
written in the explicit form only for a certain choice of
coordinate axes. Given that the normal to the surface is
parallel to axis z, we have

cV2 � g2�ŝxp̂x ÿ ŝyp̂y� ; �7�

with g2 6� 0 being valid also for a symmetric quantum well.
For two-dimensional planar systems, Hamiltonians V1 and
V2 are unitarily equivalent, their spectra are identical and
depend only on the moduli jg1j and jg2j. These statements are
invalid in the case of curved surfaces.

The SchroÈ dinger equation including the spin ± orbit
interaction admits an exact analytical solution for the case
of a hollow circular cylinder (nanotube). The energy
eigenvalues turn out to be noninvariant with respect to a
change in the sign of the spin ± orbit interaction constant: they
contain the products g1R and g2R. This suggests a difference
between the energy spectra of concave and convex systems (it
should be recalled that in the model under consideration we
are dealing with an oriented surface, i.e., directions n and ÿn
are physically nonequivalent).

In the experiment, the sign of g1 can manifest itself in the
absorption of an electromagnetic wave, linearly polarized
along the cylinder axis, by nanotube electrons. Depending on
the senses of g1 and the curvature, the absorption maximum
at the spin-flip transition is shifted to the right or to the left
from the position corresponding to the planar structure of the
same material. The contribution V2 to the thermodynamic
and optical characteristics of the system after summation over
states are independent of the sign of g2.

Taken together, the above considerations suggest the
possibility, in principle, to distinguish between the contribu-
tionsV1 andV2 whenmeasuring one and the same response of
the systems differing only in the sense of the curvature (e.g.,
GaAs/GaAlAs heterojunction) bent in such a way that
electrons occur either on the internal or external surface of
the cylinder.

5. Effect of spin ± orbit interaction between two-
dimensional electrons on the magnetization of nanotubes
The SchroÈ dinger equation including spin ± orbit coupling can
be solved also in the case when a homogeneous magnetic field
aligned parallel to the nanotube axis is applied to the system.
Given a zero longitudinal momentum and a magnetic flux
through the nanotube equal to a half-integer number of flux
quanta, there is crossing of terms related to different spin
projections. This peculiarity of the energy spectrum is
responsible for the anomalies in the system's magnetization
behavior.

In the absence of spin ± orbit interaction, linear suscept-
ibility corresponds to diamagnetism. If the spin ± orbit
coupling for a certain range of parameters of the problem is
included, the sign of susceptibility may be changed (diapar-
atransition). For the same reason (term crossing), the
magnetic susceptibility of the nanotube is characterized by
marked dispersion in the low-frequency region (several orders
of magnitude lower than the frequency of the electron
rotational quantum �h2=2mR2).

We have also demonstrated that the incidence of an
electromagnetic wave linearly polarized along the nanotube
axis (with the external magnetic field oriented in the same
direction) gives rise to a constant magnetic moment propor-
tional to the wave intensity. This photoinduced magnetiza-
tion is proportional to g21 (in the Rashba model), shows

resonant dependence on the wave frequency, and attains
maximum at the spin-flip transition frequency.

The effect discussed in the present paper is akin to the
photogalvanic one in that the preferred direction of the
circular current that induces magnetic moment is given by
the vector product �B� n�, where the normal n is directed
along the cylinder radius. The second-order response to the
electric field of the wave contains second and zero harmonics,
the latter being responsible for constant magnetization.
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Tunneling measurements of the Coulomb
pseudogap in a two-dimensional electron
system in a quantizing magnetic field

EÂ V Devyatov, A A Shashkin, V T Dolgopolov,
V Hansen, M Halland

It is well known that the injection of a charge in the case of
tunneling into a two-dimensional electron system placed in a
quantizing magnetic field is highly sensitive to multiparticle
effects. Tunneling may occur into the edge of a two-
dimensional system (lateral tunneling) [1 ± 3] and into its
entire plane (vertical tunneling) [4 ± 10]. It has been demon-
strated in Refs [4, 5] that vertical tunneling is sensitive to both
real spectral gaps at integer filling factors and the Coulomb
pseudogap undergoing a shift concurrent with the Fermi level
shift.

A survey of tunneling between identical highly mobile
two-dimensional systems in the ultraquantum limit has
revealed a pseudogap with an exponentially small tunneling
density of states [6]. Since the experiments in [4 ± 6] have been
performed on samples of different quality and in different
magnetic field limits, it long remained unclear whether the
gaps observed were of similar or different nature. A recent
study [7] has demonstrated that all previously obtained results
may be reproduced using one sample. Therefore, it is inferred
that Refs [4 ± 6] describe the same pseudogap. Ref. [8], in
which the method of an earlier study [6] was employed,
reports surprising evidence that the width of the pseudogap
at a filling factor n � 1=2 can be proportional to the magnetic
field.

An enhancement of the pseudogap in the vicinity of n � 1
accompanied by the appearance of a double-humped struc-
ture in the tunneling resistance has been documented in
experiments on tunneling from a three-dimensional electron
system into a highly mobile two-dimensional electron gas [9].
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This finding was recently confirmed in a study on tunnel
current relaxation [10], which also gave evidence of two
significantly different relaxation times near n � 1.

Numerous theoretical works predicted the existence of a
pseudogap in metallic and dielectric phases of two-dimen-
sional electron systems. In the case of a two-dimensional
metal with a slight disorder, the electron ± electron interaction
leads to logarithmic corrections which tend to decrease the
density of states at the Fermi level [13]. At the same time, the
tunneling density of states at the Fermi level eF in the
dielectric phase vanishes according to the law

D � 2K2

pe4
jeÿ eFj ;

where K denotes the dielectric permeability, e is the energy,
and e is the electron charge [14].

The presence of a Coulomb pseudogap with an exponen-
tially small density of states near the Fermi level eF has also
been predicted for themetallic phase in a quantizing magnetic
field [15 ± 18]. A similar result was obtained for tunneling into
theWigner crystal [19] and into the dielectric state of a slightly
disordered two-dimensional system at large filling factors
[20]. According toRefs [15, 16, 19], the pseudogapwidthmust
be determined by the average distance between electrons. In
the dielectric phase of a highly disordered system [21], one
should anticipate the development of a linear-in-energy
pseudogap of the form

D�e� � DF � ajeÿ eFj ; �1�
where the coefficient a differs from a0 � 2K2=pe4 predicted in
Ref. [14].

The results of the above theoretical studies are in
qualitative agreement with experimental findings. The fol-
lowing discrepancies between the theory and experiment
should however be emphasized: (1) there is a disproportion
between the gap size and the average interelectron distance
[8]; (2) experiments reveal a decrease in the coefficient a with
increasing magnetic field [7]; (3) the theory does not explain
the pseudogap behavior near the n � 1 filling [9, 10].

The aim of the present work was a comprehensive
investigation into the tunneling from a three-dimensional
system into a highly mobile two-dimensional electron system
at filling factors n4 1. The experiments were made using
(Al,Ga)As/GaAs heterostructures with a metallic gate at the
crystal surface; they also contained a 20-nm highly doped
silicon layer (4� 1018 cmÿ3) buried in GaAs. This layer
possessed the properties of a `dirty' three-dimensional
conductor.

The sample structure and the computed behavior of the
bottom of the conduction band are shown in Fig. 1. Four
samples were prepared using two wafers grown in two
different molecular-beam epitaxy chambers. The short-
period GaAs/AlAs superlattice served as a blocking barrier
between the two-dimensional electron layer and the gate,
while the wide but shallow tunnel barriers were created by the
weak residual p doping in GaAs.

The electron densitywas specified by a constant voltageVg

applied between the gate and the three-dimensional contact.
The distances shown in Fig. 1 were x0g � 142 nm, x0w � 100
nm, and x0g � 142:4 nm, x0w � 100 nm for structures A and B
respectively. The gate area was 8700 mm2 for sample A1,
800 mm2 for samples A2 and A3, and 3300 mm2 for sample B.

By modulating the gate voltage and measuring the
imaginary and real current components, we obtained infor-

mation about the thermodynamic density of states and
tunneling resistance. The following equation was used to
calculate these parameters [5, 9]:

I

V
� o

�
ot� i

1� o2t2
�Clow ÿ Chigh� � iChigh

�
: �2�

Here, o=2p is the frequency of the alternating current, and
Clow and Chigh are the low- and high-frequency limits,
respectively, of the device capacitance being measured.

The relaxation time t in Eqn (2) was

t � Rtun�Clow ÿ Chigh�
�
xg
xw

�2

;

Rtun � ttun
ADSe2

� rtun
A

; �3�

where Rtun is the tunneling resistance, tÿ1tun is the frequency of
attempts, DS is the single-particle density of states, and the
distances xg, xw substitute for x0g, x

0
w in accordance with the

real distribution of electron density in the x direction.
In the low-frequency limit, nonlinear tunnel current ±

voltage characteristics were deduced from the measured
values of Re I and Im I using the relations

Vtun � ClowRe I

o�Clow ÿ Chigh�2
�
xw
xg

�2

; Itun � Im I : �4�

Here, the quantity eVtun is the difference of the electrochemi-
cal potentials between the two-dimensional electron layer and
the three-dimensional contact. In the analysis of nonlinear
current ± voltage characteristics, it was assumed that the
measured signal corresponded to the first Fourier harmonic
of the alternating current.

Typical experimental curves in the low-frequency limit are
presented in Fig. 2. The imaginary component of the current
with the minima at integer and fractional filling factors is
known to carry information about the thermodynamic
density of states [12, 22]. The real component of the current
contains a double-humped structure at n � 1 [9, 10] and peaks
at n � 1=3 and n � 2=3, along with a signal showing weak
dependence on the filling factor described earlier in Refs [4 ±
8]. In principle, similar structures can arise during electron
transfer along a two-dimensional layer due to the tunnel
current inhomogeneity.
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Figure 1. Energy of the bottom of the conduction band ec as a function of

the distance x at Vg � 0:8. The tunnel barrier is depicted in the inset.
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In our case, the structures observed at n � 1 are not
related to lateral transport, because (1) analogous structures
were lacking at the same temperature at filling factor n � 2
(notwithstanding a significantly lower dissipative conductiv-
ity at this value of the filling factor); (2) the frequency,
temperature and magnetic-field dependences of the active
current component and its current ± voltage characteristics
discussed below are incompatible with the assumption of
lateral transport; and (3) similar features were observed near
n � 1 in an afore-mentioned study (see Ref. [10]), although
these experiments were made on samples with a differently
shaped tunnel barrier.

The real component of the current had the shape
resembling that in Fig. 2, with two maxima at n � 1 in the
minimum magnetic field in which the corresponding
structure was still discernible (in a 8-T field for improved
samples from structure A and in a 11-T field for a sample
from wafer B).

The frequency dependence of the current at the maximum
andminimum of tunneling resistance at n � 1 is illustrated by
Fig. 3. Eqn (2) fairly well describes experimental findings
provided the quantity Chigh is replaced by the fitting
parameter C0 > Chigh. The necessity of introduction of the
fitting parameter C0 suggests the existence of at least two
significantly different relaxation times.

The relation b � �Clow ÿ C0�=�Clow ÿ Chigh� gives the
fraction of tunneling processes with the highest tunneling
resistance rtun (and maximum relaxation time t) or the
`fraction of the area' corresponding to such processes. In the
low-frequency limit under discussion, the tunnel current
corresponding to a large relaxation time is proportional to
b. In other words, Itun in (4) should be replaced by
Itun � b Im I, whereas expressions for Vtun and Rtun in (3)
and (4) remain unaltered.

The solid lines in Fig. 3 correspond to b � 1 and b � 0:6
for the tunneling-resistance maximum and minimum, respec-
tively. The double-humped curve also holds for Rtun; that is,
the division of Re I by b�Clow ÿ Chigh�2 leaves the tunneling
resistance minimum, having a depth of about 30%, at point
n � 1.

An example of a current ± voltage characteristic is pre-
sented in Fig. 4. Experimentally measured dependences are
roughly parabolic at eVtun > kBT and linear at eVtun < kBT.
The parabolic dependence corresponds to a linear pseudogap.
In order to describe the experimental results, we calculated
the first Fourier harmonic of the voltage on the nonlinear
element Vtun�Itun� given by the condition

Itun � g
�1
ÿ1

DmD�e�
�
f�eÿ eVtun;T� ÿ f�e;T��de ; �5�

where g denotes an unknown coefficient; function D�e� is
given by Eqn (1) withDF � 0; and f�e;T� is the Fermi ±Dirac
distribution. The density of states in the injecting electrode is
assumed to be independent of the magnetic field. It follows
from Fig. 4 that the computed curve fairly well describes
experimental findings even if using a single fitting parameter
agDm.

Assuming that the quantities g and Dm remain unaltered
for a given sample, it is possible to determine the magnetic-
field and temperature dependences of the coefficient a from
the current ± voltage characteristics. It turns out that a tends
to saturate in strong magnetic fields and at low temperatures;
conversely, the pseudogap vanishes in the opposite limit.

We also measured current ± voltage characteristics in
strong magnetic fields for filling factors n � 1=2 and
n � 2=3. At n � 1=2, the experimental current ± voltage
curve turned out to be nearly parabolic, in agreement with
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the results of earlier experiments [7]. The current ± voltage
characteristics for the filling factor n � 2=3 were close to
linear ones even at eVtun > kBT, although the linear range
shrinked with increasing temperature.

To conclude, we have confirmed the existence of a linear-
in-energy pseudogap over a wide range of filling factors at
n < 1 (outside the tunneling-resistance peaks at n � 1=3 and
n � 2=3) and demonstrated that the linear energy dependence
also holds for a double-humped structure near n � 1. It
follows from the analysis of current ± voltage characteristics
that the coefficient a peaks at n � 1. By comparing the
positions of the peaks of the real current component near
n � 1 and metal ± insulator transition points in samples of
similar quality [23], the filling factors corresponding to the
peaks were found to coincide with the filling factors at the
transition points. In principle, the available theoretical
models allow one to describe a decrease of the coefficient a
associated with a deviation of the filling factor from n � 1.

According to Refs [17, 18], tunneling into the metallic
phase leads to the development of a pseudogap related to the
finite time of charge dissipation in the plane. The higher the
conductance in the plane, the narrower the gap. The shape of
the gap in the metallic phase is given by the expression

D�e� � Dth exp

�
ÿ ln2

e4

K2Kjeÿ eFj
�
: �6�

Here, Dth is the thermodynamic density of states and K is the
diffusion coefficient [18, 24]. According to [24], dependence
(6) in the energy interval jeÿ eFj < Uc � e2=Kx (x is the mean
dimension of the conducting cluster) must be replaced by
ajeÿ eFj, where a � D�eF �Uc�=Uc. It has been shown
experimentally that the coefficient a increases as n! 1,
because the correlation length x decreases with penetration
deeper into the dielectric phase.
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of Solid-State Nanostructures'' (project 97-1024) and Pro-
gram ``Statistical Physics'' of the Russian Ministry of Science
and Technology; and Program ``Physics of Nanostructured
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Collective effects in artificial
two-dimensional lattices
of ferromagnetic nanoparticles

S A Gusev, Yu N Nozdrin, M V Sapozhnikov,
A A Fraerman

Many studies of zero-dimensional nanostructures are focused
on the creation and investigation of ferromagnetic nanopar-
ticles. On the one hand, interest in these particles is due to the
possibility of their practical application, in the first place for
the development of recording media that can ensure super-
high (over 1010 bit cmÿ2) data storage densities [1]. On the
other hand, studies of ferromagnetic nanoparticles bring
about new knowledge of the properties of magnetic materials
at supersmall scales.

We believe that the collective behavior of ferromagnetic
nanoparticles during their interaction is one of the most
interesting aspects of the problem in question. Stray fields
induced by individual particles constitute the fundamental
cause of this interaction. In the case of a single-domain
particle, the major contribution comes from dipole interac-
tion. Elucidation of this mechanism has important practical
implications, because it may be useful for the assessment of
data density limits.

Creation of systems of interacting ferromagnetic nano-
particles opens good prospects for the control of magnetic
properties. Indeed, if we mentally substitute single-domain
supermagnetic particles for magnetic atoms, it would be
possible, by virtue of their dipole interaction, to effect a
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