УСПЕХИ ФИЗИЧЕСКИХ НАУК

МЕТОДИЧЕСКИЕ ЗАМЕТКИ

О проявлении пиромагнитного эффекта в ферримагнетиках со "слабой" подрешеткой

К.П. Белов

Из рассмотрения особенностей температурных зависимостей остаточной и спонтанной намагниченностей в ферритах со "слабой" подрешеткой следует вывод о том, что в них проявляется магнитный аналог пироэлектрического эффекта — пиромагнитный эффект, возрастание намагниченности при охлаждении образца феррита в отсутствие внешнего магнитного поля. Подтверждением этого является наблюдаемое в данных ферритах термодинамически обратное явление — линейный магнитокалорический эффект. Возникновение указанных эффектов обязано существованию в ферримагнетиках со "слабой" подрешеткой однонаправленной обменной анизотропии.

PACS numbers: 75.50.-y, 75.50.Gg, 75.80.+q, 75.90.+w

Содержание

- 1. Введение (447).
- К 40-летию открытия А.С. Боровиком-Романовым пьезомагнитного эффекта и термодинамически обратного ему явления линейной магнитострикции (447).
- Термодинамическая взаимосвязь эффектов парапроцесса в ферримагнетиках со "слабой" подрешеткой (448).
- Проявления линейного магнитокалорического и пиромагнитного эффектов в феррите - гранате гадолиния (449).
- Непосредственное наблюдение пиромагнитного эффекта в феррите-гранате гадолиния (451).
- 6. Заключение (453).

Список литературы (454).

1. Введение

В 30-е годы XX столетия, когда начались интенсивные исследования сегнетоэлектриков, считалось, что они являются аналогами ферромагнетиков. (За рубежом их до сих пор называют ферроэлектриками.) В последующем выяснилось, что в сегнетоэлектриках существуют явления, которых нет в магнитоупорядоченных веществах (ферро-, ферри- и антиферромагнетиках). К ним принадлежат такие эффекты, как пьезоэлектрический и пироэлектрический. Однако в конце 50-х годов это утверждение оказалось неверным в связи с открытием Боровиком-Романовым [1] пьезомагнитного эффекта в антиферромагнитных кристаллах, обладающих определенными симметрийными особенностями.

К.П. Белов. Московский государственный университет им. М.В. Ломоносова, физический факультет, 119899 Москва, Воробьевы горы, Российская Федерация Тел. (095) 939-30-39

Статья поступила 19 января 2000 г.

В недавней работе автора настоящей статьи [2] из анализа экспериментального материала магнитных свойств ферритов со "слабой" подрешеткой было показано, что в них должен возникать пьезомагнитный эффект из-за влияния однонаправленной обменной анизотропии (непосредственного измерения этого эффекта еще не предпринималось).

В настоящей статье показывается, что в данном типе ферримагнетиков проявляется пиромагнитный эффект (аналог пироэлектрического эффекта). Причина его возникновения та же — влияние однонаправленной обменной анизотропии. Так как между пьезомагнитным и пиромагнитным эффектами существует термодинамическая взаимосвязь (см. раздел 3 настоящей статьи), ниже несколько слов посвящается обнаружению Боровиком-Романовым пьезомагнитного эффекта.

2. К 40-летию открытия А.С. Боровиком-Романовым пьезомагнитного эффекта и термодинамически обратного ему явления линейной магнитострикции

В конце 50-х годов Боровик-Романов [1] осуществил весьма тонкие и трудные измерения пьезомагнитного эффекта в монокристаллах антиферромагнетиков MnF_2 и CoF₂, так как изменения намагниченности ΔI при приложении к ним упругого сжатия *P* были очень малыми. Эти кристаллы обладали особенностями магнитной симметрии, которые были выявлены Дзялошинским [3].

Пьезомагнетизм, обнаруженный Боровиком-Романовым, тесно связан с явлением "слабого" ферромагнетизма антиферримагнетиков, который возникает в них в результате влияния магнитоанизотропных сил. Так же, как и магнитный момент "слабого" ферромагнетизма, он направлен перпендикулярно векторам спонтанной намагниченности подрешеток антиферромагнетика, и поэтому возникает неколлинеарность расположения последних. Пьезомагнитный момент направлен, как и момент "слабого" ферромагнетизма, перпендикулярно векторам намагниченности подрешеток.

Далее Боровик-Романов нашел, что пьезомагнетизм существенно зависит от доменной структуры антиферромагнетиков. В многодоменном антиферромагнитном образце пьезомагнетизм может быть сильно ослаблен. Поэтому в чистом виде пьезомагнетизм наблюдается в монодоменных образцах. Пьезомагнетизм наблюдается также в "слабом" ферромагнетике — гематите (α-Fe₂O₃) и др.

Термодинамически обратным явлением пьезомагнитному эффекту является "нечетная" (линейная) магнитострикция, которая также была впервые обнаружена в экспериментах Боровика-Романова с упомянутыми выше веществами.

Отметим, что задолго до работ Боровика-Романова в зарубежной теоретической работе [5] было предсказано существование линейной магнитострикции в антиферромагнетиках. Линейная магнитострикция была в дальнейшем детально экспериментально изучена в антиферромагнетиках со "слабым" ферромагнетизмом (гематите) [6] и редкоземельных ортоферритах [7].

3. Термодинамическая взаимосвязь эффектов парапроцесса в ферримагнетиках со "слабой" подрешеткой

Ферримагнетики со "слабой" подрешеткой обладают аномальными свойствами по сравнению с ферримагнетиками с "неелевской" магнитной структурой (с сильным межподрешеточным обменным взаимодействием [8]). Благодаря существованию однонаправленной обменной анизотропии [2] в них возникают аномальные эффекты парапроцесса.

В настоящем разделе мы покажем, что в ферримагнетиках со "слабой" подрешеткой должны проявляться пьезомагнитный эффект и термодинамически обратное ему явление — линейная магнитострикция. Однако они имеют другую природу, чем та, которая существует в антиферромагнетиках, а именно: они обусловлены эффектами парапроцесса в "слабой" подрешетке (т.е. имеют обменную природу). Возникновение их вытекает из рассмотрения термодинамической взаимосвязи эффектов парапроцесса в "слабой" подрешетке ферримагнетика. Из этой же взаимосвязи вытекает возникновение пиромагнитного эффекта (аналога пироэлектрического эффекта), проявляющегося в сегнетоэлектриках и диэлектриках [12], и термодинамического эффекта.

Рассмотрим термодинамическую взаимосвязь эффектов парапроцесса на примере феррита-граната гадолиния (Gd₃Fe₅O₁₂), который является типичным ферримагнетиком со "слабой" подрешеткой. В этом феррите "слабой" подрешеткой является с-подрешетка (гадолиниевая), а "сильной" — аd-подрешетка (подрешетки катионов Fe³⁺). Ограничимся интервалом температур между точкой $T_{\rm B} \sim 100$ K (переход магнитный порядок – беспорядок в гадолиниевой подрешетке) и точкой магнитной компенсации $\Theta_{\rm com} = 293$ К. В данном интервале температур с-подрешетка находится в магнитном изотропном, монодоменном состоянии и не обладает гистерезисными свойствами.

При приложении магнитного поля H, упругого напряжения P и при температуре T в этой подрешетке изменяется спиновое упорядочение, в результате чего возникают различные эффекты парапроцесса.

Рассмотрим вначале гипотетическую ситуацию, которая заключается в том, что "слабая" подрешетка как бы изолирована от "сильной" подрешетки, т.е. на нее не действует обменное поле, создаваемое "сильной" подрешеткой. Термодинамическим потенциалом при данном выборе независимых переменных (*H*, *P*, *T*) является свободная энергия Гиббса, полный дифференциал которой имеет вид

$$\mathrm{d}G = -I\mathrm{d}H - \lambda\,\mathrm{d}P - S\,\mathrm{d}T\,,\tag{1}$$

где I — спонтанная намагниченность, λ — магнитострикция парапроцесса (иногда ее называют обменной магнитострикцией), S — магнитная часть энтропии (обусловленная изменениями спинового порядка). Знак перед членом λdP зависит от того, какое упругое механическое напряжение действует — сжатие или растяжение. Соответственно знак перед членом S dT определяется видом изменения теплового воздействия, т.е. нагревом или охлаждением исследуемого образца.

Дифференцируя соотношение (1) по *H*, *P* и *T*, получаем магнитное, магнитоупругое и магнитотермическое уравнения состояния [12]:

$$I = \left(\frac{\partial G}{\partial H}\right)_{P,T}; \quad \lambda = \left(\frac{\partial G}{\partial P}\right)_{H,T}; \quad S = \left(\frac{\partial G}{\partial T}\right)_{P,H}.$$
 (2)

Раскладывая выражения (2) в ряд в окрестности некоторого начального состояния с-подрешетки в интервале температур между $T_{\rm B}$ и $\Theta_{\rm com}$ и ограничиваясь линейными членами разложения, получаем:

$$\Delta I = \left(\frac{\partial I}{\partial H}\right)_{P,T} \Delta H + \left(\frac{\partial I}{\partial P}\right)_{T,H} \Delta P + \left(\frac{\partial I}{\partial T}\right)_{P,H} \Delta T, \quad (3)$$

$$\Delta\lambda = \left(\frac{\partial\lambda}{\partial H}\right)_{T,P} \Delta H + \left(\frac{\partial\lambda}{\partial P}\right)_{T,H} \Delta P + \left(\frac{\partial\lambda}{\partial T}\right)_{H,P} \Delta T, \quad (4)$$

$$\Delta S = \left(\frac{\partial S}{\partial H}\right)_{P,T} \Delta H + \left(\frac{\partial S}{\partial P}\right)_{H,T} \Delta P + \left(\frac{\partial S}{\partial T}\right)_{H,P} \Delta T. \quad (5)$$

Уравнения (3)–(5) описывают всю совокупность магнитных, магнитоупругих и тепловых явлений, наблюдаемых при изменениях *H*, *P*, *T* в "изолированной" "слабой" подрешетке. Второй член в соотношении (3) магнитоупругий эффект парапроцесса, вызванный приложением механического напряжения *P* (в монографии [14] этот вид парапроцесса назван "механопарапроцессом" — изменение магнитного порядка под действием *P* в присутствии внешнего поля *H*):

$$(\Delta I_P)_{H\neq 0} = \gamma_P \Delta P, \qquad (6)$$

где $\gamma_P = (\partial I / \partial P)_{T,H}$ — магнитоупругий коэффициент. Из термодинамики магнитных явлений [14] следует соотношение

$$\left(\frac{\partial I}{\partial P}\right)_{T,H} = \left(\frac{\partial \lambda}{\partial H}\right)_{P,T},\tag{7}$$

т.е. магнитоупругому эффекту соответствует термодинамически обратное явление — магнитострикция парапроцесса (соотношение (7) получается в результате дифференцирования уравнения $I = (\partial G / \partial H)_{P,T}$ по P и уравнения $\lambda = (\partial G / \partial P)_{H,T}$ по H).

Третий член в соотношении (3)

$$(\Delta I_T)_{H\neq 0} = \gamma_T \Delta T, \qquad (8)$$

где $\gamma_T = (\partial I/\partial T)_{P,H}$ — магнитотермический коэффициент, характеризующий наклон кривой температурной зависимости I(T) в присутствии магнитного поля H. Если при этом происходит охлаждение образца, то I возрастает вследствие возрастания спинового порядка, поэтому этот вид парапроцесса можно назвать термопарапроцессом. Термодинамически обратным этому явлению соответствует магнитокалорический эффект (первый член в соотношении (5))

$$(\Delta S_T)_{H\neq 0} = \gamma_S \,\Delta H \,, \tag{9}$$

где $\gamma_S = (\partial S/\partial T)_{P,T}$ — магнитокалорический коэффициент. Соотношение (9) представляет собой выражение для магнитокалорического эффекта:

$$\Delta T = -\frac{T}{C_I} \left(\frac{\partial I}{\partial T} \right)_{P,H} \Delta H.$$
(10)

Это выражение получается при подстановке в соотношение (9) S = dQ/T и $dQ = C_IT$ (где dQ — изменение количества теплоты, выделяемой при термопарапроцессе, и C_I — теплоемкость). Формулу (10) можно переписать в следующем виде:

$$\left(\frac{\Delta T}{\Delta H}\right)_{P,T} = -\frac{T}{C_I} \left(\frac{\Delta I}{\Delta T}\right)_{H\neq 0},\tag{11}$$

т.е. магнитокалорическому эффекту $\Delta T/\Delta H$ соответствует термодинамически обратное явление — магнитотермический эффект, обусловленный термопарапроцессом в присутствии поля. Как известно, в ферромагнетиках [14] (а в нашем случае "изолированная" "слабая" подрешетка) магнитокалорический эффект, как и магнитострикция, являются четными эффектами, т.е. квадратично зависящими от *I*.

Теперь учтем в нашем рассмотрении эффектов парапроцесса в "слабой" подрешетке реальную ситуацию, а именно: существование в рассматриваемом феррите однонаправленной обменной анизотропии, т.е. обменного поля, создаваемого ad-подрешеткой:

$$(H_{\rm ex})_{\rm eff} = J_{\rm c-ad}I_1\,,\tag{12}$$

где J_{c-ad} — параметр обменного взаимодействия между "слабой" и "сильной" подрешетками, I_1 — намагниченность "сильной" подрешетки. Как было показано в работах [10, 2], это приводит к возникновению линейной магнитострикции. Экспериментально это было подтверждено в работе [9] при измерениях магнитострикции в феррите-гранате гольмия. Измерение термодинамически обратного ему явления, а именно пьезомагнитного эффекта в ферритах-гранатах еще не предпринималось.

Далее укажем самое главное для настоящей статьи: однонаправленная обменная анизотропия в "слабой" подрешетке рассматриваемого феррита, согласно соотношению (11), приводит к нечетному, т.е. линейно зависящему от I магнитокалорическому эффекту $(\Delta T/\Delta H)_{T,P}$, и магнитотермическому эффекту при охлаждении образца вследствие возникновения термопарапроцесса в отсутствие внешнего магнитного поля $(H=0) \ (\Delta I/\Delta T)_{P,H=0}$, т.е. магнитного аналога пироэлектрического эффекта — пиромагнитного эффекта.

4. Проявления линейного магнитокалорического и пиромагнитного эффектов в феррите-гранате гадолиния

Долгое время (начиная с работ П. Вейса с соавторами [13]) считалось, что магнитокалорический эффект в ферромагнетиках (далее ΔT -эффект) квадратично зависит от намагниченности *I*:

$$\Delta T = aI^2, \tag{13}$$

где a — постоянный коэффициент, т.е. ΔT -эффект является четным. Такая же зависимость ΔT -эффекта от Iнаблюдается и в "неелевских" ферримагнетиках.

Однако в работе [10] для ферритов со "слабой" подрешеткой (феррита $Gd_3Fe_5O_{12}$) путем применения метода молекулярного поля была получена формула для точки T_B

$$(\Delta T)_{T=T_{\rm B}} = \frac{vg_S \,\mu_{\rm B} S(H_{\rm ex})_{\rm eff}}{{}^{\mu}C_V M_0} \,{}^{\mu}\chi_{\rm p} H\,,\tag{14}$$

где v — число магнитных катионов в феррите Gd₃Fe₅O₁₂, ${}^{\mu}C_{V}$ — теплоемкость при постоянном молярном объеме, H — внешнее магнитное поле, M_{0} — магнитный момент гадолиниевой подрешетки, $(H_{ex})_{eff}$ — обменное поле, создаваемое подрешеткой катионов Fe³⁺, S и g_S — спин и фактор Ланде катиона Gd³⁺, ${}^{\mu}\chi_{p}$ — молярная восприимчивость парапроцесса в "слабой" подрешетке. Видно, что $(\Delta T)_{T=T_{B}}$ линейно зависит от намагниченности парапроцесса: $I_{T=T_{B}} = {}^{\mu}\chi_{p}H$.

Из приведенной формулы видно, что даже при магнитном фазовом переходе магнитный порядок – беспорядок ΔT -эффект является линейным (нечетным) по намагниченности. Дальнейшие экспериментальные исследования магнитокалорического эффекта в ферритах со "слабой" подрешеткой подтвердили этот вывод.

На рисунке 1 по данным [15, 16] приведены кривые магнитокалорического эффекта для ферритов Gd₃Fe₅O₁₂

Рис. 1. Температурные зависимости магнитокалорического эффекта в поле 16 кЭ ферритов: *1* — Gd₃Fe₅O₁₂; *2* — Y₃Fe₅O₁₂.

и Y₃Fe₅O₁₂, измеренных в поле 16 кЭ. В данном разделе мы в основном рассмотрим ΔT -эффект в интервале температур между точкой $T_{\rm B}$ (низкотемпературный переход магнитный порядок – беспорядок) и $\Theta_{\rm com}$ (точка магнитной компенсации). В этом температурном интервале (100–280 K) зависимость ΔT -эффекта от температуры имеет асимптотический характер. Видно, что за возникновение этой кривой $\Delta T(T)$ ответственна "слабая" (гадолиниевая) подрешетка, так как в области низких температур, как следует из рис. 1, подрешетка катионов Fe³⁺ (т.е. феррит-гранат иттрия Y₃Fe₅O₁₂) дает малый вклад в магнитокалорический эффект.

В работе [17] для феррита $Gd_3Fe_5O_{12}$, а также для замещенного немагнитными катионами (в подрешетках с и аd) графическим способом были выделены температурные зависимости удельной намагниченности σ для подрешетки с (гадолиниевой подрешетки). На рисунке 2 видно, что эти зависимости имеют также асимптотический температурный ход, повторяющий ход кривой $\Delta T(T)$. Это означает, что между ΔT и σ существует линейная связь. Подтверждением существования такой связи свидетельствует также изменение знака ΔT , возникающее при изменении направления намагниченности гадолиниевой подрешетки при переходе через Θ_{com} (см. рис. 1).

Доказательством линейности ΔT -эффекта от I могут также служить данные измерения ΔT -эффекта непосредственно вблизи точки компенсации $\Theta_{\rm com}$ [16, 18]. На рисунке 3 видно, что зависимости ΔT от H и, следовательно, от I (так как $\chi_{\rm p}$ в области $\Theta_{\rm com}$ является константой) здесь носят строго линейный характер.

Косвенные признаки существования пиромагнитного эффекта $(\Delta I/\Delta T)_{P,H=0}$ в "слабой" подрешетке феррита Gd₃Fe₅O₁₂ вытекает из анализа изотерм $\sigma(H)$, снятых [17] в интервале температур между $T_{\rm B}$ и $\Theta_{\rm com}$ (рис. 4), и

Рис. 2. Температурные зависимости спонтанной намагниченности с-подрешетки ("слабой" подрешетки) для систем замещенных ферритов $Gd_{3-x}Ca_xFe_{5-x}Sn_xO_{12}$: I - x = 0; 2 - x = 0,1; 3 - x = 0,3; 4 - x = 0,5; 5 - x = 0,7; 6 - x = 0,9.

Рис. 3. Зависимость магнитокалорического эффекта от поля вблизи температуры компенсации $\Theta_{com} = 286,3$ К для феррита $Gd_3Fe_5O_{12}$.

Рис. 4. Изотермы $\sigma(H)$ феррита Gd₃Fe₅O₁₂ при температурах $T < \Theta_{\text{com}}$.

температурной зависимости $\sigma_{\rm s}(T)$ в этом интервале температур (рис. 5).

На рисунке 4 видно, что парапроцесс в поле 12 кЭ на изотермах $\sigma(H)$ мал, т.е. данное поле дает малый прирост намагниченности σ_s (порядка 2–3 Гс см³ г⁻¹) сверх намагниченности насыщения аd-подрешетки (порядка ~ 30 Гс см³ г⁻¹, рис. 5). Между тем на рис. 4 и 5 видно, что при температуре 83 К прирост намагниченности при охлаждении образца составляет 25– 27 Гс см³ г⁻¹. Последний возникает из-за пиромагнитного эффекта (термопарапроцесса при H = 0), который здесь происходит за счет большой однонаправленной

обменной анизотропии, так как обменное поле определяется "полной" величиной спонтанной намагниченности $(\sigma_s)_{ad}$ ad-подрешетки (см. формулу (12)).

Согласно оценке по методу молекулярного поля [10] величина $(H_{\rm ex})_{\rm eff} \sim 2 \times 10^5$ Э, поэтому она вызывает большой прирост намагниченности $\sigma_{\rm s}$ на изотермах $\sigma(H)$ (вдоль оси ординат на рис. 4 при H = 0) и формирует крутой, асимптотический температурный ход спонтанной намагниченности $\sigma_{\rm s}$ Gd-подрешетки (см. штриховую кривую на рис. 5).

Наибольшая крутизна кривой $\sigma_s(T)$ на рис. 5 возникает в интервале температур между T_B и 150 K, но в этом интервале температур, как следует из кривой $\sigma_s(T)$ феррита Y₃Fe₅O₁₂ (т.е. аd-подрешетки), величина σ_s уменьшается незначительно, поэтому согласно соотношению (12) величина поля однонаправленной анизотропии тоже почти не изменяется в указанном интервале температур. Отсюда следует, что бурный, асимптотический рост намагниченности σ_s гадолиниевой подрешетки при понижении температуры происходит за счет пиромагнитного эффекта. Этот бурный рост σ_s вдоль оси ординат особенно наглядно выявляется (при H = 0) в замещенном феррите-гранате гадолиния немагнитными катионами (рис. 6) (по данным измерений [16]).

5. Непосредственное наблюдение пиромагнитного эффекта в феррите-гранате гадолиния

Наблюдение пиромагнитного эффекта было осуществлено при измерениях остаточной намагниченности феррита Gd₃Fe₅O₁₂ в работе Любутина [19]. На рисунке 7 приведены зависимости $\sigma_r(T)$ и коэрцитивной силы $H_c(T)$ для данного феррита в интервале температур между точками T_B и $\Theta_{\rm com}$ (т.е. в интервале 100–293 К).

На рисунке 8 приведены температурные зависимости $\sigma_r(T)$ и $H_c(T)$ для феррита-граната иттрия $Y_3Fe_5O_{12}$ в том же интервале температур [19]. Образцы обоих ферритов были одинакового размера — стержни квадратного сечения 4×4 мм и длиной 50 мм.

Рис. 6. Изотермы намагниченности $\sigma(H)$ замещенного ферритаграната гадолиния (Gd₃Ga_{1,5}Fe_{3,5}O₁₂).

Рис. 7. Температурные зависимости $\sigma_{\rm r}$
и $H_{\rm c}$ для Gd_3Fe_5O_{12} в области температур
 $T < \Theta_{\rm com}.$

Рис. 8. Температурные зависимости σ_r и H_c для $Y_3Fe_5O_{12}$ при температурах $T < \Theta_{com}$.

Остаточная намагниченность σ_r создавалась сильным магнитным полем H_s и измерялась методом сбрасывания катушки с образца.

Сопоставление кривых $\sigma_r(T)$ (а также $H_c(T)$) для обоих ферритов важно потому, что в феррите Gd₃Fe₅O₁₂ имеется "слабая" (гадолиниевая) подрешетка, а в Y₃Fe₅O₁₂ таковая отсутствует. Кроме того, подрешетка аd (катионов Fe³⁺) в феррите Gd₃Fe₅O₁₂ есть по существу феррит Y₃Fe₅O₁₂, так как катион Y³⁺ не обладает магнитным моментом. Поэтому при анализе зависимостей $\sigma_r(T)$ и $H_c(T)$ в рассматриваемом температурном интервале можно выявить "не участие" гадолиниевой подрешетки в формировании гистерезисных свойств феррита Gd₃Fe₅O₁₂.

К.П. БЕЛОВ

Отсюда вытекает вывод, что остаточная намагниченность, измеряемая методом сбрасывания катушки с образца Gd₃Fe₅O₁₂, состоит из двух компонент:

1) истинной (гистерезисной) компоненты остаточной намагниченности σ_r , создаваемой подрешеткой ad;

2) псевдоостаточной (безгистерезисной) компоненты остаточной намагниченности σ'_r , индуцированной в "слабой" подрешетке однонаправленной обменной анизотропией.

Поле этой анизотропии в данном случае равно

$$(H_{\rm ex})_{\rm eff} = -J_{\rm c-ad}(\sigma_{\rm r})_{\rm ad}, \qquad (15)$$

где $(\sigma_{\rm r})_{\rm ad}$ — остаточная намагниченность ad-подрешетки, $J_{\rm c-ad}$ — параметр обменного взаимодействия подрешеток с и ad феррита Gd₃Fe₅O₁₂.

Из сопоставления кривых $\sigma_r(T)$ феррита Y₃Fe₅O₁₂ (см. рис. 8) и Gd₃Fe₅O₁₂ (см. рис. 7) вытекает, что сильное возрастание остаточной намагниченности при понижении температуры в феррите-гранате гадолиния обусловлено второй компонентой, т.е. псевдоостаточной (безгистерезисной) намагниченностью σ'_r . Как следует из рис. 7, в подрешетке ad истинная остаточная намагниченность σ_r в рассматриваемом интервале температур почти не изменяется по величине, следовательно, согласно формуле (15), и поле однонаправленной обменной анизотропии в данном интервале температур остается практически постоянным. Поэтому наблюдаемое на рис. 7 возрастание псевдоостаточной намагниченности необходимо приписать охлаждению образца (в отсутствие внешнего поля Н); здесь мы имеем магнитный аналог пироэлектрического эффекта, т.е. пиромагнитный эффект.

Физика пиромагнитного эффекта состоит в том, что с понижением температуры в "слабой" подрешетке $Gd_3Fe_5O_{12}$ уменьшается дезориентирующее действие теплового движения на магнитный порядок, т.е. возникает термопарапроцесс (при H = 0), так как $(H_{ex})_{eff}$ в соотношении (15) в рассматриваемом интервале температур не меняется.

Сделанное утверждение справедливо при условии, что "слабая" подрешетка не обладает магнитным гистерезисом. То, что гадолиниевая подрешетка не участвует в формировании гистерезисных свойств (при температурах выше $T_{\rm B}$) феррита Gd₃Fe₅O₁₂, следует из измерений константы магнитокристаллографической анизотропии K_1 . Согласно работе [20], вклад ΔK_1 катионов Gd³⁺ в константу K_1 феррита Gd₃Fe₅O₁₂ в рассматриваемом интервале температур ничтожно мал (рис. 9), он был получен в [20] путем вычитания константы анизотропии K_1 (рис. 96) феррита Y_3 Fe₅O₁₂ (полученной в работе [21]) из полной константы K_1 феррита Gd₃Fe₅O₁₂. На рисунке 9 видно, что катионы Gd³⁺ подрешетки с дают вклад в K_1 только при температурах ниже точки $T_{\rm B}$ (~ 100 K).

При температурах $T > T_{\rm B}$ вклад в константу K_1 в данном феррите вносят только катионы Fe³⁺ подрешетки аd, а с-подрешетка находится в изотропном состоянии и не участвует в формировании гистерезисных свойств феррита Gd₃Fe₅O₁₂. В ней отсутствуют истинные значения $\sigma_{\rm r}$ и $H_{\rm c}$, хотя в ней и присутствует спонтанная намагниченность $\sigma_{\rm s}$, наведенная однонаправленной обменной анизотропией [2].

[УФH 2000

Рис. 9. Температурные зависимости (а) ΔK_1 для Gd₃Fe₅O₁₂ по данным [20], (б) K_1 для Y₃Fe₅O₁₂ по данным [21].

Конечно, аналогия пироэлектрического и пиромагнитного эффектов носит формальный характер, ибо их физические механизмы возникновения различны. В пироэлектриках спонтанная поляризация P_s изменяется под влиянием изменения температуры вследствие перераспределения электрических зарядов (при E = 0).

В случае пиромагнетика изменяется магнитный порядок (при H = 0) в "слабой" подрешетке, наведенный обменным полем $(H_{ex})_{eff}$ (согласно формуле (15), из-за присутствия в ad-подрешетке остаточной намагниченности σ_{r}).

Однако несмотря на различие их механизмов возникновения, в их проявлении много общего. Во-первых, оба эффекта возникают в диэлектриках и магнетиках, в которых существует спонтанная поляризация P_s и спонтанная намагниченность σ_s , при этом как пироэлектрик, так и пиромагнетик находится в монодоменном (однодоменном) состоянии. Аналогия также состоит в том (как следует из рис. 7), что пиромагнитный эффект (величина σ'_r) линейно зависит от *T*.

Отметим здесь следующее обстоятельство, касающееся проявления пиромагнитного эффекта. Поскольку, согласно формуле (15), σ'_r зависит от величины истинной σ_r , а эта последняя является структурно-чувствительной величиной, то и пиромагнитный эффект тоже будет структурно чувствительным. Это подтверждается результатами работы [19], в которой остаточная намагниченность σ'_r измерялась в рассматриваемом интервале температур в замещенном феррите Gd₃Fe₅O₁₂ немагнитными катионами, что приводило к смещению кривых $\sigma'_r(T)$ вдоль оси *T*. Отметим, однако, что при возникновении пиромагнитного эффекта одновременно будет проявляться пьезомагнитный эффект. Дело в том, что при изменении температуры возникает тепловое расширение или укорочение ферримагнетика, а это можно рассматривать как действие дополнительного упругого напряжения ΔP . Так что при экспериментальном наблюдении пиромагнитного эффекта будет примешиваться (повидимому, небольшой величины) $\Delta I'$ за счет пьезомагнитного эффекта. Подобная ситуация возникает и при измерениях пироэлектрического эффекта в сегнетоэлектриках [25].

Далее обратим внимание на следующий экспериментальный факт, установленный в работе [19]. Как следует из рис. 7, при достижении определенной температуры (~ 160 K) на кривой $\sigma'_{\rm r}(T)$ возникает максимум, при дальнейшем понижении T величина $\sigma'_{\rm r}$ уменьшается.

С нашей точки зрения, это вызвано тем, что по мере понижения температуры одновременно с ростом обменной энергии в "слабой" подрешетке (вследствие возрастания магнитного порядка) возрастает и энергия магнитного дипольного взаимодействия между магнитными моментами магнитных катионов Gd³⁺, при этом с опережающей интенсивностью (поскольку это взаимодействие является дальнодействующим). Это взаимодействие приводит к тенденции размагничивания гадолиниевой подрешетки (находящейся в монодоменном состоянии), т.е. к тенденции образования доменов. Возникновение конкурирующего обменному взаимодействию в "слабой" подрешетке магнитодипольного взаимодействия вызывает метастабильное состояние магнитной системы в данной подрешетке с возникновением сопутствующих релаксационных эффектов.

В работе [22] в феррите Gd₃Fe₅O₁₂ в рассматриваемом интервале температур был обнаружен (рис. 10) большой

Рис. 10. Максимум магнитной вязкости τ (время перемагничивания) в феррите $Gd_3Fe_5O_{12}$ в области ниже точки магнитной компенсации Θ_{com} .

Рис. 11. Максимум внутреннего трения Q^{-1} (в поле H = 0) в феррите Gd₃Fe₅O₁₂ при температурах ниже точки Θ_{com} .

максимум магнитной вязкости (в слабом поле H), а в работе [23] — максимум внутреннего трения Q^{-1} (рис. 11) в нулевом поле. Аналогичный максимум внутреннего трения был обнаружен в работе [24] для ферритахромита лития в интервале температур между точками $T_{\rm B}$ и $\Theta_{\rm com}$, реализующийся в слабом поле H (или даже при H = 0 в случае рис. 10). (Заметим, что максимум Q^{-1} в точке компенсации (рис. 11), наблюдаемый в сильном поле 1300 Э, связан с нестабильностью неколлинеарной магнитной структуры в Gd₃Fe₅O₁₂, возникающей в этой точке.)

6. Заключение

Из сказанного в настоящей статье следует, что в 60-е годы XX века в исследовании магнитоупорядоченных веществ возникло два новых научных направления.

Во главе первого направления стояли А.С. Боровик-Романов и И.Е. Дзялошинский, положив начало изучению антиферромагнетиков, обладающих особенностями магнитной симметрии, приводящих в них к явлению "слабого" ферромагнетизма и возникновению неколлинеарной магнитной структуры. В этих магнетиках был обнаружен магнитный аналог пьезоэлектрического эффекта — пьезомагнитный эффект и линейная магнитострикция. В данных веществах по сравнению с нормальными антиферромагнетиками выявлены и другие интересные эффекты.

Во главе второго направления стоят автор настоящей статьи и С.А. Никитин, которые положили начало исследованию аномальных свойств ферримагнетиков со "слабой" подрешеткой (с асимптотическим температурным ходом спонтанной намагниченности в одной из подрешеток и существованием в них однонаправленной обменной анизотропии). Начиная с 60-х годов в них были выявлены новые явления, такие как существование низкотемпературного перехода магнитный порядокбеспорядок (точки T_B), проявление линейного магнитокалорического эффекта и линейной магнитострикции, пиромагнитного эффекта, и предсказано существование пьезомагнитного эффекта обменной природы [2]. Выявлены и другие особенности магнитных свойств, которые отсутствуют в нормальных, "неелевских" ферримагнетиках.

Список литературы

- 1. Боровик-Романов А С ЖЭТФ 38 1088 (1960)
- 2. Белов К П *УФН* **169** 137 (1999)
- 3. Дзялошинский И Е ЖЭТФ **33** 807 (1957)
- 4. Дзялошинский И Е ЖЭТФ **33** 1547 (1957)
- 5. Birss R, Anderson J Proc. Phys. Soc. 81 1139 (1953)
- Левитин Р 3, Щуров В А "Магнитные и магнитоупругие свойства гематита", в сб. Физика и химия ферритов (М.: Издво Моск. ун-та, 1973) с. 162
- 7. Кадомцева А М и др. *Письма в ЖЭТФ* **33** 400 (1981)
- 8. Neel L Ann. Phys. (Paris) 3 137 (1948)
- 9. Белов К П, Соколов В И Изв. АН СССР. Сер. Физ. 30 1073 (1966)
- 10. Белов К П, Никитин С А Phys. Status Solidi 12 1 (1965)
- 11. Белов К П УФН **166** 869 (1996)
- Струков Б А, Леванюк А П Физические основы сегнетоэлектрических явлений в кристаллах (М.: Наука. Физматлит, 1995)
- 13. Weiss P, Forrer P Ann. Phys. (Paris) **5** 153 (1924)

- 14. Белов К П Упругие тепловые и электрические явления в ферромагнетиках (М.: Наука, 1957)
- 15. Белов К П и др. Письма в ЖЭТФ 1 423 (1968)
- Кудрявцева Т В "Исследование магнитокалорического эффекта в редкоземельных ферритах-гранатах" Дисс. канд. физ.-мат. наук (М.: МГУ, 1978)
- 17. Белов К П, Любутин И С Кристаллография 10 351 (1965)
- 18. Белов К П и др. ЖЭТФ 58 1923 (1970)
- 19. Любутин И С ФТТ 7 1397 (1965)
- 20. Pearson R E J. Appl. Phys. (Suppl) 33 1236 (1962)
- 21. Hansen P, in Proc. Int. School Phys. "Enrico Fermi" LXX 56 (1978)
- 22. Телеснин Р В, Овчинникова А М, в сб. *Ферриты* (Минск: Изд-во АН СССР, 1960) с. 325
- Педько А В "Магнитные свойства гадолиния и гадолиниевого феррита" Дисс. канд. физ.-мат. наук (М.: МГУ, физический факультет, 1960)
- 24. Горяга А Н, Левитин Р З, Линь-Чжан-да ФММ 12 (3) 458 (1961)
- 25. Желудев И С Электрические кристаллы (М.: Наука, 1969)

On the manifestation of the pyromagnetic effect in ferrimagnets with a 'weak' sublattice

K.P. Belov

M.V. Lomonosov Moscow State University, Physics Department Vorob'evy Gory, 119899 Moscow, Russian Federation Tel. (7-095) 939-30 39

The temperature dependence of the residual and spontaneous magnetization in ferrites with a 'weak' sublattice may be taken as evidence for the pyromagnetic effect — a magnetic analogue of the pyroelectric effect in which the magnetization of a sample increases on cooling in the absence of an external magnetic field. A confirmation of this has been provided by observation in such ferrites of a thermodynamically inverse phenomenon, the linear magnetocaloric effect. These effects are due to the unidirectional exchange anisotropy characteristic of the ferrimagnets with a weak sublattice.

PACS numbers: 75.50.-y, 75.50.GY, 75.80.+q, 75.90.+w

Bibliography - 25 references

Received 19 January 2000