe. Therefore, the experiments discussed
below were done with a continuous NMR spectrometer [39].

4.2 55Mn NMR in CsMnBr3
Experiments with CsMnBr3, RbMnBr3, and CsMnI3 were
done with single crystal samples grown by S V Petrov at the
Kapitza Institute of Physics Problems of the Russian
Academy of Sciences using the Bridgman method. The
samples were oriented along natural cleavage planes (binary
planes). To impede hydration, the samples were covered by a
protecting film of rubber cement and kept in a helium
atmosphere.

NMR measurements were made with a continuous
modulation spectrometer of the type described in Ref. [39]
with removable cavities in the frequency range 200 ± 500MHz
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and the temperature range 1.3 ± 4.2 K (basically, at
T � 1:3 K). A magnetic field up to 80 kOe was generated by
a small superconducting solenoid (with an inner diameter of
20 mm) and measured by a Hall probe. The probe was
calibrated by the NMR signal from hydrogen in a film of
the rubber cement protecting the sample. The nonuniformity
of the field on the sample, determined by the width of the 1H
NMR, was smaller than 10ÿ3. Due to the fairly strong
dependence of the 55Mn NMR frequencies on the magnetic
field, most of the measurements were made by turning the
magnetic field through resonance .

The 55Mn NMR signal in CsMnBr3 was observed for
H ? h ? C6. Usually it consisted of several lines of different
widths (Do � 0:5ÿ4 MHz) and intensities. The 55Mn NMR
spectrum at T � 1:3 K is displayed in Fig. 9 [35]. For
H < 63 kOe, three NMR branches are observed. These
branches correspond to the triangular magnetic structure of
CsMnBr3. In fields lower than 45 kOe all, these branches are
distorted due to the interaction with the Goldstone AFMR
mode [see equation (12)]. The solid lines in Fig. 9 correspond
to the unshifted NMR frequencies [calculations using equa-
tions (23) and (24)] with on0 � 416 MHz, and the dashed
curves correspond to the spectrum with allowance for
dynamic frequency pulling at oT � 6 GHz. Clearly, the
calculations provide a good description of the behavior of
the upper and lower branches of the spectrum up to the
reorientational transition. The position of the middle branch
in weak fields is close to the calculated one, but as the field
increases, the branch frequency increases anomalously. After
the transition to the collinear phase, the rate of this increase is
depressed. Above the transition, the position of the lower
branch is, on the average, close to the calculated one, but an
anomalous increase in the branch frequency is also evident.

The anomalies in the spectrum occur mainly in the range
of fields where the dynamic NMR frequency pulling for 55Mn
is negligible. The only possible explanation for these
anomalies is the increase in Hn�H�, which is different for
magnetically nonequivalent AF chains. The field dependence
of the hyperfine fields at the 55Mn nuclei in CsMnBr3 is
depicted in Fig. 10 [40]. In the next section, we will show that
the hyperfine field is unambiguously related to hSi. Thus,

suppression of spin reduction by a magnetic field is indeed
observed, but it is different for nonequivalent AF chains. The
value of the average spin of magnetic sublattices,
hSi � 1:80� 0:05, determined from the value
on0 � 416� 4 MHz and the hyperfine constant of Mn2+

[41] obtained from the data on EPR in isomorphic
CsMgBr3, correlates well with the neutron diffraction data
of Gaulin et al. [10] and the results of Zhitomirsky and
Zaliznyak's calculations [25]. The main contribution to the
error is provided by the inaccuracy inmeasuring the hyperfine
constant A.

Since for H > 40 kOe the corrections introduced by the
dynamic NMR frequency pulling are small, from the field
dependence of the upper and lower NMR branches one can
directly determine the angles between themagnetic sublattices
and the magnetic field. The fact that the measured and
calculated spectra coincide corroborates the validity of
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Figure 9. (a) 55Mn NMR spectrum of CsMnBr3 for H ? C6 at T � 1:3 K (�). (b) The same on a larger scale and the spectrum of the middle branch at
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Chubukov's predictions [7] concerning the field dependence
(7) of the angles of the triangle. Note that this experiment
yielded the first direct observation of field deformations of
triangular structures in this class of antiferromagnets.

4.3 55Mn NMR in CsMnI3
The 55Mn NMR spectrum of CsMnI3 takes on the simplest
form when H ? C6 (j � 90�). In this geometry, all the spins
of Mn2+ are perpendicular to the magnetic field, and the
unshifted NMR spectrum consists of two (with allowance for
hSAi 6� hSBi) degenerate branches. The strong frequency
pulling can be observed only in weak fields, since the
frequency of the Goldstone AFMR mode rapidly increases
with field strength, oe2 � ge

���
Z
p

H, and the oe3 mode in this
geometry lies fairly high (oe3 � const � 34 GHz) and inter-
acts only weakly with NMR.

When H ? C6, only one 55Mn NMR branch with strong
dynamic frequency pulling was observed. The spectrum of
this branch at T � 1:3 K is depicted in Fig. 11 [40]. It can be
assumed that, in this geometry, the gain of the hf field for the
other NMR branches is too small. Since in this case only one
nuclear mode interacts with only one electron mode, the
NMR spectrum is described by the Turov equation (27),
with the coupling frequency oT being determined in AFMR
measurements [38]. The only free parameter
onB�0� � 388 MHz can easily be determined from the slope
of the curve representing the field dependence of the NMR
frequency in weak fields.

The spectrum calculated by equation (27) is represented as
the dashed curve in Fig. 11. Clearly, the results of calculations
provide a good description of the experimental data for
magnetic fields up to 7 kOe, i.e., in the region where the
dynamic NMR frequency pulling plays an important role. In
stronger fields, the NMR frequency experiences a consider-
able increase. This growth is much larger than the quadratic
corrections to the unshifted NMR frequency (the solid curve
in Fig. 11) and is related to the field dependence of the
hyperfine field HnB�H�, i.e., to the suppression of spin
reduction by the magnetic field.

55Mn NMR in CsMnI3 for H ? C6 in magnetic fields up
to 10 kOe was observed independently by Kubo et al. [42],
who used the spin-echo method. They detected two 55Mn
NMR branches, which grew with the field. The spectrum of
one of these branches (On1 � 200 ± 380MHz) was found to be
in good agreement with the data of Borovik-Romanov et al.
[40]. We did not, however, detect the second NMR branch
with frequencies�2On1�H�. This branch appears to be rather
strange; e.g., it corresponds to an anomalously large mean
spin of Mn2+ hSi � 3:1. We believe that Kubo et al. [42]
observed only one NMR branch excited both at the natural
frequency and at double frequencies. For instance, in
MnCO3, which also exhibits a dynamic NMR frequency
pulling, spin-echo at 55Mn was observed in the event of
excitation by two pulses with a frequency 2On. The echo
signal was also registered at 2On [43].

Much richer is the 55Mn NMR spectrum of CsMnI3
measured at small angles between the external field and the
C6 axis. At such angles, all six possible NMR modes
corresponding to the six spins of Mn2+ in the unit cell are
observed. The spectrum of five of these modes is shown in
Fig. 12 for H jjC6 [36] (in this geometry, the frequency of the
sixthmode is zero, but it is observedwhenH deviates from the
C6 axis). The spectrum is fairly complex, but themain features
of the magnetic structure of CsMnI3 are clearly visible. For
instance, as H! 0, the modes with the strong field depen-
dence converge to on1 � 417 MHz and those with the weak
field dependence to on2 � 388 MHz. Thus, nonequivalent
AF chains really have different hSi. For H < 39 kOe, the
experimental data are in good agreement with the calculated
spectra for the low-field phase (the solid curves in Fig. 12).
The NMR frequencies are used to determine the mean spins
of AF chains: hSA�0�i � 1:86� 0:1 and hSB�0�i � 1:74� 0:1.
Here, we only give the error caused by the inaccuracy of
determining the NMR frequency. The uncertainty in the
value of the hyperfine constant amounts to 4% [41]. The
NMR results correlate well with the neutron diffraction data
hS�0�i � 1:8 [45, 46].

Above 52.5 kOe, only one NMR mode is observed. This
means that all the spins ofMn2+ are equal and are positioned
equivalently with respect to the external magnetic field, i.e.,
the well-known high-field phase is realized in such fields. The
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position of the transition coincides with that given by the data
extracted from static measurements (see Fig. 4). The
transformation of NMR spectra reflects the characteristic
features of a spin-flop transition: a sudden transformation
into a single branch, the presence at Hsf of absorption with a
width of roughly 0.2 kOe within a broad frequency range (the
nearly vertical branch in Fig. 12), and the existence of a
singularity only for small angles j < 1�. This means that the
rotation of the spin plane to a position perpendicular to the
external field is sudden.

At HC � 39 kOe, all NMR branches undergo a drastic
transformation, which means that there is a phase transition
into a new magnetic phase. The transition is retained even
when the field makes an angle with the C6 axis of up to 15�.
Some of the features of the spectrum (the divergence of three
upperNMRmodes aboveHC, and rapid softening nearHC of
the NMR mode related to oe3) indicate that, at HC, a
reorientation of the spins within the spin plane occurs. Only
two symmetric orientations of the spin triangles are possible
here: one of the sides is parallel to the C6 axis (the low-field
phase of CsMnI3), or one of the bisectors is parallel to this
axis (similarly to CsMnBr3). Both phases are schematically
depicted in Fig. 13. A detailed calculation of the NMR
spectra (the solid curves in Fig. 12) based on the magnetic
structure of phase 3 shows that the phase is indeed realized for
39 kOe< H < 52:5 kOe. This is corroborated by studies of
55Mn NMR spectra when the field deviates from the C6 axis
[36]. Themeasured transition fieldsHC are shown in the phase
diagram of CsMnI3 (Fig. 4).

Prior to the 55MnNMR studies, no phase 3was observed,
since the magnetization of CsMnI3 atHC has no singularities
and the AFMR mode oe3 in this phase has very low
frequencies and thus are inconvenient for observation.
Neither is there any neutron scattering data in this range of
fields.

Although the results of calculations of the dynamic NMR
frequency pulling provide a fairly good description of the
experimental spectra, their accuracy is insufficient for
exposing the fine details of the magnetic structure. To this
end it is more convenient to measure the unshifted NMR
modes directly. In CsMnI3, these modes are realized when the
field deviates from the C6 axis. Here, the frequency of the
AFMR mode oe2 rapidly increases [equations (14) and (15)],
and for the related NMR modes the dynamic frequency
pulling becomes unimportant in relatively weak magnetic
fields. Under these conditions, from the NMR spectra one
can directly determine (without additional constants) the
values of the hyperfine fields and the angles between the
magnetic sublattices. For instance, in phase 3 the unshifted
NMR spectrum consists of three twofold degenerate
branches whose frequencies in the linear approximation in

H=Hn are expressed by the equations (the notation C and D
correspond to Fig. 13)

o�ÿD
gn
� HnD �H cos a sin�cÿ j� ; oC

gn
� HnC ; �31�

where 2a is the angle between the directions of the spins of
neighboring AF chains D, and c is the angle between the
normal to the spin plane and the external field.

In phase 3 atj � 7�, we haveo2
e2 4o2

T, and for the NMR
branches interacting with this mode the dynamic frequency
shift is negligible. From the spectra of these branches, we can
determine the hyperfine fields HnC � oC=gn and
HnD � �o�D � oÿD�=2gn and the angles between the spins SD

and the field:

cos a sin�cÿ j� � o�D ÿ oÿD
2gnH

: �32�

In phase 3 the difference between the angles of the spin
triangle and 60� is small; as a result, c�H� can be calculated
using (32). This dependence is displayed in Fig. 14 [47]. The
values of hS�H�i calculated from those of the hyperfine fields
are shown in Fig. 15 [47].

TheNMR spectra at large angles between the field and the
C6 axis are used in a similar way to determine the hyperfine

H
SA

SBSB

C6

Y

H

SC

SD

SD

C6

a H
C6

90�

1.H5HC 3.HC 5H5Hsf 2.H4Hsf

Figure 13.Low-temperature magnetic phases (1 ± 3) of CsMnI3 forH jjC6.

80

60

40

20

0

c, grad

20 30 40 50 60 H, kOe

Figure 14. Field dependence of the angle between the normal to the spin

plane and the C6 axis in CsMnI3 at j � 7� [47]. The solid curve represents

the results of calculations using equation (10).

1.8

hSi

1.7

0 20 40 60
H, kOe

80

HC Hsf

j � 0�

j � 7�

j � 20�

j � 90�

Figure 15. Field dependence of the mean spins in CsMnI3 for different

orientations of the magnetic field [47] (H and D correspond to hSBi�).

374 B S Dumesh Physics ±Uspekhi 43 (4)



fields and the angles between the spins in the low-field phase
1. For instance, Fig. 16 shows the field-induced deformation
of the spin triangle in the low-field phase obtained from the
NMR spectra at j � 20�. The field dependence of the mean
spins of the magnetic sublattices found in these experiments is
analyzed in the next section.

4.4 55Mn NMR in RbMnBr3
55MnNMR inRbMnBr3 was studied within the same cycle of
investigations. In its structural and magnetic properties, this
substance is a distorted analog of CsMnBr3. At room
temperature, the structure of RbMnBr3 is described by the
same symmetry group D4

6h. However, at roughly 150 K,
orthorhombic distortions arise [48] that greatly affect the
magnetic properties of this substance.

The magnetic properties of RbMnBr3 have been studied
in much detail by the elastic [49] and inelastic [49, 50] neutron
scattering methods, by measuring the static magnetization
[51], and by the antiferromagnetic resonance method [52].
Below TN � 8:5 K, the spins in the chains become ordered
antiferromagnetically and align themselves along the basal
plane in the same way as in CsMnBr3. However, the mutual
orientation of the chains is much more complicated. In weak
magnetic fields, a magnetic structure that is incommensurate
with the crystal lattice appears in this substance, with the
angle of rotation of the neighboring spins in the basal plane
depending on the magnetic field.

At H � 30 kOe (we consider the case where H ? eC6)3, a
first-order phase transition to a commensurate triangular
magnetic structure occurs (a characteristic feature of this
transition is hysteresis). As the field is further increased, a
second-order phase transition to a collinear structure similar
to the high-field phase of CsMnBr3 occurs atHC2 � 41 kOe.

Experiments on 55MnNMR inRbMnBr3 were carried out
by the same method as in CsMnBr3 and CsMnI3. In all the
experiments, the dc and hf magnetic fields were in the basal
plane of the sample and were mutually perpendicular.

The 55Mn NMR signal was observed only in the
commensurate phases of RbMnBr3 in a frequency range of
350 ± 450 MHz and in magnetic fields of 30 ± 80 kOe at

T � 1:3ÿ4:2 K. It can be assumed that in the incommensu-
rate phase of RbMnBr3 there is no amplification of the NMR
signal and there is not enough sensitivity to detect the signal.
The 55MnNMR spectrum forH ? eC6 is shown in Fig. 17 [32]
and is easily reproducible from sample to sample. No
anisotropy in the basal plane is observed. Neither is there a
dynamic NMR frequency pulling; this is quite natural, since
the effect of theGoldstoneAFMRmode in fieldsH > 30 kOe
is small. The solid curves in Fig. 17 represent the unshifted
NMR spectrum calculated using equations (23) and (24).

Both phase transitions clearly manifest themselves in the
NMR spectrum: the first, in the form of absorption
(accompanied by hysteresis) over a broad range of frequen-
cies near 30 kOe (in the hysteresis region, the centers of the
absorption lines for the direct and reverse courses of the field
are denoted by circles and squares, respectively), and the
second, similarly to that in CsMnBr3, via the merging of the
upper and lower NMR branches. Generally, above HC1 the
spectrum is qualitatively similar to that of CsMnBr3. Indeed,
in the triangular phase, three NMR branches are observed,
with the middle branch being very strongly dependent on the
magnetic field. As a result, only two branches remain in the
collinear phase, with the frequency of the lower branch
increasing with the field much more rapidly than that of the
upper branch. In RbMnBr3, this effect is much more evident,
since the range of magnetic fields in which measurements can
be carried out is much broader (with respect toHC2). The field
behavior of the hyperfine fields at 55Mn nuclei in the collinear
phase of RbMnBr3 is depicted in Fig. 10. The NMR
frequency in a zero field is on�0� � 422� 8 MHz. The
resulting mean spin with allowance for the hyperfine con-
stant of RbMnBr3 determined by Kirklin and McPherson
[53], hS�0�i � 1:8� 0:1, coincides with the neutron diffrac-
tion data presented by Glinka et al. [49].

Thus, hS�0�i � 1:8 in all the substances that were studied,
which demonstrates the strong reduction of the spins of
Mn2+ and correlates well with neutron diffraction data. All
the substances exhibit a substantial increase in the hyperfine
fields (mean spins) in a magnetic field and a difference in the
values of these spins in magnetically nonequivalent AF
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chains. Moreover, a new magnetic phase has been discovered
in CsMnI3. We will show below that this phase exists because
of the difference in the mean spins. In the next section, we will
analyze the field dependence of the hyperfine fields (mean
spins).

5. Spin reduction in Mn2+ and its suppression
by a magnetic field in quasi-one-dimensional
triangular antiferromagnets

Before we discuss the results of measurements of mean spins,
let us study in greater detail the nature of the hyperfine
constant of the Mn2+ ion and estimate the related uncertain-
ties. Here, we will follow Ref. [54].

The main contribution to the hyperfine interaction in 3d
ions is provided by core polarization, Hp � AphSi, with the
constant Ap negative [55]. The constant depends on the
chemical environment of the ion, but for the same number
and type of ligands the effect of the local symmetry and of the
distance to the ligands is small. For instance, Ogawa [56]
studied EPR at Mn2+ in many nonmagnetic fluorine
compounds (coordination number six) and found that a
change in the atomic separation by 10% induces a change in
the hyperfine constant by only 2%.

The contribution of the orbital interaction to the
hyperfine field was calculated by Abragam and Pryce [57]:

HnL � 2mB

�
1

r3

�
DgL � �125

�
1

r3

�
a:u:

DgL : �33�

Here HnL is measured in kOe, h1=r3i is the mean reciprocal
cube of the ion radius, and DgL � gÿ 2 is the orbital
contribution to the g factor. The advantage of using Mn2+

ions is that Dg is small in such ions (Dg � 0:004 for CsMnBr3
and RbMnBr3, and Dg � 0:008 for CsMnI3 [41, 53]). Hence,
for these substances the orbital part of the hyperfine
interaction (i.e., the part that depends on orientation)
amounts to less than 1%.

The contribution to the hyperfine field from the surround-
ing magnetic ions [58, 59] is due to a transfer of the polarized
spin density, i.e., it is of the same nature as the exchange
interaction. For quasi-one-dimensional antiferromagnets, it
is natural to divide it into two parts: the contribution from the
neighbors within a chain,Hn tr, and the contribution from the
neighbors in the plane, H 0n; tr. Here, H 0n; tr � Hn; tr j

0=j, i.e., is
insignificant. The partHn; tr is proportional to the number of
nearest neighbors and, consequently, is three times smaller
than the estimate made by Taylor and Owen [58] and Huang
et al. [59]; it amounts to Hn; tr 4 1:5%. This part and the
inaccuracy of EPR measurements of the hyperfine constant
constitute the main source of the absolute error in determin-
ing the mean spins of the Mn2+ ions.

Now, we turn to the results of NMR experiments. First,
we note that in CsMnBr3 and RbMnBr3 an increase in Hn is
observed only for sublattices that are perpendicular to the
magnetic field of the sublattices. Here, their position does not
change in relation to the crystallographic axes and, hence, is
independent of changes in AL. The same is true of the field
dependence of HnB in CsMnI3 for H ? C6. In general, the
contribution to Hn�H� can initiate a change in Ap related to
magnetostriction. However, the magnetostriction in triangu-
lar antiferromagnets, measured in CsNiCl3 by Raine et al.
[60], is small (Dl=l � 10ÿ5), so that the field dependence of An

is negligible. Hence, the relative error in determining hS�H�i

for CsMnBr3 and RbMnBr3 amounts to approximately three
parts in a thousand (the accuracy of determining the centers
of the NMR lines).

The situation with CsMnI3 is somewhat more compli-
cated, since in this substance the directions of the magnetic
sublattices in relation to the crystallographic axes change and
the anisotropy of AL is, generally, not small. Moreover, in
some cases the information is extracted from NMR spectra
deformed by the interaction, which affects the accuracy of
determining Hn. For this substance, the relative error in
determining hSii is approximately one part in a hundred,
which is also much smaller than the observed effects.

Thermal fluctuations of the spins also contribute to hSi.
However, at T � 1:3 K they are small. For instance, from the
data on the temperature dependence of Hn in CsMnBr3 it
follows that hS�0�i ÿ hS�1:3 K�i4 0:01hS�0�i [35]. More-
over, temperature fluctuations freeze out if �hoe�H� > kT,
i.e., in moderate magnetic fields. Figure 9b shows the field
dependence of the frequencies of the middle 55Mn NMR
branch in CsMnBr3 at T � 1:3 and 3 K. Clearly, the
temperature addition, which is important in low fields,
becomes insignificant when H > 60 kOe. Table 1 lists the
values of hS�0�i obtained from 55Mn NMR, from neutron
diffraction data, and from theoretical calculations. Clearly,
the results for RbMnBr3 and CsMnI3 are in good agreement
with the neutron diffraction data (bearing in mind that the
latter do not distinguish between hSAi and hSBi in CsMnI3).
For CsMnBr3, the difference is significant, but one must take
into account that the neutron diffraction measurements were
made at a high temperature,T5 4:2 K. The spin reduction of
Mn2+ in CsMnBr3 measured by NMR is in good agreement
with the results of Zhitomirsky and Zaliznyak's calculations
[25].

A new effect, predicted by Watabe et al. [26], has been
detected in CsMnI3: the difference in reduction for magneti-
cally nonequivalent spins of Mn2+. The order of the
difference is hSAi ÿ hSBi � 0:12, which is close to the
calculated value (0.2) but of the opposite sign. We believe
that this difference is due to the highly overvalued ratio of
anisotropy to interchain exchange,D=j 0 � 2, used byWatabe
et al. [26], while the experimental data on CsMnI3 yield
D=j 0 � 0:6 (see below). As noted in Section 3.2, the
difference hSAi ÿ hSBi is extremely sensitive to this ratio and
changes sign near the critical value D=j 0 � 3 (i.e., critical for
the transition to the collinear phase). Thus, the experiment
has demonstrated the difference (predicted in Ref. [26]) in
spin reduction in magnetically nonequivalent AF chains of
Mn2+ in CsMnI3. A quantitative comparison would require a
calculation with a realistic value of D=j 0 4.

Table 1.

Antiferromagnet hS�0�i

Neutron
diffraction

NMR Theory

CsMnBr3
RbMnBr3
CsMnI3

1.65 [9]
1.8 [49]
1.85 [45]

1.8 [40]
1.8 [40]
1.74; 1.86 [33]

1.82 [25]

2; 1.8 [26]

4 When the present article was being reviewed, I received a letter [61] that

contained the results of spin reduction calculations for D=j 0 � 1:

hSAi � 1:95 and hSBi � 1:80, which is in good agreement with the present

data.
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In their work (initiated by the NMR results), Marchenko
and Tikhonov [62] used the theory of exchange symmetry of
magnetic materials [19] and obtained the relationships linking
the values of the mean spins of Mn2+ for CsMnI3 in phases 1
and 3:

phase 1 : SA � S�1� D� ; SB � S

�
1ÿ D

2

�
;

phase 3 : SD � S

�
1� D

2

�
; SC � S�1ÿ D� ; �34�

where �3=2�D is the relative difference of spins at H � 0. The
experiment yields SA � 1:86� 0:01, SB � 1:74� 0:01,
SD � 1:81� 0:02, and SC � 1:70� 0:03 5. (Here, we give
only the error introduced by the inaccuracy of determining
Hn.) Clearly, these results are in satisfactory agreement with
(24).

Figure 10 shows (in relative units) the field dependence
hS�H�i for all the triangular antiferromagnets studied by
55Mn NMR with H ? C6. To make comparison easier, the
magnetic field is normalized to the field of the reorientational
phase transition (for CsMnBr3 and RbMnBr3,HC is the field
of transition to the collinear phase, and for CsMnI3,Hsf is the
spin-flop transition field).

Clearly, for the easy-plane antiferromagnets CsMnBr3
and RbMnBr3, the field behavior of hSi is similar: the
splittings are of the same order and the slopes of the hS�H�i
curves in the collinear phase are close in value, with the slope
of the lower branches much larger than that of the upper
branches. The observed minimumHn in the vicinity ofHC for
the lower branches is probably related to the inaccuracy of the
model description of the NMR spectrum near the phase
transition. The value of the splitting in the collinear phase is
of the order of the difference hSAi ÿ hSBi for CsMnI3. The
increase in hSBi for CsMnI3 is close to linear, and the slope is
close to that of the upper branches in the collinear phase of
CsMnBr3 and RbMnBr3.

Quantitative comparison of the experimental results with
the theory of suppression of quantum fluctuations by a
magnetic field is hindered by the absence of calculations for
the experimental situation. As far as we know, paper [26] by
Watabe et al. is the only one where the possibility of different
spin reductions is considered for crystallographically equiva-
lent positions of the magnetic ions. Zhitomirsky and
Zaliznyak [25] calculated hS�H�i for CsMnBr3 [equation
(20)], but only for H jjC6 (the dashed curve in Fig. 10). In
this geometry, all spins ofMn2+ are equivalent and there is no
splitting. Below, we will show that this calculation corre-
sponds to a lower bound on the observed effects. Never-
theless, it yields a correct order of magnitude for dhS�H�i. In
the class of easy-axis triangular antiferromagnets, the calcula-
tion for H ? C6 was done by Ohyama and Shiba [24] for
CsNiCl3. They assumed that at H � 0 the reduction of all
spins is the same. Their results are shown in normalized form
hS�H=Hsf�i=hS�0�i by a solid curve in Fig. 10. Allowing for
the fact that the results of the calculations depend on three
constants (j; j 0; D), while Hsf depends only on two constants
(j; D), we can state that the calculation and experimental
results for hSB�H�i in CsMnI3 are in good agreement.

The qualitative picture of the observed splitting can be
obtained from the linear spin-reduction theory. Indeed, a
significant contribution to integral (4) is provided by the
regions near the bottom of the spin-wave band, i.e., spin
waves with small k's and frequencies close to AFMR. In easy-
plane antiferromagnets withH ? C6, there are two poles: one
at H � 0, where the Goldstone AFMR mode gap vanishes,
and the other at H � HC, where the frequency of the
respiratory AFMR branch vanishes. When a magnetic field
is applied, the frequency of the Goldstone branch increases in
proportion toH 3, which leads to a substantial increase in hSi.
However, at the same time, for AF chains of Mn2+ that are
directed obliquely to the field the value of hSi decreases, in
view of which the frequency of the respiratory mode drops6.

One can assume that these contributions are of the same
order. Hence, in the triangular phase of easy-plane antiferro-
magnets there is a rapid increase of hS�H�i for AF chains
perpendicular to the field, while the hS�H�i for obliquely
directed chains is nearly constant. Above HC, the increase in
hS�H�i for the first type of chain is depressed, since oe1 / H
in the collinear phase, while for the second type of chain,
hS�H�i increases rapidly, since the frequency of the respira-
tory mode grows rapidly. As noted earlier, the slope of
hSB�H�i for CsMnI3 and that of hS�H�i in the collinear
phase of CsMnBr3 and RbMnBr3 are close in value. This is
quite natural, since in high fields for all three substances the
gap in the spin-wave spectrum is o�k � 0� � geH.

For H jjC6 in CsMnBr3, we have oe1�H� � 0, with the
result that the increase in hS�H�i is related only to the field
dependence of the upper AFMR branches, whose contribu-
tion to integral (4) is substantially smaller. Hence, Zhito-
mirsky and Zaliznyak's result [25] can be considered the lower
bound of our hS�H�i dependence.

The mean spins of the Mn2+ ions in different positions in
CsMnI3 and their field dependence for different angles
between the field and the C6 axis are shown in Fig. 15. At
j � 0�, the field dependence of hSi in phases 1 and 3 is weak
and does not exceed experimental accuracy. Here, only the
field dependence of hSi in the spin-flop phase is appreciable.
At j � 7�, hSD�H�i is only weakly field-dependent, while
hSC�H�i is strongly dependent. This situation resembles the
case of easy-plane triangular antiferromagnets with a strong
field dependence of the spins that are perpendicular to the
field. In strong fields the hSi for small j practically coincide.
Moreover, Fig. 15 depicts the hSB�H�i calculated from
unshifted NMR spectra at j � 20� and j � 90�. Note that
all the hS�H�i converge in high fields.

These results can be explained qualitatively on the basis of
the field behavior of the low-lying AFMRmodes oe2 and oe3

in CsMnI3 and their effect on integral (4). For j� 0 and
H < Hsf, we have oe2 � 0, while oe3 in low fields is weakly
dependent on H. Hence, in phase 1 both hSAi and hSBi
remain practically unchanged up to the vicinity of HC. The
field behavior of hSBi at j � 20� and j � 90� (phase 1) is
related to the increase in oe2.

The slower increase of hSBi in weak fields at j � 20� in
comparison to that at j � 90� is due to the weaker field
dependence of oe2 [equations (14) and (15)]. However, as we
approach Hsf, the increase of oe2 at j � 20� becomes more
rapid, and for H4Hsf its anisotropy tends to zero. Accord-

5 An unfortunate mistake was made in Ref. [36] in the calculation of the

mean spins for phase 3: the hyperfine fields (given in that paper) were

unnecessarily divided once again by gn, with the result that the values of

hSCi and hSDi proved to be smaller than the correct values by a factor of

1.06.

6 An experiment that showed that the only sublattices that participate in

the respiratorymode are those directed obliquely to the field is discussed in

Ref. [37].
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ingly, in high fields the anisotropy of the mean spins ofMn2+

decreases.
Thus, the main features of the field dependence of the

mean spins in CsMnI3 can be explained qualitatively.Wemay
hope that microscopic calculations will yield quantitative
agreement with the experimental data.

6. The nature of the intermediate magnetic
phase in CsMnI3

What is left to explain is the appearance of the new phase 3 in
CsMnI3. Note that theoreticians [63 ± 65] have constructed
various models of the intermediate phase in easy-axis
triangular antiferromagnets. However, such phases are
related to the reorientation of the spin plane in relation to
the crystallographic axes, while the new phase differs from the
low-field phase 1 by the reorientation of spin triangles within
the spin plane.

Marchenko and Tikhonov [66] used the theory of
exchange symmetry to show that the difference in the
energies of phases 1 and 3 is determined by the same sixth-
order relativistic invariant as the spectrum of the AFMR
mode oe3 [equations (17) and (18)], so that

e1 ÿ e3 � 2F�H� � 2�b1 � b2H
2 � b3H

4 � b4H
6� :

AtH � Hsf, all the terms in the sum are of the same order and
the energy difference may change sign. Thus, the emergence
of phase 3 agrees with the theory of the exchange symmetry of
magnetic materials, but it remains to be seen whether such a
phase appears in the phase diagram. However, we can
calculate the energy of the spin chains with configurations of
phases 1 and 3 with allowance for two exchanges and
anisotropy, so that bi can be expressed in terms of micro-
scopic constants. A calculation done by Abarzhi et al. [13] has
shown that the difference in the energies of these phases
vanishes at H � Hsf [equation (19)]. Their calculation,
however, did not account for the difference in the mean
spins of nonequivalent AF chains discovered in CsMnI3. As
shown in Ref. [44], allowance for this difference leads to the
emergence of phase 3.

As in Ref. [13], the magnetic energy is written in the form
of a sum of energies of neighboring AF chains:

e � ÿ2j
X
Axis

SiSj ÿ 2j 0
X
Plane

SiSj cos bij

ÿD
X
i

S 2
i cos

2 bi ÿ
H 2

48j

X
i

sin2 gi ; �35�

where bij are the angles between the directions of the ith and
jth spins, bi are the angles between the ith spin and theC6 axis,
and gi are the angles between the ith spin and the external
field. If we use equation (34) to calculate the values of the
mean spins, then forH jjC6 the above expression becomes

e1 � ÿ3jS 2

�
1� D2

2

�
ÿ 2j 0S 2

�
1ÿ D

2

�
�
�
2�1� D� cosYÿ

�
1ÿ D

2

�
cos 2Y

�
ÿH 2

48j
2 sin2 YÿDS 2

3

�
�1� D�2 � 2

�
1ÿ D

2

�2

cos2 Y
�
;

�36�

e3 � ÿ3jS 2

�
1� D2

2

�
ÿ 2j 0S 2

�
1� D

2

�
�
�
2�1ÿ D� sin a�

�
1� D

2

�
cos 2a

�
ÿH 2

48j
�1� 2 sin2 a� ÿ 2DS2

3

�
1� D

2

�2

cos2 a : �37�

We derive the energy minimum condition with respect to
the angles Y and a between the spins and the C6 axis (in the
notation of Fig. 13) in the first order in D:

cosY �
�
1� 3

2
D
��

2ÿ D

3j 0

�
1ÿH 2

H 2
sf

��ÿ1
; �38�

sin a �
�
1ÿ 3

2
D
��

2� D

3j 0

�
1ÿH 2

H 2
sf

��ÿ1
: �39�

At D � 0, equation (38) becomes the well-known expres-
sion (9) for the angles of the spin triangle; at D=j 0 � 0, these
results coincide with the results of Marchenko and Tikho-
nov's calculations [62].

Substituting the expressions for the angles into (36) and
(37), we find the difference in the energies of phases 1 and 3,
which after being normalized to DS2 depends on three
parameters: D=j 0, D, and H=Hsf. The analytical expressions
are extremely cumbersome, so that here we give only the
equation for b1 [see equations (18) and (19)] and the result of
numerical calculations of the function proper:

e1�0� ÿ e3�0� � 2b1 � ÿ D3S 2

108j 02

�
1� 54

D2j 02

D
� 12

Dj 0

D

�
at

D

j 0
4 1 : �40�

Figure 18a shows the difference e1 ÿ e3 at D=j 0 � 0:6 and
D � 0:045. Clearly, the difference changes sign at
HC � 0:72Hsf, i.e., the transition to phase 3 occurs suffi-
ciently far from Hsf. Figure 18b displays the dependence
HC1�D� at D=j 0 � 0:6. As D decreases, HC tends to Hsf. This
means that phase 3 can exist only if the mean spins in the
neighboring AF chains are different.

More precisely, the condition for the phase transition is
the disappearance of the energy barrier between the phases.

0.002

0

ÿ0.002

ÿ0.004

ÿ0.006

ÿ0.008

e1 ÿ e3
DS2

H=Hsf

0 0.5 1.0

a HC

Hsf

0 0.05
D

0.10

1.0

0.9

0.8

0.7

0.6

b

Figure 18. (a) Difference in energies of the first and third phases of CsMnI3
as a function of themagnetic field, and (b) field of transition to phase 3 as a

function of the difference of mean spins of nonequivalent AF chains [44].
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But since in CsMnI3 o2
e3 / F�H� � �e1 ÿ e3�=2, the fact that

the energies are equal implies that there is no energy barrier.
To compare these results with the experimental data, one

needs to know D=j 0. Until now, the various experiments
yielded different values of this ratio. Harrison et al. [46]
determined D and j 0 directly from spin-wave spectra:
D=j 0 � 0:5. Another approach amounts to measuring the
ratio of the gaps of the AFMR modes: oe1=oe3 /

�����
b1
p

.
Using equation (40) to find b1, we obtain D=j 0 � 0:6. This
magnitude coincides with the inelastic neutron scattering data
ofHarrison et al. [46] to within the accuracy of the data and is,
we believe, the most meaningful.

The same parameter determines the angles between the
spins of neighboring AF chains, which, according to neutron
diffraction data, is Y�0� � 51� � 1� [45, 46]. However, in the
calculations of the neutron scattering intensities, the aniso-
tropy of the spins of Mn in the AF chains was ignored. It can
easily be shown that allowance for this anisotropy increases
the angle by

d sinY
sinY

� DS
S
;

i.e., the correct value is equal to Y�0� � 52�ÿ54�, which is
close to the 55Mn NMR data.

The field behavior of the angleY between the spins in the
low-field phase at D=j 0 � 0:6 and D � 0:045 is depicted in
Fig. 16. Clearly, the result is in good agreement with the
experimental data. For the same values of the parameters, we
obtain HC � 37:8 kOe, which is in good agreement with the
experimental valueHC � 39 kOe.

Consequently, the allowance for the anisotropy of spin
reduction in Mn makes it possible not only to explain the
emergence of the intermediate magnetic phase 3, but also
removes the well-known contradictions [13] in calculations
that are based on the model Hamiltonian (6).

Within this model, one can calculate the dependence of
HC1 on the angle j between the external field and theC6 axis.
To this end, in equation (35) one takes into account the
dependence of the angles bi and gi on j and c (the angle
between the normal to the spin plane and the C6 axis). This
changes the last two terms on the right-hand sides of
equations (36) and (37), so that they become

e1 � . . .ÿH 2

48j

n
cos2�cÿ j� � 2

�
1ÿ sin2�cÿ j� cos2 Y�o

ÿDS2

3

�
�1� D�2 sin2 c� 2

�
1ÿ D

2

�2

cos2 Y sin2 c
�
; �41�

e3 � . . .ÿH 2

48j

�
3ÿ 2 sin2�cÿ j� cos2 a�

ÿ 2DS 2

3

�
1� D

2

�2

cos2 a sin2 c : �42�

Then e1 and e3 areminimizedwith respect to this angle and
the results are compared. Figure 19 shows the results of the
calculations and the results of measurements. The experi-
mental dependence HC�j� is somewhat steeper, and at
j � 20� there is no transition to phase 3, but qualitatively
the results coincide. Note that the resulting field dependence
c�H� for both phases is close to that calculated by Abarzhi et
al. [13] [equation (10)] and agrees well with the data of the
NMR experiment (see Fig. 14).

Thus, allowance for the anisotropy of mean-spin reduc-
tion makes it possible to describe the set of the low-
temperature magnetic properties of CsMnI3. We can assume
that this approach can be applied to other easy-axis triangular
antiferromagnets

The intermediate phase 3, discovered in CsMnI3 in fields
applied at small angles to the C6 axis, exists due to the
anisotropy of the mean spins of nonequivalent AF chains.
This anisotropy is a consequence of the anisotropy of the
quantum fluctuations in quasi-one-dimensional six-sublattice
antiferromagnets. Until now, only two cases of magnetically
ordered structures whose existence is due to quantum
fluctuations were known: the high-field phase in CsCuCl3
forH jjC6 [67, 68] and the `stripe' phase in CaV3O7 [69, 70]. In
contrast to these substances, CsMnI3 is a very simple
compound with a perfect hexagonal structure. The emer-
gence of a new magnetic phase due to the effect of the
anisotropy of quantum fluctuations has been observed for
the first time. Possibly, there exists an analogy between our
results and Chubukov's model for two-dimensional antifer-
romagnetic structures [71], where the intermediate phase
acquires a finite (in the magnetic field) region of existence
owing to the effect of quantum fluctuations.

7. Conclusions

Quantum fluctuations have a drastic effect on the magnetic
properties of quasi-one-dimensional triangular antiferromag-
nets, including the initiation of new phase transitions without
disrupting themagnetic order. The behavior ofmagnetization
in a magnetic field agrees semiquantitatively, and that of the
mean spins of the sublattices agrees qualitatively, with the
spin-wave theory of quantum fluctuations. A detailed
comparison requires microscopic calculations of the suppres-
sion of spin reduction by the field in situations close to the
experimental one. Our hope is that theoreticians will be
interested in the fairly detailed results presented in this review
that concern the field dependence of the mean spins and their
anisotropy in magnetically nonequivalent AF chains.

The field for further experiments is broad. For instance, it
is important to study the magnetic phase diagram of CsMnI3
at higher temperatures. If phase 3 exists up to themulticritical
point, the entire concept of the latter may change. It would
also be interesting to search for this phase in other easy-axis
triangular antiferromagnets, in particular in CsNiBr3, where
D=j 0 is fairly large. Continuing the experiments on the field
dependence of mean spins in stronger magnetic fields would
also be useful. In particular, it would be interesting to see
whether the anisotropy of spin reduction for H ? C6 is

20

j, deg

10

0

0.9 1.0 1.1 1.2
HC=HC�0�

1.3

Figure 19. Field of transition to phase 3 as a function of the angle between

the field and the C6 axis [44]. The circles represent the results of the

experiment described in Ref. [36].
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retained up to exchange fields. Such investigations are
important for both easy-plane and easy-axis triangular
antiferromagnets.

I dedicate this review to the memory of A S Borovik-
Romanov, who initiated and guided many investigations
covered in the review. Paper [35] was the last written by
Borovik-Romanov. I am deeply grateful to A F Andreev for
the opportunity to carry out the present research at the
Kapitza Institute of Physic Problems of the Russian Acad-
emy of Sciences, to A M Tikhonov with whom I carried out
the 55Mn NMR experiments, to S V Petrov for preparing the
samples, and to V A Panfilov for the help in preparing the
manuscript. The work was supported in part by the Russian
Foundation for Basic Research, project 97-02-16795.
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