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exciton—electron interaction in quantum-well structures
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Low-dimensional electrons in curvilinear
nanostructures

L I Magarill, D A Romanov, A V Chaplik

It is known that the transition to a lower-dimensional
curvilinear space in classical mechanics is reduced to the
mere introduction of constraints diminishing the effective
number of particle’s degrees of freedom. It is therefore
possible to use, from the ‘very beginning’, curvilinear
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coordinates. In the quantum context, when it comes to
waveguides, in which one or two characteristic dimensions
become much smaller than all the remaining lengths of the
problem, the wave equation must be transformed in the spirit
of the adiabatic approximation (degrees of freedom are
divided into fast and slow). This leads to an adiabatic
potential of purely geometrical nature.

Using an elliptical ring as an example, the present paper
demonstrates that the result depends on the manner of
reduction to a one-dimensional model. In other words, the
system remembers the potential which restricts the particle’s
motion in an n-dimensional problem giving rise, in the limit,
to an (n — 1)-dimensional wave equation. The situation is
considerably simplified for surfaces of constant curvature
(e.g., sphere, circular cylinder) because in such cases the
adiabatic potential is constant. Selected examples of curvi-
linear low-dimensional systems are considered below.

1. Spirally folded quantum well (a roll)

For cylindrical surfaces, the problem is apparently reduced to
a one-dimensional model (e.g., an electron in a curved
quantum wire). By introducing coordinates s (length of the
arc of the curve) and / (distance to the curve along its radius
of curvature at point s) and averaging over the ground state of
the fast motion along the coordinate 4, one arrives at the one-
dimensional Schrédinger equation with an adiabatic poten-
tial
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Here, R(s) is the radius of curvature as a function of the
position of the point at the curve and Ej is the energy of
motion along the curve. Hence, the particle is attracted to
regions of maximum curvature.

Numerical calculations for the Archimedes’ spiral (in
polar coordinates, equation p = L¢) indicate that the
number of bound states (i.e., levels with energy Ej < 0)
increases with increasing number of turns. For 1, 2 and 3
turns, the number of negative levels is 1, 2 and 3, respectively
(for an infinite spiral, the number of negative levels is also
infinite because the asymptotic potential in (1) behaves like a
Coulomb one; i.e., it is proportional to —h2/16mLs). A
similar numerical calculation of electromagnetic wave
absorption caused by transitions between the bound states
shows that, owing to the anisotropy of the spiral in its plane,
the intensities of all absorption lines strongly depend on the
direction of linear polarization of the wave.

2. Excitons and trions in quantum rings

The two-particle Schrodinger equation for an electron and a
hole traveling in a quantum ring can easily be split into an
equation for relative motion (variable ¥ = ¢, — ¢;,) and an
equation for the center of masses ¢, = (Mm@, + nmey) /M,



284 Conferences and symposia

Physics— Uspekhi 43 (3)

where M = m, +my, and ¢, and ¢, are the azimuthal
coordinates of the electron and hole on the ring. The total
wave function must be independently periodic in ¢, and ¢,
with a period of 2n. At the same time, the wave function of
relative motion y(¢) must satisfy the Bloch theorem, since the
electron—hole interaction potential is proportional to
|sin (9/2)]".

Combination of these two conditions gives the expression
for the energy of exciton bound states:

J
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Here, E, are the energy levels of a one-dimensional Coulomb
system, A, are the amplitudes corresponding to electron
tunneling toward a hole along the ring, J is the total
azimuthal moment of the exciton as a whole, and @ is the
magnetic flux through the ring measured in flux quanta /Ac/e.
Therefore, the internal exciton energy turns out to be a
periodic function of the magnetic field.

Also, it follows from Eqn (2) that in the absence of a
magnetic flux (@ =0) the binding energy of the system
depends on its total mechanical moment J. In the correspond-
ing one-dimensional rectilinear problem, the internal energy
is certainly independent of the center-of-mass momentum
(the relativity principle). However, the uniform circumfer-
ential motion is in principle detectable by ‘an internal
observer’, obviously not due to centrifugal effects. The
reason is purely quantum in nature and relates to the
possibility of tunneling through the Coulomb barrier around
the region encircled by the ring.

A similar line of reasoning applied to the case of trions
(charged h—e—e complexes) gives evidence that the binding
energy also oscillates with magnetic flux. In this case,
however, the oscillation period depends on the effective
mass ratio

mn + 2m.
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3. Ballistic magnetoconductance of the cylindrical sector
Let us consider the sector —¢, < ¢ < ¢, of acircular cylinder
of radius R placed in a homogeneous magnetic field B
perpendicular to the cylinder axis (axis z). Angle ¢ is counted
from the direction B. Two-dimensional electrons of the sector
can ‘see’ only the normal component of the magnetic field,
which therefore becomes effectively inhomogeneous. The
degeneracy of the Landau levels is thus removed, and the
electron energy depends on the location of the suspension
point of the magnetic oscillator.

For the internal states in a sufficiently strong magnetic
field (magnetic length / is much smaller than R), it is easy to
obtain
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Here, p is the momentum along the z axis; the momentum
region p > hR/I3 corresponds to boundary states; the
spectrum is found by means of numerical calculation; and
the energy grows asymptotically as p>.

The Hall conductance Gy is computed analytically in the
limiting case of /p < R (i.e., when the contribution of the
boundary states is negligible) if the Fermi level lies in a group

of nonoverlapping bands E,(p). For example, in the ultra-
quantum limit, when only band n = 0 is populated, the Hall
conductance is written as

262 1
GH:%{l—w—oarcsin<singoo—goog>] ) (5)

where v = 2nNSl§ is the filling factor and Nj is the surface
density of carriers.

In the general case, the results of numerical calculations
show that the magnetic-field dependence of the Hall con-
ductance Gy(B) at zero temperature has inflection points
corresponding to the coincidence of the Fermi level with the
tops of consecutive Landau bands (Fig. 1). The longitudinal
ballistic conductance of a cylindrical sector (unlike that of a
flat strip) exhibits a nonmonotonic dependence on the Fermi
energy: there are sites of decreasing J(V,), where J is the
current along the cylinder axis and V is the gate voltage,
which alters energy of the Fermi system.
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Figure 1. Magnetic-field dependence of the Hall conductance for a
cylindrical sector at different ¢, values. The straight line corresponds to
a flat strip.

4. Spin—orbit interaction at the cylindrical surface

The spin—orbit coupling of two-dimensional electrons is
described by two contributions to the Hamiltonian. One of
them known as the Rashba model is written in the invariant
form as

Vi=mnl6 xpln. (6)

Here, 6; and p are the Pauli matrices and the operator of the
two-dimensional momentum, respectively; n is the normal to
the surface; y, is the constant of spin — orbit interaction, which
differs from zero only for structures asymmetrical in the
direction of the normal (a typical example is a
GaAs/GaAlAs heterojunction).

The second contribution arises from terms that are cubic
in the momentum in the volume Hamiltonian. It can be
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written in the explicit form only for a certain choice of
coordinate axes. Given that the normal to the surface is
parallel to axis z, we have

V)= 72(&xﬁx - &ypy) ) (7)

with y, # 0 being valid also for a symmetric quantum well.
For two-dimensional planar systems, Hamiltonians 7| and
V, are unitarily equivalent, their spectra are identical and
depend only on the moduli |y,| and |y,|. These statements are
invalid in the case of curved surfaces.

The Schrodinger equation including the spin—orbit
interaction admits an exact analytical solution for the case
of a hollow circular cylinder (nanotube). The energy
eigenvalues turn out to be noninvariant with respect to a
change in the sign of the spin —orbit interaction constant: they
contain the products y, R and y, R. This suggests a difference
between the energy spectra of concave and convex systems (it
should be recalled that in the model under consideration we
are dealing with an oriented surface, i.e., directions n and —n
are physically nonequivalent).

In the experiment, the sign of y; can manifest itself in the
absorption of an electromagnetic wave, linearly polarized
along the cylinder axis, by nanotube electrons. Depending on
the senses of y, and the curvature, the absorption maximum
at the spin-flip transition is shifted to the right or to the left
from the position corresponding to the planar structure of the
same material. The contribution V), to the thermodynamic
and optical characteristics of the system after summation over
states are independent of the sign of y,.

Taken together, the above considerations suggest the
possibility, in principle, to distinguish between the contribu-
tions V7 and V, when measuring one and the same response of
the systems differing only in the sense of the curvature (e.g.,
GaAs/GaAlAs heterojunction) bent in such a way that
electrons occur either on the internal or external surface of
the cylinder.

5. Effect of spin—orbit interaction between two-
dimensional electrons on the magnetization of nanotubes
The Schrédinger equation including spin —orbit coupling can
be solved also in the case when a homogeneous magnetic field
aligned parallel to the nanotube axis is applied to the system.
Given a zero longitudinal momentum and a magnetic flux
through the nanotube equal to a half-integer number of flux
quanta, there is crossing of terms related to different spin
projections. This peculiarity of the energy spectrum is
responsible for the anomalies in the system’s magnetization
behavior.

In the absence of spin—orbit interaction, linear suscept-
ibility corresponds to diamagnetism. If the spin-—orbit
coupling for a certain range of parameters of the problem is
included, the sign of susceptibility may be changed (diapar-
atransition). For the same reason (term crossing), the
magnetic susceptibility of the nanotube is characterized by
marked dispersion in the low-frequency region (several orders
of magnitude lower than the frequency of the electron
rotational quantum 4*/2mR?).

We have also demonstrated that the incidence of an
electromagnetic wave linearly polarized along the nanotube
axis (with the external magnetic field oriented in the same
direction) gives rise to a constant magnetic moment propor-
tional to the wave intensity. This photoinduced magnetiza-
tion is proportional to y? (in the Rashba model), shows

resonant dependence on the wave frequency, and attains
maximum at the spin-flip transition frequency.

The effect discussed in the present paper is akin to the
photogalvanic one in that the preferred direction of the
circular current that induces magnetic moment is given by
the vector product [B x n], where the normal n is directed
along the cylinder radius. The second-order response to the
electric field of the wave contains second and zero harmonics,
the latter being responsible for constant magnetization.
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Tunneling measurements of the Coulomb
pseudogap in a two-dimensional electron
system in a quantizing magnetic field

E V Devyatov, A A Shashkin, V T Dolgopolov,
V Hansen, M Halland

It is well known that the injection of a charge in the case of
tunneling into a two-dimensional electron system placed in a
quantizing magnetic field is highly sensitive to multiparticle
effects. Tunneling may occur into the edge of a two-
dimensional system (lateral tunneling) [1-3] and into its
entire plane (vertical tunneling) [4—10]. It has been demon-
strated in Refs [4, 5] that vertical tunneling is sensitive to both
real spectral gaps at integer filling factors and the Coulomb
pseudogap undergoing a shift concurrent with the Fermi level
shift.

A survey of tunneling between identical highly mobile
two-dimensional systems in the ultraquantum limit has
revealed a pseudogap with an exponentially small tunneling
density of states [6]. Since the experiments in [4— 6] have been
performed on samples of different quality and in different
magnetic field limits, it long remained unclear whether the
gaps observed were of similar or different nature. A recent
study [7] has demonstrated that all previously obtained results
may be reproduced using one sample. Therefore, it is inferred
that Refs [4—6] describe the same pseudogap. Ref. [8], in
which the method of an earlier study [6] was employed,
reports surprising evidence that the width of the pseudogap
at a filling factor v = 1/2 can be proportional to the magnetic
field.

An enhancement of the pseudogap in the vicinity of v = 1
accompanied by the appearance of a double-humped struc-
ture in the tunneling resistance has been documented in
experiments on tunneling from a three-dimensional electron
system into a highly mobile two-dimensional electron gas [9].
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