
Abstract. Different explanations for the Sagnac effect are
discussed. It is shown that this effect is a consequence of the
relativistic law of velocity composition and that it can also be
explained adequately within the framework of general relativ-
ity. When certain restrictions on the rotational velocity are
imposed, the Sagnac effect can be attributed to the difference
in the time dilation (or phase change) of material particle wave
functions in the scalar (or correspondingly vector) gravitational
potential of the inertial forces in a rotating reference system for
counterpropagating waves. It is also shown that all the nonre-
lativistic interpretations of the Sagnac effect, which are unfor-
tunately sometimes found in scientific papers, monographs and
textbooks, are wrong in principle, even though the results they
yield are accurate up to relativistic corrections in some special
cases.

1. Introduction

The Sagnac effect [1 ± 3] (see also reviews [4 ± 8] and the review
part in Ref. [9]) is understood as a phase shift of one
counterpropagating wave with respect to another wave of
this mode in a rotating ring interferometer, the shift being
directly proportional to the angular velocity of rotation, the
area enclosed by the interferometer, and the wave frequency.
The Sagnac effect applies to a kinematic effect of the special
theory of relativity (STR) [10] and, as shown in Ref. [11],
ensues from the relativistic law of velocity composition.
Along with the Michelson ±Morley experiment [12, 13], a
Sagnac experiment furnishes one of the basic experiments of
relativity theory. The Sagnac effect outside the optical range
has been described for radiowaves [14], X-rays [15], and
nonelectromagnetic waves, i.e. de Broglie waves of material
particles (electrons [9, 16], neutrons [17, 18], calcium [19],
sodium [20], and caesium [21] atoms). Also, this effect was
theoretically predicted for g-rays [22], acoustic waves, surface
acoustic and surfacemagnetostatic waves (the so-called `slow'
waves) [11, 23] and the de Broglie waves of p-mesons [24].

In principle, the Sagnac effect can also be recorded as the
difference of times spent by a macroscopic body to pass a
closed circular path on a rotating disk when moving in the
direction of rotation and in the opposite sense, the body's
speed with respect to the disk being the same in each case.
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It has been shown [4 ± 9] that the Sagnac effect for both
optical and nonelectromagnetic waves is explained in several
totally different ways including those that reject the theory of
relativity. Nevertheless, most of these interpretations of the
Sagnac effect yield, in some special cases, correct results
despite their obvious incorrectness. This accounts in part for
the lack of a complete understanding of the Sagnac effect and
has given some authors reason to regard it as `puzzling' [25].

The objective of the present work is to provide a strict
derivation of the expression for the magnitude of the Sagnac
effect in the framework of STR for the most general case, i.e.
for waves of arbitrary nature including light waves in a ring
interferometer filled with an optical medium characterized by
a refractive index n and arbitrary dispersion. It will be shown
that the magnitude of the Sagnac effect is independent of
these medium parameters not only in the nonrelativistic limit
but also for an arbitrary rotational velocity.

To the best of my knowledge, this problem has not thus
far been given a rigorous and comprehensive consideration in
the framework of STR for the most general case. A strict
derivation of the expression for the Sagnac effect in terms of
STR in optics was undertaken inRef. [10] but only for the case
of a ring interferometer containing no optical medium. Our
previous work [11] describes the derivation of the expression
for the size of the Sagnac effect for arbitrary waves using
STR; however, it neglects small relativistic corrections. Some
other works consider the Sagnac effect in the framework of
STR only for light waves [5, 26 ± 33] and with a number of
approximations.

The Sagnac effect is known also to have been adequately
explained in the framework of the general theory of relativity
(GTR) (see, for instance, Refs [34, 35]). In this case, the
authors used a metric tensor in the co-moving frame of
reference, attached to a rotating interferometer.

Moreover, the Sagnac effect can be attributed to the
different time dilation in rotating reference systems asso-
ciated with the phase front motions of counterpropagating
waves. Such a possibility is due to the difference in phase
velocities of counterpropagating waves with respect to the
inertial reference system when the ring interferometer rotates.
The same result can be obtained proceeding from the
difference between the Newtonian (nonrelativistic) scalar
gravitational potentials of centrifugal forces for counter-
propagating waves in the above frames of reference (by
virtue of the equivalence principle).

Also, it will be shown that for certain restrictions upon the
rotational velocity of a ring interferometer the Sagnac effect
may be considered to result from different time dilation for
counterpropagating waves in a co-moving frame of reference
attached to the rotating ring interferometer. This time
difference is due to the different signs of the Newtonian
scalar gravitational potentials of Coriolis forces [35], in
consequence of the equivalence principle as well. The
problem appears to have been tackled for the first time in
this light. The Sagnac effect for quantum mechanical objects,
i.e. material particles, can be interpreted as a result of the
action of the vector gravitational potential of Coriolis forces
on the change of the wave function phase [9].

It is worth noting that neither the centrifugal nor Coriolis
forces give rise directly to the Sagnac effect because it is a
kinematic effect unrelated to any force.

Another objective of this work is to consider various
nonrelativistic interpretations of the Sagnac effect and
clearly demonstrate that they are incorrect.

2. Correct explanations of the Sagnac effect

In what is forthcoming, an explanation of the Sagnac effect
will be considered correct if it leads to an exact expression for
the phase difference between counterpropagating waves in a
rotating ring interferometer without imposing particular
limitations on the parameters of the system. Such parameters
are the linear rotational velocity of the ring (the turntable
upon which the interferometer is mounted), the velocities of
waves (including de Broglie waves) or a material object with
respect to a co-moving reference system rotating together
with the ring (certainly, they must not exceed the speed of
light), the material particle mass, etc. All correct explanations
of the Sagnac effect are based on the application of relativity
theory.

2.1 Sagnac effect in the special theory of relativity
Let light or an arbitrary wavemove in a circular orbit (Fig. 1),
as in a fibre ring interferometer (FRI) [36] or a conventional
ring interferometer where the number of circularly arranged
mirrors and prisms ensuring complete internal reflection
tends to infinity. Hereinafter we shall take into consideration
neither changes in the geometric parameters of the inter-
ferometer caused by centrifugal forces nor the transverse shift
of counterpropagating waves induced by centrifugal forces
associated with the bending of their path in the interferom-
eter. This shift accounts for an equally insignificant enlarge-
ment of the enclosed area of the ring for the two counter-
propagating waves [37, 38]. Hence, there is no phase
difference between them.

In the majority of cases (see, for instance, Ref. [10]), the
expression for the Sagnac effect in the framework of STR is
derived taking advantage of the invariance of the interval
x2 � y2 � z2 ÿ c2t 2 (where x; y; z are the wave front coordi-
nates, and t is the time). Following our earlier work [11], we
propose to address the problem in question in a simpler and
physically more illustrative way based on the relativistic law
of velocity composition. This approach allows the expression
for the Sagnac effect to be obtained (without loss of general-
ity) in the case of arbitrary waves, in particular, electromag-
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Figure 1. Ring interferometer: 1 Ð radiation source, 2 Ð beam-splitting

plate (semitransparent mirror), 3 Ð mirrors, 4 Ð photodetector. The

arrow shows the direction of interferometer rotation.
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netic waves, in a ring interferometer containing an optical
medium with an arbitrary refractive index and dispersion.

Let us consider the Sagnac effect in themost general form,
that is for arbitrary waves spreading in an arbitrary medium
with a phase velocity v�ph. Illustrated below are the expressions
for the path length l � in a laboratory (stationary) system of
coordinates K, where the special theory of relativity holds a
priori (sign plus corresponds to a wave travelling in the
direction of rotation, and sign minus to a wave propagating
in the opposite direction):

l � � 2pR� ROt� ; �1�

v�ph �
vph � RO

1� vphRO=c2 : �2�

Here,R is the ring radius,O is the angular velocity of rotation,
c is the speed of light in vacuum, and t� � l �=v�ph are the
times spent by counterpropagating waves to complete one
trip around the enclosed area of the ring.

Let us now consider the physical meaning of the phase
velocities v�ph of counterpropagating waves in a rotating ring
interferometer. The problem is not so simple as it appears at
first sight. The fact is the device recording the interference
fringes produced by counterpropagating waves (a photode-
tector or photographic plate, for light waves) (see Fig. 1) fails
to show any changes in the pattern at a constant angular
velocity O and monochromatic harmonic oscillations being
studied. It records a constant phase difference between the
counterpropagating waves, and it is difficult to draw a
definitive conclusion about their velocities.

The Sagnac effect can be addressed in a simpler way if two
counterpropagating pulses of a certain nature are assumed to
travel in a ring interferometer. In this case, their velocities are
group velocities which can also be obtained by the relativistic
summation (with an appropriate sign) of the pulse group
velocity and linear velocity RO. Such pulses, if sufficiently
short, reach the interferometer beam-splitter (which is
displaced some distance while they propagate round the
circle) at different times and therefore produce no inter-
ference pattern. The propagation time difference measured
by one of the available methods will characterize the
magnitude of the Sagnac effect. Recruiting the interference
of counterpropagating waves increases the sensitivity of
measuring the angular velocity of rotation by many orders
of magnitude compared with its estimation from the
difference between the times necessary for each pulse to
reach the detector. For the event of electromagnetic waves
in the absence of an optical medium, the phase and group
velocities of light coincide, and the travelling time difference
between the counterpropagating waves can be computed for
group velocities (see, for instance, Ref. [10]). The calculated
results thus obtained may be used to measure interference
between counterpropagating waves. However, in the most
general case (especially for waves of arbitrary nature), the
computation of the parameters describing counterpropagat-
ing wave interference requires that all intermediate calcula-
tions be made for phase velocities of the waves; hence, the
necessity of an adequate definition.

We shall now demonstrate why it is possible to use the
phase velocity of the wave for the computation despite the
lack of its correspondence to any real displacement of a
physical object in space or energy transfer. It is known (see,
for instance, Ref. [34]) that the parameters ict, r give rise to the
4-vector in a four-dimensional Minkowski space-time. The

expression for the wave phase has the form

kr� ot � f � inv

(where k � x0kx � y0ky � z0kz is the vector formed by wave
numbers kx, ky, kz; r � x0x� y0y� z0z; ki � 2pni=l; o is the
circular wave frequency; ni is the index of refraction in the ith
direction, i � x; y; z; x0, y0, z0 are the orthogonal unit vectors,
and l is the wavelength) because the phase as a scalar quantity
is invariant with respect to Lorentz transformations. For this
reason, the quantities o, k also give rise to the 4-vector in a
generalized four-dimensional space of wave numbers, all
components of which show similar translational properties
during the transition from the frame of reference K to the
frame of reference K 0. Then Dr=Dt � v g is the group velocity
of the wave, and o=k � vph is its phase velocity, where
k � �k2x � k2y � k2z�1=2; therefore, both vg and vph have
identical translational properties during the transition from
the frame of reference K to the frame of reference K 0.

Let us define the phase velocity of the counterpropagating
waves each as a linear velocity of its fixed phase point travel
around the ring.

According to Eqns (1), (2), the times t� are given by

t� � 2pR�1� vphRO=c2�
vph�1ÿ R 2O2=c2� : �3�

The propagation time difference between counterrunning
waves is found as

Dt � t� ÿ tÿ � 4pR 2O

c2�1ÿ R 2O2=c2� : �4�

Thus, the difference between the circulation times of counter-
propagating waves is independent of their phase velocity.
Consequently, the propagation time difference due to the
Sagnac effect is unrelated towhether the ring interferometer is
filled with an optical medium or not. Moreover, it follows
that for arbitrary waves (e.g. acoustic waves, the velocity of
which is much lower than the velocity of light) such a time
difference is equal to that of electromagnetic waves provided
the wave frequency, enclosed area of the rotating ring
interferometer, and angular velocity of rotation are identical.

It is also apparent from expression (4) that waves
producing an interference pattern on the beam-splitting
mirror at the ring input (i.e. those reaching it simultaneously
after a full circulation) leave it with a time lag Dt. This in no
way affects the visibility of the fringe pattern since we are
dealing here with monochromatic harmonic oscillations.
However, if an oscillation spectrum of finite width is utilized
in a ring interferometer andDt exceeds the correlation time of
these oscillations, the fringe pattern visibility may fall
considerably.

The majority of authors concerned with the assessment of
the Sagnac effect size confine themselves to the calculation of
the quantity Dt. It has been mentioned above, however, that
in experiment the phase difference of two waves is measured
rather than the times during which the counterpropagating
waves travel their respective paths round the ring; hence, the
necessity of a relevant expression.

In order to calculate a phase difference (attributable to the
Sagnac effect) between counterpropagating waves at the exit
from a ring, it is more expeditious to pass to the co-moving
frame of reference K 0 rotating together with the interferom-
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eter. This is necessary for several reasons. Firstly, the
interference pattern is recorded by a photodetector or
imprinted on a photographic plate fixed in the frame of
reference attending rotation (in fact, interference fringes are
already apparent at the beam-splitter of the ring interferom-
eter). Secondly, in the laboratory (stationary) system of
coordinates K, the beam-splitter serves as both the source
and actually the detector of radiation and, besides, is in
motion. This may lead to a completely inadequate conclu-
sion that the classical Doppler effect takes place in such a
situation [39] (this mistake will be considered at a greater
length in Section 5.3). The passage to the co-moving frame of
reference K 0 attending the interferometer rotation (where the
beam-splitter of the ring interferometer is immobile) obviates
the necessity for considering this question here.

In accordance with the Lorentz transformations [40], the
propagation time difference between counterrunning waves
in the frame of reference K 0 is equal to

Dt 0 � Dt

����������������������������
1ÿ R 2O2

c2

�s
� 4pR 2O

c2�1ÿ R 2O2=c2�1=2
: �5�

The phase difference (attributable to the Sagnac effect)
between the counterpropagating waves at the ring output is

FS � oDt 0 � 4SOo

c2�1ÿ R 2O2=c2�1=2
� 8pSOn

c2�1ÿ R 2O2=c2�1=2
; �6�

where n is the frequency of the radiation source in the frame of
reference K 0 if the source is located at distance R from the
center of rotation, i.e. exactly on the ring; o � 2pn is the
circular frequency of the radiation source, and S � pR 2 is the
ring area.

If the radiation source is full at the center of rotation, then
its radiation frequency is shifted by R2O2=�2c2� to a higher
frequency range with respect to the frequency of the same
source lying at distance R from the center of rotation [41].
This effect was observed in experiment [42].

When a radiation source is placed in a fixed frame of
reference K, the shift of its frequency on passage to the frame
of reference K 0 attending the ring rotation depends on how
radiation enters the ring interferometer. If the radiation from
a stationary source falls directly on the moving beam-splitter
of the ring interferometer, its frequency changes byRO=c due
to the classical Doppler effect. The sign of this change
depends on whether the beam-splitter approaches the source
or moves away. This mode of radiation coupling into a ring
interferometer is highly inconvenient because the radiation is
transmitted over a small part of the ring revolution. For FRI
connected with a fixed radiation source by a sufficiently long
section of a single-mode optical fiber (SMOF), such amethod
ensures radiation transfer throughout many revolutions of
the ring [43]. However, it should be borne in mind that linear
and torsion strains in the connecting SMOF section lead to a
change of its optical length, while its motion produces
Fresnel ± Fizeau light drag effect [39, 44] which is rather
difficult to take into account in the analysis of experimental
findings [45]. It is much more convenient to feed radiation
into the ring interferometer from above, through a system of
mirrors directing a light beam at the center of ring rotation. In
this case, the radiation does not undergo a frequency shift,
and the ring rotation leads to no optical disalignment.
Thereupon the radiation runs from the center of rotation

along the radius into the ring interferometer and undergoes a
frequency change (rise), as mentioned above, only to second
order in RO=c. Such a way of radiation coupling into the ring
interferometer was first proposed by F Harress [46] (see Refs
[4 ± 6, 8, 26, 47 ± 49] for the description of experiments [46])
followed by B Pogany [50 ± 52] and A Dufour and F Prunier
[53]. A Einstein [54] analyzed the experiments of Harress [46]
and showed that, using thismethod of radiation feeding into a
ring interferometer, the radiation frequency does not change
to first order in RO=c.

Two important conclusions can be drawn from expression
(6).

I. The phase difference between counterpropagating
waves due to the Sagnac effect depends on the wave
frequency n rather than the wave phase velocity. It follows in
particular that the phase difference between counterpropa-
gating waves, attributable to the Sagnac effect in the optical
range with vph � c=n, depends neither on the refractive index
n of the optical medium filling the interferometer nor on its
dispersion dn=dl, regardless of the ratioRO=c. The authors of
Ref. [10] supposed that such a situation holds only in the
nonrelativistic limit. The dependence of the counterpropagat-
ing wave phase difference on the refractive index n in a single-
mode optical fiber making the FRI was discussed in Ref. [55].
Later on, it was shown by means of rather complicated
computations using the expression for the Fresnel ± Fizeau
drag coefficient in an optical medium [33, 56] that the phase
difference between counterpropagating waves, attributable to
the Sagnac effect, does not depend on the refractive index n.
However, it did not put an end to the discussion about the
effect of dispersion of the refractive index dn=dl [57]. (See also
the works of Einstein [54] and Post [5] as well as our papers [8,
11] concerning this issue.) The phase velocity of an arbitrary
wave being independent of medium dispersion, the dispersion
can in no way influence the magnitude of the Sagnac effect.

II. In expression (2), we used the relativistic law of the
composition of phase velocity vph and the ring rotational
velocity RO, in correspondence with the opinion that the
Sagnac effect constitutes an STR effect [10, 11]. It will be
shown in Section 5.2 that application of the Galilean law of
the velocity composition to the consideration of the Sagnac
effect for waves propagating in material media leads to the
erroneous conclusion that this effect does not show itself.

To illustrate the use of expression (6), let us consider the
Sagnac effect for electromagnetic waves in an interferometer
filled with an optical medium. The light wavelength is then
l � c=n. In this case, expression (6) assumes the form

FS � 8pSO

lc�1ÿ R2O2=c2�1=2
: �7�

It wasmentioned in a previous paragraph that the influence of
the refractive index of a medium and its dispersion on the
magnitude of the Sagnac effect remains a matter of con-
troversy. Below, there are expressions for the shift of
interference fringes produced by counterpropagating waves
in a ring interferometer, Dz (FS � 2pDz), and for the
frequency difference of counterpropagating waves in a ring
laser, Dn (the frequency difference between counterpropagat-
ing waves, attributable to the Sagnac effect in a ring laser, is
inversely proportional to the refractive index [5]). Both the
interferometer and the laser cavity of perimeter L contain an
optical medium with an index of refraction n and dispersion
dn=dl. The expressions are given for different situations of
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medium and cavity rotation with the proviso that O � const
[5, 8].

(1) Both the interferometer and the medium rotate
together as a whole:

Dz � 4SOn2�1ÿ a�
lc

� 4SO
lc

; Dn � 4SO
lLn

; �8�

where a � 1ÿ 1=n2 is the Fresnel drag coefficient, S is the
enclosed area of the ring interferometer or the cavity of the
ring laser, and l is the light wavelength in a vacuum.

(2) The interferometer rotates, while the medium is
stationary:

Dz � 4SOn2

lc
; Dn � 4SOn

lL
: �9�

(3) The interferometer is nonrotating and the medium
rotates within fixed boundaries (this case may correspond to
the rotation of a glass cylinder or pumping a fluid through a
cuvette placed inside a stationary ring interferometer):

Dz � 4SOn2a
lc

� 4SOn2

lc

�
1ÿ 1

n2
ÿ l
n

dn

dl

�
;

Dn � 4SOn
lL

�
1ÿ 1

n2
ÿ l
n

dn

dl

�
; �10�

where a � 1ÿ 1=n2 ÿ �l=n��dn=dl� is the Fresnel drag
coefficient with the Lorentz correction [54].

(4) The interferometer is at rest, while the medium
executes a translational motion and has movable boundaries:

Dz � 4SOn2a
lc

� 4SOn2

lc

�
1ÿ 1

n2
ÿ l
n2

dn

dl

�
;

Dn � 4SOn
lL

�
1ÿ 1

n2
ÿ l
n2

dn

dl

�
; �11�

where a � 1ÿ 1=n2 ÿ �l=n2��dn=dl� is the Laub drag coeffi-
cient.

The Sagnac effect in its pure form is realized only in
Situation 1 when all parts of the interferometer rotate as a
whole, and a shift of interference fringes is indicative of the
rotation with respect to the inertial reference system. In all
other situations, there is always a static part of the inter-
ferometer with respect to which one may measure rotation by
a mechanical or any other technique. Situation 3 is in perfect
correspondence with HFizeau's experiments [59, 60] in which
water was pumped through a cuvette placed in a stationary
ring interferometer. Situation 4 fully reproduces the experi-
ments of P Zeeman [61, 62] (see also reviews [6, 49]), in which
among other things a bar of quartz or flint having optical
surfaces perpendicular to a beam of light moved progressively
in a stationary ring interferometer along the beam direction.
These experiments were designed to verify the form of the
Laub drag coefficient and may be regarded as a demonstra-
tion of themodified Fresnel ± Fizeau drag effect. The physical
meaning of the appearance of a phase difference between
counterpropagating waves in Situation 2 corresponding to
the experiments ofDufour and Prunier [53] ismore difficult to
define. If the situation is considered in a frame of reference
attached to the rotating interferometer and then the filling
medium rotates with respect to this reference system, it may

be stated that the Fresnel ± Fizeau light drag takes place. The
Sagnac effect also occurs in this case. Therefore, Situation 2
corresponds to the presence of both the Sagnac effect and the
Fresnel ± Fizeau drag effect in the frame of reference attached
to the rotating interferometer.

Expressions for the form of the drag coefficient in
Situations 1, 3, and 4 were obtained by Einstein [54] back in
1914 in the realm of STR.

Experiments on ring interferometers corresponding to
Situations 1, 2, and 3 have been described in detail in our
review [8] (see alsoRefs [5, 43, 49]). Situation 4, besides having
been reproduced in Zeeman's experiments [61, 62], also
prevailed in the notorious experiments of W Kantor [63], in
which two thin optical plates attached to the opposing arms of
a fixed ring interferometer moved in opposite directions, and
their motion at the instant of measurement was close to
translational. The results obtained in experiments [63] led
the author to the wrong conclusion that the moving plates,
regarded as the source of radiation, emitted it at a velocity
exceeding that of light. Despite the higher accuracy of similar
experiments repeated by other authors [64], they failed to
confirm this conclusion. We present here for the first time an
adequate expression for the shift of interference fringes in
Situation 4.

The form of the drag coefficient was verified experimen-
tally in the 1970s [65, 66].

The interference of counterpropagating waves of different
nature is not the sole tool for detecting the Sagnac effect. If a
macroscopic body moves round a circle with velocity v in
relation to a rotating reference system, the difference between
the circulation times in opposite directions is also described
by expression (4).

If the body is a material particle to which a de Broglie
wave corresponds, there appears a possibility, as mentioned
above, of using the interference of counterpropagating waves
for recording the Sagnac effect.

A Einstein was the first to consider wave propagation in a
rotating ring interferometer with the aid of STR. His work
[54] written in 1914 contained a discussion of Harress'
experiments [46]. In this work, Einstein was not interested in
the derivation of an expression for the phase difference
between counterpropagating waves due to the Sagnac effect.
He concentrated instead on the narrower problem of finding
an expression for the form of the light drag coefficient in the
event of a co-moving ring interferometer and optical medium.
His intention was to show that this expression did not depend
on the optical medium's dispersion. H Witte considered the
Sagnac effect in the framework of STR in the same year [67,
68].

In 1920, M Laue [26] undertook a theoretical analysis of
the experiments conducted in Ref. [46], proceeding from the
relativistic law of velocity composition. From a didactic point
of view, it was a lame attempt since M Laue neglected the
terms of second and higher orders in v=c in the expression for
the travel times of counterpropagating waves. As a result, he
eventually restricted the consideration to the classical kine-
matic analysis of the Sagnac effect (see Section 5.2) based on
the Galilean law of the composition of counterpropagating
wave velocities and the platform rotational velocity as he had
done in an earlier work [69]. Moreover, Laue actually tried in
Ref. [69] to reduce the Sagnac effect to the Fizeau drag effect
[59, 90] (see Section 5.4).

L Silberstein [27] arrived at an expression for the phase
difference of counterpropagating waves due to the Sagnac
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effect by taking advantage of the invariance property of the
interval

ds2 � c2 dt 2 ÿ dr2 ÿ r2 dj2 ÿ dz2

(where t is the time, and r, j, and z are cylindrical
coordinates). However, the author of the cited work con-
sidered such an explanation unsatisfactory and further
addressed the Sagnac effect from the standpoint of STR,
ether theory (see Section 5.1), and the action of Coriolis forces
in the path of counterpropagating light beams (see Section
5.5).

In the works of A Lunn [70], C Runge [71], C Corps [28],
P Langevin [72], A Metz [29 ± 32], C Mùller [73], E Post [5],
S Ezekiel [33], H Arditty and H Lefevre [37, 38, 74, 75],
J Wilkinson [76], D Allan, M Weiss, and N Ashby [77],
A Logunov and Yu Chugreev [10, 78], D Dieks and
G Nienhuis [79], D Dieks [80], F Hehl and W Ni [81],
G Vugal'ter and G Malykin [11], the Sagnac effect is also
considered from the STR standpoint.

The analysis of the Sagnac effect in a laboratory (inertial)
coordinate system within STR is based on the fact that this
theory allows relativistic kinematic transformations to be
considered not only for a point making a uniform motion
but also for a point undergoing acceleration [82].

There was a long-standing opinion after STR was created
[40] that all events in noninertial (e.g. rotating) reference
systems should be considered only in the domain ofGTR (see,
for instance, Refs [82 ± 84]). However, the use of GTR is
unnecessary when purely kinematic effects are considered.
Here is a quotation from Einstein's work [85]: ``Kinematic
equivalence of two coordinate systems is actually not
restricted to the case when systems K and K 0 make rectilinear
uniform motions. From the kinematic standpoint, this
equivalence is fairly well satisfied, for instance, if one system
uniformly rotates with respect to the other.'' W Wien [86]
appears to have been the first to notice that STR can be used
for the description of phenomena in noninertial systems after
he came to know the results obtained by H Minkowski in
work [87]. In the absence of gravitational fields, when there is
no space curvature, noninertial frames of reference can be
described in terms of STR in the most general way, for
arbitrary accelerations and not only for kinematic events
[88, 89]. In Ref. [10], such an approach was applied to the
computation of the Sagnac effect in a reference system
attached to a rotating ring interferometer. In that case, the
authors used a metric tensor in the four-dimensional
Minkowski space-time [87] for which the curvature tensor
was zero.

There is a thirdmethod for the computation of the Sagnac
effect in the framework of STR. It consists in the calculation
of the Lorentzian time dilation difference in the moving
reference systems K � and K ÿ which attend the fixed phase
points of counterpropagating waves. This difference can be
conveniently illustrated as the difference between the readings
of two clocks sent along a circular path with radius R. The
clocks are transported with equal but opposite linear
velocities �v� relative to the center of a disk rotating at an
angular velocity O. The center of the ring and the center of
rotation coincide, as before (the reference systems K � and
K ÿ may be substituted by a set of instantaneously attending
inertial frames of reference). At the instant of time the clocks'
positions in space coincide, they undergo synchronization.
The difference between the readings of the clocks is measured

after the one travelling in the direction of disk rotation (the
corresponding parameters are designated �) and the other
moving in the opposite direction �ÿ� have completed
approximately one circular trip each and met again. Without
any loss of generality, it may be assumed that v � vph, i.e. the
clock velocity with respect to the disk is identical with the
phase velocity of counterpropagating waves. Certainly, this is
true if vph 4 c.

If clock synchronization occurs at the point on the ring
occupied by the beam-splitting mirror, the clocks (similar to
the pulses of light above) will meet again at another point of
the ring after having completed one revolution each. A simple
computation indicates that this point falls ROvph=c2 radians
behind the new angular position of the beam-splitter
(synchronization point) which it will occupy when the clocks
reencounter each other in space. Therefore, the propagation
time difference between counterrunning waves, attributable
to the Sagnac effect and computed using expressions (1) ± (6)
(i.e. from their travel times between beam-splitters in a
rotating ring interferometer), and the time lag in synchro-
nized clocks (fixed phase points of the wave front) travelling
in their own reference systems from the beam-splitter to the
meeting point should differ but insignificantly. The relative
difference measuresROvph=c2. Thus, an accurate comparison
between the calculated time differences relevant to counter-
propagating waves, obtained by these methods, encounters
difficulty. Further calculations will be done in neglect of small
relativistic corrections which are of no practical value in the
present case because the exact expressions for the magnitude
of the Sagnac effect have already been found [see Eqns (4) ±
(7)]. Here, it is more important to illustrate the physical
meaning of this effect in reference systems K � and K ÿ

attached to the fixed phase points of counterpropagating
wave fronts.

In accordance with the Lorentz transformations, the times
spent by the clocks to trace around the ring in the clock-
attending rotating reference systems K � and K ÿ are

tK
� � t

���������������������
1ÿ �v

�
ph�2
c2

s
; �12�

where t � 4pR=�v�ph � vÿph� is the time needed for counter-
propagating waves to pass from the beam-splitter of a ring
interferometer to their meeting point in the laboratory (fixed)
reference system, and v�ph are the phase velocities of counter-
propagating waves in the laboratory frame of reference [see
expression (2)].

The difference between times tK
�
and tK

ÿ
after checking

the clocks is

DtK
�;K ÿ � tK

ÿ ÿ tK
� ' 4pR2O

c2
���������������������
1ÿ v 2ph=c2

q
� 4SO

c2
���������������������
1ÿ v 2ph=c2

q ; �13�

where S is the area enclosed by the ring.
Expression (13) gives the difference between the readings

of clocks which are in motion in different frames of reference
K � and K ÿ. The velocities of these frames of reference with
respect to a stationary reference system K are very close in
absolute figures. Nevertheless, they are somewhat different
[see expression (2)] and opposite in sign. The calculation of
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the time difference Dt in the fixed frame of reference K gives

Dt � DtK
� ;K ÿ���������������������

1ÿ v 2ph=c2
q � 4SO

c2
: �14�

Expression (14) coincides with expression (4) to within small
relativistic corrections. In other words, the propagation time
difference between counterpropagating waves, calculated by
the latter method, does not depend on their phase velocity
either. It is also worth noting that in expression (4) t� > tÿ

while in expression (13) tK
�
< tK

ÿ
. This is due to the

dissimilarity between the time difference of counterpropagat-
ing waves passing around the rotating ring from one beam-
splitter to another in the laboratory frame of reference K and
the time difference of counterpropagating waves which travel
from the beam-splitter to the meeting point in their intrinsic
frames of reference K � and K ÿ.

2.2 Sagnac effect in the general theory of relativity
It has been shown in the foregoing that the Sagnac effect is a
corollary to the relativistic law of velocity composition, i.e. it
presents a kinematic effect of STR. Despite this, many
authors consider the Sagnac effect in terms of GTR.

Let us try to understand why these authors choose to
tackle the problem in the domain of GTR. This is what
M-A Tonnelat writes in his book [35] after having described
the results of Sagnac's experiment: ``Thus, the following
ensues from these experiments concerning systems with
acceleration. In the case of accelerated motions, it appears
possible to determine absolute motion. In the absence of
reference systems based on other solids, it needs to be
assumed that such absolute motions (e.g. rotation of the
Earth in experiments with a Foucault pendulum) occur with
respect to a vacuum, i.e. absolute space. In the light of
criticism met by the special theory of relativity, this assump-
tion should be regarded as unsatisfactory, and the question
may be posed: is not such absolutemotion related by necessity
to the presence of other masses, i.e. the existence of remote
stars? Mach held this view.'' This quotation prompts two
propositions.

(1) It is supposed that the Sagnac effect may be due to the
action of inertial forces which arise in a rotating frame of
reference.

(2) It is conjectured whether inertial forces themselves
may result from the effect of large remote masses, i.e. the
Mach principle [90] is verified.

In a sense the first proposition appears to be true. As will
be shown below (see Sections 3.1 and 3.2), the Sagnac effect is
not an immediate consequence of the action of inertial forces
on amacroscopic body,material particle or wave in a rotating
frame of reference. Nevertheless, it may be interpreted (with
certain limitations and assumptions) as a corollary to
different time dilations in rotating frames of reference,
attached to the motion of counterpropagating wave phase
fronts in the potential of the equivalent gravitational field of
centrifugal accelerations (due to different counterrunning
wave velocities, hence different centrifugal accelerations),
with respect to the inertial coordinate system as a ring
interferometer rotates. Alternatively, the Sagnac effect may
arise from the different signs of the potential in the equivalent
gravitational fields of Coriolis accelerations for counter-
propagating waves; in other words, it may be due to inertial
forces. It is worthwhile to note that the scientific literature
contains many allusions to the similarity between the Sagnac

effect and theFoucault pendulum (see, for instance,Ref. [91]).
It should be borne in mind, however, that neither the
centrifugal force nor Coriolis force may be the direct cause
of the Sagnac effect occurrence since both are perpendicular
to the motion of a wave front (macroscopic body or material
particle) during its travel along a circular path and produce no
work. The Sagnac effect relates to the category of kinematic
effects unrelated to any force.

The validity of the second proposition remains to be
established. Classical mechanics does not take the nature of
inertial forces as its main subject matter [82, 92 ± 94]; never-
theless, there has been a long-standing debate on whether
these forces are real or fictitious [95]. In the early GTR
history, Einstein was convinced of the validity of the Mach
principle [85, 96, 97]. However, he never again applied it to
explain the nature of inertial forces after he had acquainted
himself with a paper by W de Sitter [98]. (See Ref. [99] for the
evolution of Einstein's views of the problem.) The works of
J Lense and H Thirring [100 ± 103] gave rise to the opinion
that the existence of centrifugal and Coriolis forces in a
rotating frame of reference was due to the Lense ±Thirring
effect caused by the rotation of all masses in the Universe
relative to an observer located in the rotating frame of
reference. This opinion was shared by H Weyl [104].
However, it became clear by the 1960s that it is impossible
to strictly prove a Mach principle in GTR in this form, too
[99, 105, 106]. The main difficulty is that in considering the
relative motion of distant masses with respect to a rotating
frame of reference one has to deal with supraluminal
relative speeds; this renders the calculation of a Lense ±
Thirring effect not feasible. Indeed, to an observer on the
Earth, rotating at an angular velocity of only 1 rps, the
Moon (to say nothing about other masses in the Universe)
will travel with a velocity exceeding the velocity of light.
Difficulties encountered in applying the Mach principle to
GTR stimulated the development of alternative gravitation
theories, in particular, Brans ±Dicke theory [107, 108] and
Logunov's relativistic gravitation theory [109]. At present,
there are many gravitation theories different from GTR;
they are described in Ref. [110]. A characteristic feature of
the majority of such theories consists in that they yield
practically the same predictions as GTR, given weak
gravitational fields (what occurs, for example, within the
bounds of the solar system).

The classical analysis of the Sagnac effect in terms ofGTR
was undertaken by L D Landau and E M Lifshitz in their
Course of Theoretical Physics [34]. They used a metric tensor
to calculate the propagation time difference between counter-
running waves in a frame of reference attending rotation. In
Ref. [34], elements of themetric tensor in the rotating frame of
reference that lacked gravitational fields (i.e. in the absence of
space curvature) were calculated by the same method as in
Ref. [10], that is taking advantage of an interval invariance.
Therefore, the discussion of whether purely kinematic
problems in rotating frames of reference in the absence of
gravitating masses should be considered in terms of GTR or
STR is a mere scholasticism; indeed, it is a question of
definition (from the mathematical standpoint, there is no
difference between calculations in GTR [34] and STR [10]).

In the presence of real gravitational fields, the expression
for the gravitational potential U contains additional terms
corresponding to these fields, and the Sagnac effect can be
computed using only GTR [111 ± 116]. It appears more
rational to use GTR if a ring interferometer rotates with a
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significant angular acceleration and the angular velocity
considerably changes during the by-pass time around a ring
for counterpropagating waves [57, 117].

The Sagnac effect was first considered in the framework of
GTR by P Langevin [118] and L Silberstein [27] in 1921. Later
on, the same approach was used in the works of L D Landau
andEMLifshitz [34],M-ATonnelat [35], CHeer [119], EPost
[120, 121], A M Khromykh [122], EÂ M Belenov and
E P Markin [117], A I Bakalyar and D P Luk'yanov [123],
A M Volkov, A A Izmest'ev, V A Kiselev, and G V Skrotski|̄
[111, 124, 125], B F Fedorov, A G Sheremet'ev, and
V N Umnikov [126], A Ashtekar and A Magnon [127],
S I Bychkov, D P Luk'yanov and A I Bakalyar [128],
L Stodolsky [129], I V Shpak and A V Solomin [116],
J Anandan [130,131], V F Fateev [57, 115], W Chow, D Gea-
Banacloche, L Pedrotti, V Sanders, W Schleich, and M Scalli
[132], and A G Sheremet'ev [36]. A Sommerfeld [91] also
believed that the Sagnac effect can be strictly considered only
in the framework of GTR.

The Sagnac effect is easy to calculate in GTR when a ring
interferometer or the cavity of a ring laser is devoid of an
optical medium. In the presence of an optical medium, the
appropriate calculation inGTR ismuchmore difficult than in
STR and often leads to the advent of mistakes.

Here are a few illustrative examples of such mistakes. So,
it follows from Refs [124, 125] that in a rotating ring laser the
polarization planes of counterpropagating waves will be
turned between themselves through an angle which is
numerically equal to their phase difference attributable to
the Sagnac effect. It will be shown below (see Section 5.6) that
this is an erroneous result which was previously obtained in
Ref. [133] by a different (incorrect) method, that is by taking
into account photon orbital momenta in a rotating frame of
reference.

Difficulties also arise when GTR is used to evaluate the
influence exerted on the Sagnac effect by the refractive index
of the medium filling a ring interferometer or the cavity of a
ring laser and by the dispersion of this index. It has been
shown in the foregoing that the phase difference between
counterpropagating waves in a ring interferometer due to the
Sagnac effect depends neither on the refractive index nor on
its dispersion if the interferometer (or cavity) uniformly
rotates together with the filling medium as a single entity.
Conversely, it follows fromRefs [116, 134] that in this case the
dispersion of the SMOF refractive index appears in the
expression for the phase difference between counterpropagat-
ing waves, while the light drag coefficient has the form of the
Laub coefficient [54, 58]. This discrepancy obscures the
problem under consideration.

For all that, the use of GTR for the calculation of the
Sagnac effect showing itself in an interferometer filled with an
optical medium does not necessarily leads to a mistake. By
way of example, it has been shown in Refs [35, 57, 115] that in
a rotating interferometer with a co-movingmedium the fringe
shift depends neither on the refractive index nor its disper-
sion. However, the problems of interest are easier to consider
in the framework of STR.

The main result of this section is that the use of GTR for
the calculation of the Sagnac effect is warranted but not
rational. It complicates the computation and sometimes leads
to mistakes. The use of GTR is relevant when a ring
interferometer rotates with a large angular acceleration. In
addition, if the gravitational field effect is to be taken into
account, GTR should be necessarily used.

2.3 Methods for computing the Sagnac effect for
electromagnetic waves in anisotropic media
The Sagnac effect for electromagnetic waves is not infre-
quently calculated using Maxwell equations. Certain authors
(see Refs [5, 38, 111 ± 116, 119, 122, 124, 125, 132, 135 ± 147])
calculated the Sagnac effect by solving Maxwell equations in
a rotating frame of reference. This is a merely computational
method rather than an original approach to the consideration
of the Sagnac effect. In each particular case, one of two
available options is used for the calculation, either STR [5,
137, 142, 145, 146] or GTR [111 ± 116, 119, 122, 124, 125, 132,
135, 138 ± 141, 144, 147]. This method comes to mind when it
is necessary to compute the Sagnac effect in the presence of an
optical medium, in particular, when the medium is an
anisotropic one. In Ref. [136], the Maxwell equations are
used in combination with an incorrect approach to the
evaluation of the Sagnac effect (the reader is referred to
Section 5.7 for a detailed discussion). It is worthwhile to
note that the Maxwell equations are invariant with respect to
the Lorentz transformations and therefore correspond to
STR.

Meanwhile, it is well known that the medium's anisotropy
in a ring interferometer is much easier to take into considera-
tion using Johnsmatrices [148] since they are derived from the
Maxwell equations.

The Johns matrices were utilized in Refs [149 ± 163] to
calculate the unrelated-to-rotation phase shift of an outgoing
interference signal related to the polarizational nonrecipro-
city of the FRI contour [149 ± 153, 164 ± 166] made of
anisotropic SMOF. This phase shift adds to the phase shift
attributable to the Sagnac effect and leads to an error in the
measurement of the angular velocity of rotation. If the SMOF
of which the FRI contour is made exhibits random irregula-
rities of birefringence, a drift of the FRI zero point occurs,
characterized by a mean value and dispersion [151 ± 163].

When Silberstein [27] contemplated in 1921 the then
forthcoming experiments of A Michelson and H Gale [167,
168], which he inspired and partly supported, he pointed to
the possibility of recording the Lense ±Thirring effect caused
by rotation of the Earth [100 ± 103] using an optical ring
interferometer with a large reflecting surface. In 1981,
M Scully and co-authors [169] reexamined this problem
and discussed the feasibility of applying FRI to the
measurement of certain GTR effects including the Lense ±
Thirring effect. According to our estimates, such experi-
ments could be realized with a FRI having one SMOF loop
about 7 km in diameter [161, 163] because mode coupling on
SMOF irregularities leads to a drift of the interference
pattern zero at the exit from FRI. Another difficulty results
from the rotation of the Earth, which accounts for rather a
large shift of the fringe pattern origin due to the Sagnac
effect in such a big FRI. The use of a source of polychro-
matic radiation allows the FRI zero drift to be significantly
diminished [152 ± 155]. In this case, the visibility of the
interference pattern falls off with a rise in FS because this
quantity is proportional to the optical frequency of light, in
agreement with expression (6). This finding has been
confirmed in experiment [170]. We employed the method of
Johns matrices to show that the presence of random
irregularities in SMOF is responsible for a significant
improvement of the interference pattern visibility at very
large FS values [171]. Thus, calculations using Johns
matrices are conducive to the solution of rather complicated
problems pertaining to the assessment of polarizational
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nonreciprocity and visibility of the interference pattern in
FRI with a randomly anisotropic medium.

The rotation-related anisotropy of a medium was con-
sidered in Ref. [172] using Maxwell equations. It should be
emphasized, however, that the effect in question is very small
at the real angular velocities of rotation (according to
Ref. [172], rotation-induced circular birefringence is
Dnc � 10ÿ18) and can hardly be observed in experiment.

When an anisotropic optical medium is in motion with
respect to the interferometer (see, for instance, the experi-
ments described in Refs [43, 45, 53], the Maxwell equations
need to be solved in order to take into account the bending of
the ray trajectory related to the Fizeau light drag [173].

2.4 Main results of the analysis of the Sagnac effect in the
framework of relativity theory
Thus, the Sagnac effect in the realm of relativity theory may
be addressed in the following contexts.

In the framework of STR:
Ð in a laboratory (stationary) system of coordinates

taking advantage of the relativistic law of velocity composi-
tion;

Ð in a co-moving system of coordinates attached to a
rotating ring interferometer using a metric tensor in plane
four-dimensional Minkowski space-time;

Ð in a co-moving system of coordinates attached to the
wave fronts (fixed phase points) of counterpropagating waves
using the relativistic law of velocity composition and Lorentz
transformations.

In the framework of GTR:
Ð in a co-moving coordinate system attached to a

rotating ring interferometer using a metric tensor in the
absence of space curvature, i.e. in the absence of gravita-
tional fields.

The magnitude of the Sagnac effect for electromagnetic
waves and, in particular, light in anisotropic media can be
computed by solving the corresponding Maxwell equations
or using Johns matrices.

3. Conditionally correct explanations
of the Sagnac effect

By conditionally correct are meant such explanations of the
Sagnac effect which give approximate expressions for the
phase difference between counterpropagating waves in a
rotating ring interferometer, when certain constraints are
imposed on the parameters of the system, viz. linear velocity
of a ring rotation, wave (material particle or body) velocity
with respect to the co-moving frame of reference attending
rotation, mass of a material particle, etc. Moreover, these
explanations imply a number of assumptions and certain a
priori suppositions which, generally speaking, ensue from
nowhere. Nevertheless, conditionally correct explanations
allow the physical meaning of the Sagnac effect to be clearly
demonstrated. The whole variety of conditionally correct
explanations of the Sagnac effect can be reduced to the
examination of effects of the Newtonian nonrelativistic
scalar potential or vector potential of the equivalent gravita-
tional field of inertial forces (centrifugal or Coriolis forces) on
the time dilation in a rotating frame of reference or on the
phase change of the material particle wave function. In other
words, this approach to the evaluation of the Sagnac effect is
based on the equivalence principle.

However, this does not mean that the Sagnac effect is
considered in the framework of GTR. The potential of the
equivalent gravitational field of inertial forces was used by
Einstein [174, 175] for the calculation of time dilation in the
accelerated frames of reference before he created GTR; not
infrequently, it failed to yield a correct result. Suffice it to say
that the deflection of a light beam in the solar gravitational
field was underestimated as being two times lower than its real
value [175]. Eventually, Einstein obtained the correct solution
in the framework of GTR [96] taking into consideration the
space curvature ascribed to the solar mass action.

3.1 Sagnac effect as a consequence of the distinction
between nonrelativistic scalar gravitational potentials
of centrifugal forces in frames of reference attached
to counterpropagating waves
This section is focused on a simple and physically illustrative
derivation of the expression assessing the size of the Sagnac
effect, based on the relativistic law of velocity composition,
the equivalence principle, and the time dilation phenomenon
in a gravitational field.

Let us consider two rotating frames of reference, K � and
K ÿ, co-moving the travel of fixed phase points (phase fronts)
of counterpropagating waves or of a certain clock the velocity
of which equals the phase front velocity (as before, the plus
sign refers to a wave propagating in the direction of rotation
of a ring interferometer, and the minus sign to a wave
travelling in the opposite sense). These rotating frames of
reference give rise to centrifugal accelerations

a�c � �O��2R ;

where O� � v�ph=R are the angular velocities of the fixed
phase points of counterpropagating waves, measured in the
frame of reference K. Absolute values of accelerations a�c
differ because of different �v�ph�2 [see expression (2)]. In
agreement with the equivalence principle [34, 35], the
rotating reference systems K � and K ÿ may be substituted
by the inertial systems K �in and K ÿin , respectively, in which the
gravitational fields are involved and give rise to gravitational
forces coincident in terms of size and direction with the
centrifugal forces in the noninertial frames of reference K �

and K ÿ. The presence of a gravitational field has been shown
to lead to the corresponding time dilation [35, 41, 83]. The
time dilation in the frames of reference K �in and K ÿin with
respect to time t in a laboratory (stationary) frame of
reference K is [34, 35]

tK
�
in � t

������������������
1� 2U�in

c2

s
; �15�

where t � 4pR=�v�ph � vÿph� is the time for which counter-
propagating waves move round a ring from the beam-splitter
to the point of their intersection in the laboratory (stationary)
reference system [see Section 2.1]; U�in denote the nonrelati-
vistic gravitational potentials of the equivalent fields of
centrifugal forces in the frames of reference K �in and K ÿin . It
should be noted that the computing method under considera-
tion is valid if U=c2 5 1 [34].

The magnitude of the nonrelativistic gravitational poten-
tial is related to the acceleration in the following way [34]:

a � ÿgradU :
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Hence, one finds

U � ÿ
�
a dl ;

where dl is the element of length along a certain direction. The
potential U is determined here up to the constant because the
lower limit of integration may be chosen arbitrarily. For
gravitational fields corresponding to real masses, the limit of
integration is usually chosen in such a way that the condition
U � 0 holds at infinity [34, 41]. Here, we shall choose it so that
the condition U � 0 is satisfied at the center of rotation
�R � 0�, where there is no centrifugal acceleration. Then [34]

U�in � ÿ
�R
0

�O��2R dR � ÿ�O
��2R2

2
� ÿ�v

�
ph�2
2

:

The travel time of counterpropagating wave phase fronts
(clock circulation around an enclosed area) in systemK in the
case of disk rotation is t � 2pR=vph, whence

tK
�
in � t

���������������������
1ÿ �v

�
ph�2
c2

s
; �16�

where t � 2pR=vph. Expression (16) completely coincides
with Eqn (12) obtained in the framework of STR. By this
means the Sagnac effect is attributable here to the fact that
one clock shows a smaller lapse of time than the other due to
the difference in gravitational potentials equivalent to
centrifugal accelerations in the co-moving reference systems
K �in and K ÿin . In contrast, the Sagnac effect in STR results
from the fact that one clock is slower than the other
throughout their journey in counter directions on a rotating
disk, in accordance with different Lorentzian time contrac-
tions in the co-moving frames of referenceK � andK ÿ. Thus,
in the absence of real gravitational fields corresponding to
gravitating masses, the explanations of the Sagnac effect in
the framework of STR based on different Lorentzian time
contractions [see expressions (12) ± (14)] and that based on
Eqn (16) are absolutely identical, in agreement with the
equivalence principle.

3.2 Sagnac effect as a consequence of sign distinction
between nonrelativistic scalar gravitational potentials
of Coriolis forces for counterpropagating waves
in a frame of reference attaching rotation
Using the nonrelativistic gravitational potential, it is possible
to compute the Sagnac effect in an inertial frame of reference
K 0in equivalent to the frame of reference K 0 attached to a
rotating ring interferometer. In this frame of reference, the
absolute phase velocities of counterpropagating waves are the
same and equal to vph. Bodies in motion (and, in particular,
clocks) accompanying fixed phase points of counterpropagat-
ing waves undergo Coriolis acceleration, besides centrifugal
acceleration. Its absolute value is 2Ovph and the direction
depends on whether a body travels in the direction of rotation
(in such a case, it coincides with the direction of centrifugal
acceleration) or in the opposite direction (then it is opposite to
the direction of centrifugal acceleration).

There is, however, a peculiarity pertaining to the defini-
tion of the gravitational potential of the Coriolis force. The
thing is that the Coriolis force, similar to the Lorentz force
(see Refs [176 ± 178] for the analogy between the two), is not
found to belong to a potential one. Both are referred to as

gyroscopic forces [179] (I E Tamm calls the Lorentz force a
`solenoidal force' in his textbook [180]). A characteristic
feature shared by the two forces is that they do not perform
any work because they are always oriented perpendicular to
the body's velocity. Nevertheless, the notion of a scalar
potential may be introduced for such forces, with certain
constraints and reservations. For example, the role of the
potential function for a magnetic field is played by a function
the decrease of which is equivalent to the work done by the
ponderomotive forces of a magnetic field; however, this
function is not identical to the magnetic field potential
energy [180]. An adequate description of the potential
function of a magnetic field can be obtained provided the
path of integration does not enclose the source of the
magnetic field, i.e. a current-carrying conductor. Specifi-
cally, the potential function may be defined inside a long
current-carrying solenoid. The Coriolis force being formally
(for the purpose of a mathematical description) analogous to
the Lorentz force [176 ± 178] inside a solenoid (the doubled
angular velocity of rotation 2O in the respective expressions is
substituted by magnetic induction B), it is possible to define
the scalar gravitational potential of Coriolis forces.

Let us choose the limits of integration in the expression for
gravitational potential following the aforedescribed proce-
dure such that the conditionU � 0 be fulfilled in the center of
rotation where centrifugal acceleration is absent. This ensures
in particular the equality of potentials for counterpropagat-
ing waves at a point corresponding to the center of rotation.
The potentials for counterpropagating waves in the coordi-
nate system K 0in (which is inertial and equivalent to the
noninertial system K 0 accompanying rotation) are given by

U 0in
� � ÿ

�R
0

�
O 2R� 2Ovph

�
dR � ÿO2R2

2
� 2OvphR :

The travel time of the fixed phase points attendant to
counterpropagating waves (of circular clock motion) in the
system K 0in on a rotating disk is

�t��K 0in � t

����������������������
1� �U

0
in��
c2

s
� t

�����������������������������������������
1ÿ O2R2

2c2
� 2OvphR

c2

s
; �17�

where t � 4pR=�v�ph � vÿph� is the time required by counter-
propagating waves to pass from the beam-splitter to their
meeting point in a laboratory (stationary) frame of reference
(see Section 2.1).

Expanding �t��K 0in in powers of the small parameter

2OvphR
2c2

5 1 ;

and neglecting the effect of the gravitational potential
corresponding to the centrifugal acceleration:

O2R2

2c2
5

2OvphR
c2

;

leads to an approximate expression for the travel time
difference between the fixed phase points of counterpropagat-
ing waves, or clocks the velocities of which coincide with the
velocities of these points:

Dt K
0
in ' t 2 vphOR

c2
� 4SO

c2
: �18�
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Expression (18) coincides, to within small relativistic
corrections, with expression (5) for the travel time lag
between counterpropagating waves in the frame of reference
K 0 attached to a rotating ring interferometer. Hence, it may
be concluded that the Sagnac effect in a frame of reference
attending the rotation should be considered as a consequence
of the time dilation distinction for counterpropagating waves
due to the effect of the nonrelativistic gravitational potential
corresponding to Coriolis forces and having different signs
for the two counterpropagating waves.

3.3 Sagnac effect in quantum mechanics as a consequence
of effects of the vector potential of Coriolis forces
on the wave function phases of counterpropagating waves
in a frame of reference attaching rotation
The vector potential of the Coriolis force can be introduced
correctly, unlike its scalar potential which is introduced with
many assumptions and reservations. In agreement with
quantum-mechanical laws, the vector potential acts on the
phase of a wave function. Similar to the scalar potential of the
Coriolis force, its vector potential has no influence on the
particle's coordinate and velocity. The calculation of the
phase difference between de Broglie counterpropagating
waves in a rotating ring interferometer was undertaken in
Refs [9, 17, 130, 131, 181 ± 183]. The authors utilized the
solutions of the corresponding SchroÈ dinger, Dirac, and
Klein ±Gordon equations for the purpose [182]. The calcula-
tions were usually done with regard for the Wentzel-
Kramers ±Brillouin (WKB) approximation [9, 17, 181]. The
phase difference between counterpropagating waves was
determined from the following expression [9]

FS � 8pESO
hc2

; �19�

where E is the total energy of a material particle, and h is the
Planck constant.

The substitution of E � hn (where n is the de Broglie wave
frequency of a material particle or light quantum frequency)
into Eqn (19) yields expression (6) accurate to within small
relativistic corrections. Conversely, the substitution of
n � E=h into (6) leads to expression (19). Therefore, quan-
tum-mechanical calculations of the imaginary part of a wave
function are not at all necessary to compute the phase shift of
de Broglie counterpropagating waves in a rotating ring
interferometer, attributable to the Sagnac effect. The result
can be just as well obtained by simple kinematic calculations
in the framework of STR because the method is suitable for
waves of arbitrary nature (see above considerations). The
substitution of the expression for the total energy of a
material particle with the nonzero rest mass E � mc2, where

m � m0

��������������
1ÿ v

2
m

c2

r
is the particle's relativistic mass, m0 is its rest mass, and vm its
velocity, into expression (19) gives the well-known relation-
ship for the Sagnac effect, as applied to de Broglie waves [24]:

FS � 8pSOm
h

: �20�

It follows from Eqn (20), in particular, that the phase
difference due to the Sagnac effect for the de Broglie waves is
independent, in the nonrelativistic limit, of the particle's

velocity vm, i.e. of the de Broglie wavelength lm � h=�mvm�
[24]. Thus, the utilization of a polychromatic beam of
material particles does not lead in this case (contrary to the
case of electromagnetic waves) to the impaired visibility of the
interference pattern.

It is worthwhile to note that for several reasons there are
no ring interferometers measuring de Broglie waves. Most
popular are Mach ±Zehnder equal-arm interferometers in
which particles meet after each has completed half of its
closed path length. Due to this, the effective area of Mach ±
Zehnder interferometers goes half that of ring interferometers
of a similar configuration (therefore, expressions (19), (20)
contain 4 instead of 8).

4. Attempts to explain the Sagnac effect
by analogy with other effects

Drawing an analogy between different effects has nothing to
do with an attempt to reduce one effect to another. It has the
purpose of clearly explaining the physical meaning of an
effect by comparison with a similar one which is simpler,
better known and easier to understand. In this context, such
an approach should not be regarded as incorrect. Indeed,
drawing an analogy may facilitate understanding in selected
cases when the effects of interest have close physical
interpretations. Whenever there occurs a merely formal
similarity between two effects, the analogy is of little help
for understanding their physical meaning even though it can
facilitate the application of the mathematical apparatus, well-
developed for one effect, to the explanation of the other.

4.1 Analogy between the Sagnac and Aharonov ±Bohm
effects
Certain authors (see Refs [79, 127, 130, 181 ± 186]) make an
analogy between the Sagnac and Aharonov ±Bohm effects
[187 ± 189]. The latter consists in the action of the vector
potential of an electromagnetic field (i.e. the Lorentz force)
on the wave function of a charged elementary particle and
thus leads to a shift of interference fringes resulting from the
superposition of the de Broglie waves of two particle beams. It
occurs even in the absence of a magnetic field in the area of
particle motion, when neither trajectories nor velocities of the
particles change. To simplify the arguments of the authors of
Refs [79, 127, 130, 181 ± 186], the vector potential of a
gravitational field equivalent to Coriolis forces in a rotating
frame of reference leads to a shift of the interference pattern
produced by counterpropagating waves for both uncharged
(photons, neutrons, neutral atoms) and charged (electrons,
mesons, etc.) quantum particles; it is analogous to the vector
potential of the Lorentz forces. However, such an analogy is
formal and superficial, the similarity of these effects being
confined to the fact that in both cases the vector potential of
nonpotential gyroscopic forces acts on the wave function
phase. In fact, the two effects are significantly different
because the Aharonov ±Bohm effect [187 ± 189] exists only
for quantum objects and vanishes in the case of macroscopic
bodies, whereas the Sagnac effect occurs for both quantum
and macroscopic objects.

One important feature of rotation-related effects is worth
special noting. Unlike translational motion, rotation shows
evidence of being an absolute (not relative) phenomenon.
Rotation of a real body functioning as a source of an electric,
magnetic or gravitational field about amotionless field sensor
and rotation of a field sensor about a given body result in
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different readings of the sensor. The following relevant
examples are borrowed from Ref. [5].

(1) Rotation of a ferromagnetic rod induces a magnetic
field. In other words, a sensor placed in a fixed coordinate
system detects a magnetic field, whereas rotation of a
coordinate system (sensor) about the rod fails to furnish a
magnetic field in an instrument (Barnett's experiments [190,
191]).

(2) It has been shown by Schiff [192] that the rotation of a
charged spherical capacitor induces an external magnetic
field, whereas the rotation of a reference system (sensor)
about a fixed charged spherical capacitor fails to reveal a
presence of the magnetic field.

(3) Experiments of Dufour and Prunier [53] have demon-
strated that in a stationary ring interferometer filled with a
rotating optical medium and in a rotating ring interferometer
filledwith a stationarymedium, the phase differences between
counterpropagating waves are distinct despite similar angular
velocities [see expressions (9) and (10)].

The rotation of a massive body results in the appearance
of vector potential of a gravimagnetic field (by analogy with
the induction of a magnetic field by a rotating charge). In this
case, the gravitational Aharonov ±Bohm effect should be
expected to occur and lead (for rotating macroscopic bodies)
to a minor phase shift of counterpropagating waves in an
optical ring interferometer or to a frequency difference
between counterpropagating waves in a ring laser [193] (see
also Refs [194 ± 197]). It is worthy of note that this effect has
not been observed thus far. It is the author's opinion that the
gravitational Aharonov ±Bohm effect is closely related to the
Sagnac effect [193]. However, this is a wrong inference. To
begin with, the Sagnac effect is associated with a rotating
frame of reference, whereas the gravitational Aharonov ±
Bohm effect relates to the rotation of a real massive body.
Secondly, the Sagnac effect leads to a change in velocities of
counterpropagating waves and holds not only for quantum-
mechanical particles (photons, electrons, etc.) but also for
ordinary acoustic and magnetic waves. In contrast, the
Aharonov ±Bohm effect (the gravitational one, in particu-
lar) does not influence particle velocities in counterrunning
beams and alters only their wave function phases.

It is worthwhile to note that the rotation of amassive body
gives also rise to the Lense ± Thirring effect [100 ± 103], an
analogue of electromagnetic induction, and causes a change
in the velocity of bodies, including photons; in other words, it
changes their wave function moduli. As yet, this GTR effect
has not been recorded. The very first experiments to observe
the light drag by a rotating body were performed on a ring
interferometer by O Lodge at the end of the 19th century
[198]. The author hypothesized that the light, together with
the luminiferous ether, should be entrained by a rotating
mass. Also, the rotation of a massive body should lead to the
splitting of spectral frequencies of electromagnetic oscilla-
tions of an emitting atom [199], a change of the frequency
difference between counterpropagating waves in a ring laser
[111], and the rotation of the plane of polarization of light
[200 ± 202]. None of these effects has been observed.

The gravitational Aharonov ±Bohm effect as well as the
Lense ±Thirring effect occur independently of the Sagnac
effect and differ from it in that they are associated with the
presence of rotating masses instead of rotating frames of
reference. When the phase differences between counterpro-
pagating waves at the output of a ring interferometer are
measured, these effects may also be apparent in addition to

the Sagnac effect. To conclude, there is a certain degree of
analogy between the Sagnac and Aharonov ±Bohm effects,
but it is formal and does not reflect their true physical
meaning.

4.2 Sagnac effect as a Berry phase manifestation
Works [7, 9, 80] consider the Sagnac effect as a manifestation
of the Berry phase [204] (see also reviews [203, 205 ± 209]).

The Berry phase (geometric, topological phase) manifests
itself as a change of a system's parameter in the course of its
spatial evolution. It is exemplified by a change of the
quantum-mechanical state of a particle flux in the course of
its spatial evolution [204] (Berry phase); a change in the
polarization of radiation travelling in a curvilinear trajectory
[209 ± 212] (Rytov effect), which gives rise to an additional
phase incursion [203, 205 ± 207, 209, 213]; a cumulative phase
incursion of the radiation in the event when a change in the
polarization state occurs during its propagation through the
medium [205 ± 207, 209, 214, 215] (Pancharatnam phase); a
change of the quantum-mechanical state of a neutron spin in
the course of its spatial evolution [208], or a change in the
angular position of a solid if the associated axis draws a solid
angle during its motion [94, 216, 217] (Ishlinski|̄ effect). It
needs to be emphasized that our studies [218, 219] have
demonstrated that the Ishlinski|̄ effect has a relativistic
analogue in the form of Thomas precession [220].

A classical example of the Berry phase manifestation in
quantum mechanics is an additional phase incursion of
electrons due to the Aharonov ±Bohm effect [187 ± 189].

In fiber ring interferometers, the Berry phase ismanifested
itself as additive to the Sagnac effect and produces a phase
shift of the interference pattern at the output of FRI. Such a
shift is unrelated to rotation and is therefore responsible for
an error in the measured angular velocity of rotation. The
authors of Ref. [221] reported on an experiment in which the
Rytov effect in FRI was due to the nonplanar bending of a
weakly anisotropic SMOF of which the FRI contour was
made. A phase shift of the interference pattern at the exit from
an FRI was due to the polarizational nonreciprocity of its
contour [166] and may be interpreted as a nonreciprocal
geometric phase of counterpropagating waves [164, 165], i.e.
a Berry phase manifestation.

In ring interferometers transmitting de Broglie waves of
charged material particles, e.g. electrons, the Berry phase due
to the Aharonov ±Bohm effect produces a shift of the origin
of the interference pattern unrelated to rotation. When
material particles carry no charge but have a nonzero spin
and magnetic moment (e.g. neutrons), the Berry phase
(induced by the Aharonov ±Casher effect [222] resulting
from the evolution of the spin quantum-mechanical state)
also accounts for a phase shift of the interference pattern
unrelated to rotation [181]. Even in the case of a zero vector
potential of the magnetic field near the material particle
trajectories (i.e. when the Aharonov ±Bohm and Aharo-
nov ±Casher effects are nonexistent), the spins of the
particles travelling in reverse ways are found to be oppositely
directed because of Thomas precession (an STR effect) [218 ±
220]). This leads to a rotation-unrelated shift of the origin of
the interference pattern [131, 223].

It should be noted that the Berry phase may be a source of
erroneous readings of not only FRI but also of other types of
gyroscopic devices. For example, the Ishlinski|̄ effect [94, 216,
217] accounts for incorrect readings of paired mechanical
gyroscopes and strongly monitored gyroscopes, which are
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actually used as spatial gyrocompasses (directional pickups).
InNMRgyroscopes [133], theAharonov ±Casher phase [222]
related, in this instance, to the evolution of the quantum-
mechanical state of a nuclear spin is responsible for erroneous
angular velocity measurements [224, 225].

The Berry phase is a manifestation of nonholonomicity
(nonintegrability) because it is impossible to calculate it
starting from the initial and final states of the system [205 ±
207]. The authors of Refs [226, 227] considered the Sagnac
effect as a manifestation of nonholonomicity in a rotating
frame of reference. These papers were published before Ref.
[204] Ð that is, prior to the introduction of the Berry phase
notion.

Amajor conclusion from this section can be formulated as
follows: both the analogy between Sagnac and Aharonov ±
Bohm effects and the interpretation of the Sagnac effect as a
Berry phasemanifestation are purely formal and fail to clarify
the physical meaning of the effect in question.

5. Incorrect explanations of the Sagnac effect

The overwhelming majority of incorrect explanations of the
Sagnac effect proceed either from the downright negation of
relativity theory or from the neglect of it and an attempt to
reduce this kinematic effect of STR to some other effect well-
known in classical physics. Several incorrect explanations
arise from a poor understanding of relativity theory or
erroneous calculations.

5.1 Sagnac effect in the theory of stationary
(not entrained) luminiferous ether
This explanation of the Sagnac effect is based on the concept
of a `luminiferous ether' which is not entrained by a rotating
interferometer. Surprisingly, it is still in use although it was
the very first explanation proposed to address the Sagnac
effect [8].

Let the light travel around an enclosed circular area (see
Fig. 1). If the rotating interferometer contains no optical
medium, the expression for the phase velocity of light v�ph in
the system of coordinates K 0 attached to the interferometer
has the form

�v 0ph�� � c� RO : �21�

The travel times of counterpropagating waves around a ring
are

�t 0�� � 2pR

�v 0ph��
� 2pR

c� RO
; �22�

respectively. The propagation time difference is given by

Dt 0 � �t 0�� ÿ �t 0�ÿ � 4pR2O

c2�1ÿ R2O2=c2� : �23�

This result is accurate to within small relativistic corrections.
Expression (23) is distinct from the corresponding expression
(5) obtained in the framework of STR by the coefficient
�1ÿ R2O2=c2�1=2. This distinction can be explained only in
terms of STR; namely, the number p in the rotating
coordinate system K 0 is �1ÿ R2O2=c2�1=2 times that in the
inertial coordinate system [34, 35]. This fact was disregarded
in expressions (22), (23). The multiplication of quantity Dt 0 in
expression (23) by �1ÿ R2O2=c2�1=2 yields the quantity Dt 0

that appears in expression (5).

This approach to the evaluation of the Sagnac effect was
applied by O Lodge [198, 228], A Michelson [167, 168, 229],
and M G Sagnac [1 ± 3], staunch advocates of the `luminifer-
ous ether' theory. L Silberstein [27] also considered the
concept of `luminiferous ether' as an alternative explanation
of the Sagnac effect. It should be emphasized that the
contribution of Silberstein to the understanding of the
Sagnac effect remains open to different interpretations. On
the one hand, he was one of the first to scrutinize the Sagnac
effect in the framework of both STR and GTR [27]. On the
other hand, the same paper considered this effect based on the
`luminiferous ether' concept and in terms of the direct action
of Coriolis forces in the path of counterpropagating waves in
a ring interferometer (see Section 5.5). This further confused
matters. L Silberstein was the author of one of the best
monographs on STR that appeared in the early 20th century
[230]. At the same time, he published an enthusiastic review of
the experimental results obtained by D Miller [231, 232] who
reproduced the Michelson ±Morley experiments [12, 13] and
argued to have confirmed the existence of a `luminiferous
ether'. As a matter of fact, this review was in keeping with a
note by A Timiryazev [234], an ardent opponent of relativity
theory. The experiments of D Miller shattered the belief of
certain investigators in the validity of STR. In response,
S I Vavilov published his famous work [4] in which he
demonstrated the groundlessness of the `luminiferous ether'
theory. It was shown in a later work [235] that the experiments
of DMiller were not free from a systematic error attributable
to a temperature drift of the arm lengths in the Michelson
interferometer.

The interpretation of the Sagnac effect in the context of
the `luminiferous ether' theory is not simply a fact picked up
from the past history of physics. It continues to be treated
from the same standpoint even now. By way of example,
Winterberg [236] considers both the Sagnac and Aharonov ±
Bohm effects as proceeding from the `ether' concept. Also, it
is proposed that a ring interferometer be used for the
measurement of the Earth's translational velocity relative to
a certain absolute space filled with a stationary ether medium
[237], in obvious conflict with the theory of relativity.

In other words, there are still attempts to approach the
effects of interest beyond the scope of STR (these authors
usuallymaintain that the Sagnac effect is a first-order effect in
RO=c, thereby baselessly concluding that it is possible to
manage without STR). A characteristic example of the
implicit application of the `ether' concept is provided by the
calculation, in obvious conflict with STR, of themagnitude of
the Sagnac effect using the supraluminal speed of one of the
counterpropagating waves. This method has been used in a
well-known experimental work by Bershte|̄n [14], reviews
[238, 239], and some textbooks for the faculties of physics at
higher education institutions. See, for instance, the corre-
sponding courses of electrodynamics [240] and optics [241].

The same method for the calculation of the Sagnac effect
was applied by S I Vavilov [4], L I Mandel'shtam in his
lectures on the theory of relativity [84], G Joos in a course of
theoretical physics [242], R Ditchburn in a course of physical
optics [243], and V AUgarov in a supplement to his course of
STR. True, these authors used the said method as a didactic
device to prove the nonexistence of `luminiferous ether' and
to show that the experiments under consideration suggest the
impossibility of the `ether' being dragged by rotation, at
variance with the Michelson ±Morley results [12, 13].
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For an interferometer filled with an optical medium
having an index of refraction n, the Sagnac effect was
computed in terms of the `luminiferous ether' concept based
on the Fresnel hypothesis that the ether is partially entrained
by a moving optical medium [44]. Let us write down the
expression for phase velocities of counterpropagating waves
in the laboratory (nonrotating) system of coordinates K, as
proposed by Bershte|̄n [14]:

v�ph �
c

n
� �1ÿ a�RO ; �24�

where a � 1ÿ 1=n2 is the Fresnel drag coefficient [6, 14, 44].
In the coordinate system K 0 attending rotation, the expres-
sion for �v 0ph�� will have the form

�v 0ph�� �
c

n
� RO

n2
: �25�

The times necessary for counterpropagating waves to com-
plete one trip around the ring are

�t 0�� � 2pR
c=n� RO=n2

: �26�

Then the propagation time difference is given by

Dt 0 � �t 0�� ÿ �t 0�ÿ � 4pR2O

c2
ÿ
1ÿ R2O2=�c2n2�� : �27�

Thus, we have again obtained the result accurate to within
small relativistic corrections. It has been previously shown
that the magnitude of the Sagnac effect does not depend on
the refractive index of the filling optical mediumwhen it is co-
moving with the rotating ring interferometer.

The question is why does the notoriously wrong premise
of a `luminiferous ether' allow for a result accurate to within
small relativistic corrections? The answer may be as follows.

(1) It is concluded from the assumption of an ether
resistant to the drag by a rotating interferometer that such a
medium must be stationary in a fixed (laboratory) system of
coordinates. Hence, the speed of light in this system should be
constant regardless of its direction, in agreement with the
special theory of relativity (a fixed coordinate system is an
inertial one).

(2) If an interferometer is filled with an optical medium,
the Fresnel drag coefficient is used as described in Ref. [14].
This coefficient can be derived from the relativistic law of
velocity composition as the first approximation [40, 54].

It appears from the above that the `luminiferous ether'
theory yields virtually correct results and can be used for the
purpose in question. This is a wrong conclusion, however,
because the explanation based on this theory contains
internal contradictions. In order to explain the Sagnac
effect, we had to assume that the ether is dragged neither by
a rotating interferometer nor even by the rotation of the Earth
[167, 168]. At the same time, the negative results of
Michelson ±Morley's experiments [12, 13] and their subse-
quent versions (see reviews [4, 6]) can be accounted for in the
framework of the `luminiferous ether' concept only if the
ether is supposed to be completely dragged by the Earth's
translational motion.

To summarize, the `luminiferous ether' theory has been
shown above to lay down contradictory conditions. Specifi-
cally, it states that the ether must be totally dragged along by

the Earth's translational motion but fails to be dragged by its
rotation [4, 84, 242, 243]. However, this discrepancy does not
seem to confuse the advocates of the `ether' theory. S IVavilov
[4] wrote: ``It is however conceivable that ether can be
stationary and yet in a mechanical motion... The notion of
an ether dragged by a moving body and at the same time
remaining `irrotational' (or vortex-free) was being developed
by Stokes in the last century... It is difficult... to definitively
disprove the idea that the Earth is embedded in a shell of
ether, but there is no foothold either on which to base further
development of this idea.'' It is worthwhile to note that
G Stokes' model of an ether alluded to in this extract
contains irremovable internal contradictions (see Ref. [6] for
a comprehensive discussion of this problem).

It should be emphasized that the explanation of the
Sagnac effect in terms of the concept of a `luminiferous
ether' not dragged by rotation contains one more important
contradiction which, to my knowledge, has never been
considered before. In order to obtain a correct result in the
framework of the `ether' theory, one has to accept the
assumption that the ether is motionless with respect to the
inertial laboratory reference system attached to the center of
rotation of a ring interferometer.

If the ether is in uniform translational motion with respect
to the center of rotation of the interferometer, then the
expression for the phase shift of counterpropagating waves,
attributable to the Sagnac effect, will be different from Eqn
(23). It is exactly this premise that is used in Ref. [237] to
measure the Earth's translational velocity relative to the
ether. The author hypothesizes that two identical ring
interferometers to the centers of which two different inertial
reference systems are attached should record different phase
shifts of counterpropagating waves. However, this hypothesis
is in conflict with a key postulate of STR according to which
all inertial frames of reference are equivalent.

5.2 Sagnac effect from the standpoint of classical
kinematics
The concept of a `luminiferous ether' which fails to be
dragged by rotation is applicable only to the computation of
the Sagnac effect for electromagnetic waves. The magnitude
of this effect for arbitrarywaves in themost general case [7 ± 9,
11] is more appropriate for assessment by means of classical
kinematic calculations based on the estimation of the
rotation-induced displacement of the beam-splitting mirror
at the entrance to a ring interferometer (see Fig. 1) during the
time needed for counterpropagating waves to complete their
trip around the ring. Also, the Galilean law of velocity
composition of each counterpropagating wave, vph, with the
linear rotational velocity RO may be used. At first sight, this
approach allows the Sagnac effect to be computed not only
for electromagnetic waves but also for waves propagating in a
material mediumwith the drag coefficient equalling 1 (e.g. for
acoustic waves, surface acoustic and surface magnetostatic
wavesÐ the so-called `slow' waves [11, 23] aswell as for the de
Broglie waves of material particles: electrons [9, 16], neutrons
[17, 18], mesons [24], calcium [19], sodium [20], and caesium
[21] atoms).

Let us first consider the application of the classical
kinematic method to the computation of the Sagnac effect in
the optical range for the most general case, when the
interferometer is filled with a co-moving optical medium
having refractive index n. In the absence of interferometer
rotation, the time needed for each counterpropagating wave
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to traverse its path length in order to complete one full
circulation is t � 2pRn=c. In the case of rotation, the
displacement of the beam-splitter for a time t is

Dl � 2pR2On
c

;

and the optical paths for counterpropagating waves are given
by

l � � 2pR� 2pR2On
c

;

while the velocities of counterpropagating waves in a
laboratory frame of reference are defined by expression (24).
In this case, the propagation time difference between counter-
running waves in the laboratory system of coordinates K
takes the form

Dt � t� ÿ tÿ � l �

v�ph
ÿ l ÿ

vÿph

� 2pR� 2pR2On=c
c=n� aRO

ÿ 2pRÿ 2pR2On=c
c=nÿ aRO

� 4pR2 O
c2

�
1ÿ n2

�
1ÿ 1

n2

�
R2 O2

c2

�ÿ1
� 4pR2O

c2
; �28�

where a � 1ÿ 1=n2. The expression thus obtained coincides
with expression (4) to within small relativistic corrections. In
other words, the classical kinematic approach yields a
practically correct result for the Sagnac effect in the optical
range.

M Laue was the first to employ the classical kinematic
approach to the computation of the Sagnac effect in the
optical range in 1911 [69]. In the analysis of experimental
situation, he dealt with a four-mirror interferometer and
calculated the difference between the optical paths of counter-
propagating waves taking into account the rotation of each
mirror during the time needed for a counterpropagating wave
to reach it. The calculation described in the previous
paragraph for counterpropagating waves travelling around
the ring is much simpler and leads to the same result as in Ref.
[69]. This calculating method for the evaluation of the Sagnac
effect magnitude has also been used in a number of studies [5,
6, 36, 38, 74, 75, 91, 126, 128, 245 ± 247]. A similar explanation
of the Sagnac effect is offered in the two latest editions of
Physical Encyclopedia [248, 249]. The classical kinematic
approach was also used to calculate the Sagnac effect in
Refs [238 ± 242].

However, the classical kinematic method leads to serious
mistakes if applied to the computation of the Sagnac effect for
nonelectromagnetic waves propagating in a material medium
whose drag coefficient equals unity (e.g. for surface acoustic
and magnetostatic waves, also called `slow' waves [11, 23]).
Let us consider, with reference to work [23], a ring inter-
ferometer transmitting `slow' waves, using the kinematic
approach. Let the phase velocity of a `slow' wave be v sl ph ;
then, the counterpropagating wave velocities in a laboratory
frame of reference are

v�sl ph � v sl ph � RO ;

respectively. In the absence of interferometer rotation, the
time needed for each counterpropagating wave to trace

around a ring path is

t � 2pR
v sl ph

:

If the interferometer rotates with an angular velocity O, the
device generating counterpropagating waves in the ring and
also used to transform `slow' waves back to an electric signal
(and thus playing the same role as the beam-splitter in an
optical ring interferometer) will be shifted (for time t) to a
distance

Dl � ROt � 2pR2O
v sl ph

:

The optical path for counterpropagating waves will equal

l � � 2pR� 2pR2O
v sl ph

;

and the propagation time difference between counterpropa-
gating waves will be

Dt � t� ÿ tÿ � l �

v�sl ph
ÿ l ÿ

vÿsl ph

� 2pR� 2pR2O=v sl ph
v sl ph � RO

ÿ 2pRÿ 2pR2O=v sl ph
v sl ph ÿ RO

� 0 : �29�

Thus, based on the kinematic computing method, we
arrived at the conclusion (just as the authors of Ref. [23]
did) that there is no Sagnac effect for `slow' waves. A similar
result could be obtained for some other types of waves, e.g.
ordinary acoustic waves. But this is a completely wrong result
because calculations in the framework of STR [11] indicate
that the Sagnac effect for slow waves does exist, with the
propagation time difference between counterpropagating
waves being ' 4pR2Oo=c2.

Errors inherent in the classical kinematic method applied
to the computation of the Sagnac effect are due to the use of
the Galilean instead of the relativistic law of velocity
composition, viz. the velocity of wave propagation in a
medium and the velocity of rotation. When the Sagnac effect
in the optical range is considered, the use of the Fresnel drag
coefficient corresponds in the first approximation to the
relativistic law of velocity composition (see above). In this
case, the result of computation is accurate to within small
relativistic corrections. In the remaining cases, calculations
using the classical kinematic technique yield erroneous
results.

The computation of the Sagnac effect for the de Broglie
waves of material particles using the classical kinematic
method also leads to a zero result [79]. The author of Refs
[130, 131] distinguishes between the classical and relativistic
Sagnac effect in the optical range but emphasizes that the
same effect in quantum mechanics (i.e. for de Broglie waves)
can be only relativistic. A similar conclusion has been drawn
in Refs [79, 80]. The author of Ref, [80] writes that ``the
nonrelativistic Sagnac effect is a paradox''. However, such a
view does not arise from certain specific features of the
Sagnac effect in quantummechanics (it is always a relativistic
effect [10, 11]). Rather, it originates from the impossibility of
introducing a certain coefficient for the de Broglie waves of
material particles or acoustic waves, by analogy with the
Fresnel drag coefficient in optics. On the one hand, such a
coefficient plays a part of the first approximation to the
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relativistic law of velocity composition. On the other hand, it
must give the illusion of using the Galilean law of velocity
composition with a certain correction coefficient (that is, the
illusion that the consideration remains confined to the
classical theory).

5.3 Sagnac effect as a manifestation of the classical
Doppler effect off a moving beam-splitting mirror
This explanation of the Sagnac effect is based on the
consideration of a rotating semitransparent mirror (in the
general case, a beam-splitting device) of a ring interferometer
in a stationary frame of reference as a movable radiation
source. The source emits radiation of a shorter wavelength in
the direction of rotation and a longer one in the opposite sense
than it would do in its absence. The advocates of this
approach maintain that similar ring lengths for counter-
propagating waves allow a different wavelength number,
which accounts for the phase shift of the interference pattern
at the exit from the interferometer. However, such an
approach is altogether wrong because the radiation source
and detector must be in motion relative to each other if the
Doppler effect is to be manifest. In the case being considered,
the beam-splitter of the ring interferometer serves as both the
source and the detector of radiation; naturally, it cannot be in
motion with respect to itself. It is worthwhile to mention here
a work by A Einstein [54] showing that the frequency (hence,
the wavelength) of light in a rotating frame of reference
remains unaltered in the first approximation in RO=c if the
ring interferometer rotates with the filling medium as a single
whole.

Generally speaking, it is quite permissible to use the
classical Doppler effect in calculations related to light beam
interference in a noninertial frame of reference undergoing a
certain acceleration along a straight line [250]. Such a
possibility is due to the fact that at the moment of emission
the velocity of the radiation source differs from that of the
absorbing detector. This may also be explained proceeding
from the equivalence principle Ð that is, assuming that the
nonrelativistic gravitational potential is different at the
moments of emission and detection [250, 251], the same as
the frequencies of the emitted and detected signals. However,
in the absence of angular accelerations in a rotating frame of
reference, the beam-splitter which simultaneously serves as
the radiation source and detector always has the same
absolute linear velocity.

The inadequacy of the method in question for the
computation of the Sagnac effect is best illustrated by its
application in optics where the size of the Doppler effect does
not depend on whether the space-filling medium between the
source and the detector is in motion or not [6, 39]. In the
laboratory coordinate system K where the beam-splitter
moves with a linear velocity RO, the light wavelength
attributable to the Doppler effect for counterpropagating
waves in a ring interferometer must be

l� � l
�
1� ROn

c

�
:

Here, l is the light wavelength in the absence of rotation [39].
The wave numbers and optical paths for the counterpropa-
gating waves are

k� � 2pn

l�
; l � � �2pR� ROt�n ;

respectively, where t � 2pRn=c is the time of wave passage
around the ring, and n is the refractive index. The phase
difference between counterpropagating waves due to the
Sagnac effect is given by

FS � k�l � ÿ kÿl ÿ � 4p2Rn
l

�
1� ROn=c
1ÿ ROn=c

ÿ 1ÿ ROn=c
1� ROn=c

�
� 16pSOn2

lc�1ÿ R2O2=�c2n2�� � 16
pOSn2

lc
� 16

pOSn2n
c2

; �30�

where n � c=l is the light frequency.
Even in the absence of an optical medium in the

interferometer, this result is twice that ensuing from expres-
sion (7); moreover, the quantity FS in expression (30) is
proportional to n2. In order to obtain the `correct' expres-
sion, the authors employing the present method to calculate
the Sagnac effect assume that the optical paths for counter-
propagating waves are equal, viz.

l � � l ÿ � 2pR :

In other words, the velocities of counterpropagating
waves are considered in the reference system K, while the
optical paths in the reference system K 0; in addition, the case
of n � 1 is adopted.

Therefore, an error for the case of an interferometer
containing an optical medium must be defined by the
coefficient 2n2.

In reality, however, the magnitude of the Sagnac effect is
independent of the medium's refractive index. This inference
is drawn from both strict calculations using the special theory
of relativity [5, 11, 54] and experimental works reported by
B Pogany [50 ± 52] and I L Bershte|̄n [14] (see also reviews [4,
8]). For all that, the dependence of the FRI sensitivity on the
refractive index was a matter of heated discussion as early as
the very first FRIs were constructed [43, 55 ± 57, 134].
Experimental investigations of the Sagnac effect in FRI [43,
56] also demonstrated that the phase shift of counterpropa-
gating waves due to this effect was independent of the SMOF
refractive index.

It is interesting to trace where the origin of the view that
the Sagnac effect may be considered as a consequence of the
Doppler effect in a rotating interferometer is rooted. Dufour
and Prunier [252] considered the Sagnac effect to be a
manifestation of the Doppler effect off a rotating beam-
splitting mirror. A Sommerfeld who used the classical
kinematic method to compute the size of the Sagnac effect
wrote in his Optik [91]: ``We could simplify the above
calculations if we began from the Doppler effect which takes
place here because the semitransparent plate H acts as a
movable source that emits radiation of different wavelengths
in the forward and backward directions.'' In this case,
however, the corollaries of Sommerfeld's authority were
altogether negative. The publication of his work [91] has
given rise to numerous allegations that the Sagnac effect is
due to the Doppler effect off a moving beam-splitter (see, for
instance, Refs [36, 126]). Likewise, this phenomenon is
regarded as a potential cause of the Sagnac effect in certain
papers [18, 80], reviews [36, 74, 126, 239, 253], a review section
of paper [9], a monograph on fiber gyroscopy [75], a course of
wave optics [254], two latest editions ofPhysical Encyclopedia
[248, 249], and a number of other works (see, for instance,
Refs [117, 126]). The encyclopedic Quantum Electronics [255]
and the textbook Fundamentals of Quantum Electronics [256]
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treat the Doppler effect as the sole possible cause of the
splitting of counterpropagatingwave frequencies in a rotating
ring laser. In other words, they totally ignore the Sagnac
effect. The author of Ref. [135] argues that the Sagnac effect is
a variant of the Doppler effect, i.e. a change of counter-
propagating wave frequencies in a rotating frame of refer-
ence. H Lefevre, a known expert on fiber gyroscopy,
concludes the examination of the causes underlying the
Sagnac effect in the domain of STR and the involvement of
the Doppler effect in the following way [74, 75]: ``These two
explanations are equivalent but take care not to use them
simultaneously!''

Using the method under consideration, let us compute the
size of the Sagnac effect for waves travelling in a material
medium, e.g. ordinary acoustic or `slow' waves. In the case of
a Doppler shift in a reference system K, the length of acoustic
waves propagating in opposite directions in a ring inter-
ferometer must be [39]

l�s � ls

�
1� RO

vs

�
;

where ls is the wavelength in the absence of rotation, and vs is
the velocity of sound in the medium. The wave numbers and
sound-path lengths for counterpropagating waves are

k�s �
2p

l�s
; l � � 2pR� ROt ;

respectively, where t � 2pR=vs is the time of wave passage
around the ring, and the phase difference between counter-
propagating waves due to the Sagnac effect is given by

FS � k�s l � ÿ kÿs l ÿ � 4p2R
ls

�
1� RO=vs
1ÿ RO=vs

ÿ 1ÿ RO=vs
1� RO=vs

�
� 16p2R2O

lsvs�1ÿ R2O2=v 2s �
� 16pSO

lsvs
� 16pSOns

v 2s
; �31�

where ns � vs=ls is the sound frequency.
This resultant expression is incorrect. Specifically, it

contains the speed of a material wave instead of the speed of
light, which accounts for a 2�c=vs�2 times higher estimated
magnitude of the Sagnac effect than the real one [11]. Also, it
is worth noting here that the Doppler effect in acoustics is
possible on condition that the source or the detector is in
motion at different speeds with respect to the medium [39].
However, the beam-splitter of a ring interferometer, which is
both the source and the detector, is static relative to the
medium.

The authors of Refs [18, 80] resort to the Doppler effect in
an attempt to explain the phase shift of counterpropagating
de Broglie waves of material particles. The length of the
counterpropagating de Broglie waves in the reference system
Kmust be

l�m �
h

mv�m
� h

m�vm � RO� ;

where h is the Planck constant,m is the particlemass, and vm is
the velocity of a material particle (group velocity of the
spreading wave packet). The wave numbers and path lengths
for counterpropagating waves in the frame of reference K are

k�m �
2p

l�m
; l � � 2pR� ROt ;

respectively, where t � 2pR=vm is the time necessary for a
wave to complete one trip around the ring. The phase
difference between counterpropagating waves due to the
Sagnac effect is determined through

FS � k�m l
� ÿ kÿm l

ÿ � 16p2R2Om

h�1ÿ R2O2=v2m�
� 16pSOm

h
: �32�

Thus, the result is again incorrect being twice as large as
that given by expression (20). In order to obtain the correct
expression, the authors of Refs [18, 80] assumed that l � � l ÿ.

The main conclusion from this section is that the Sagnac
effect is in noway related to theDoppler effect. The erroneous
interpretation of the former as the corollary of the latter is due
to the fact that both are first order effects in v=c.

5.4 Sagnac effect as a manifestation
of the Fresnel ± Fizeau drag effect
FHarress [46] was the first to suggest that the phase difference
between counterpropagating waves in a rotating ring inter-
ferometer is due to the Fresnel ± Fizeau light drag [44, 59, 60].
This author is known to have pioneered experimental
investigations of the effect of interest (see reviews [4 ± 9, 49].
He believed that in the absence of any filling medium in a ring
interferometer, its rotation should cause no phase difference
between counterpropagating waves. In such a situation, the
expression for the counterpropagating wave velocity in a
rotating frame of reference must have the form

v�ph �
c

n
� aRO ;

where a � 1ÿ 1=n2 is the Fresnel drag coefficient. This line of
reasoning had led to erroneous conclusions from the analysis
of his experimental data which were later corrected by
P Harzer [47] and A Einstein [54].

M Laue [26] undertook the explanation of the Sagnac
effect in terms of STR concurrently with its reduction to the
Fresnel ± Fizeau drag effect and interpretation of Harress'
experiments [46] as an analogue of the experimental studies
reported by P Zeeman [61, 62]. K Kovacs [257] described an
experiment designed to prove the validity of this approach.
One of the arms of a ring laser (a glass bar) was in
reciprocating motion while two others each rotated about
one of its ends and thus ensured the continuity of optical
paths for counterpropagating waves. In the mean time, the
arm bearing a gas discharge tube remained motionless. This
experiment was actually a laser-based variant of the previous
Kantor's experiments [63].

However, Einstein [54] had long before demonstrated that
the Sagnac effect should by no means be considered as a
consequence of Fresnel ± Fizeau drag. Indeed, it was shown to
occur even in the absence of any optical medium in the ring
interferometer. Moreover, the magnitude of the Sagnac effect
was unrelated to the presence of such a medium. An increase
of the light beam paths in a ring interferometer due to the
presence of an optical medium with the index of refraction n
was completely compensated for by lowering the Fresnel drag
coefficient a � 1ÿ 1=n2.

The problem was revised with the advent of the first FRIs
[55 ± 57]. Certain recent reports again tend to relate the
Sagnac effect in ring interferometers [258] or ring lasers [135]
filled with an optical medium to the Fresnel ± Fizeau light
drag.
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5.5 Sagnac effect and Coriolis forces
As shown in Sections 3.2 and 3.3, the Sagnac effect may be
regarded as a consequence of different time dilations or phase
change of the de Broglie wave of a material particle for
counterpropagating waves under the influence of the non-
relativistic gravitational scalar or respectively vector poten-
tial of Coriolis forces in a rotating frame of reference. It was
proposed in a paper by Silberstein [27] (see also Ref. [259])
that the Sagnac effect should be explained in terms of the
direct action of Coriolis forces on counterpropagating waves,
in addition to other feasible explanations (in the framework
of STR, GTR or the `luminiferous ether' concept). The
author of Ref. [27] thought that the effect of Coriolis forces
on counterpropagating waves in a three-mirror ring inter-
ferometer accounted for the optical path of a wave travelling
in the direction of rotation in the form of a triangle with
somewhat convex sides; a wave spreading in the opposite
direction had an optical path in the form of a triangle with
somewhat concave sides. For this reason, the triangles had
different areas. Hence, the relative time delay between the
counterpropagating waves, the additional travel time of each
wave dependent on the Sagnac effect being proportional to
the closed contour area [35].

After a little while, however, A Lunn [70] showed that the
triangles are actually equal in area even though their contours
for counterpropagating waves are not quite coincident during
rotation (the contribution of the deflection of each counter-
propagating light beam caused by the Coriolis forces to a
change of the contour area is totally compensated for by the
contribution from the altered angle of incidence on the next
mirror). It is easiest to demonstrate the equality of contour
areas for counterpropagating waves in a fixed frame of
reference where Coriolis forces are lacking. In such a case,
only rotations of reflecting mirrors at given moments need to
be taken into consideration as was done by M Laue [69].

5.6 Sagnac effect as a consequence
of the difference between photon orbital momenta
in counterpropagating waves
In Ref. [133] (see also Ref. [260]), the Sagnac effect was
evaluated by the method taking into account changes of the
orbital momenta of macroscopic photon orbits and the
energy of generated photons in a rotating ring laser. This
approach implies that the orbital momenta of macroscopic
photon orbits for counterpropagating waves vary during
rotation. Accordingly, photon energies and counterpropagat-
ing wave frequencies are also different. In reality, the
distinction in the frequencies of the counterpropagating
waves in a rotating ring laser can be accounted for by their
different optical paths due to the Sagnac effect.

The explanation of the Sagnac effect inRef. [133] is similar
to the above interpretation of this effect as a consequence of
the Doppler shift Ð either is based on the assumption of
different frequencies of counterpropagating waves. It is
worthwhile to emphasize the incorrect result of computation
of the Sagnac effect in a ring resonator taking into account a
change in the orbital momenta of macroscopic photon orbits
in a rotating frame of reference. A Einstein has long showed
[54] that in a rotating frame of reference the light frequency to
first order in v=c remains unaltered. In order to change
photon frequency in a fiber ring resonator, it needs to be in
acceleratedmotion perpendicular to the light guide wall [261].

Nevertheless, consideration of the altered orbital
momenta of macroscopic photon orbits in a rotating frame

of reference in Ref. [133] yielded an adequate expression for
the frequency difference between counterpropagating waves
in a rotating ring laser. This is, however, a mere coincidence
(just as in the above case of treating the Sagnac effect as a
result of the Doppler shift), all the three effects being those of
first order in v=c.

At the same time, it follows from Ref. [133] that for the
counterpropagating waves being trapped, their planes of
polarization make an angle numerically equal to the phase
difference between counterpropagating waves attributable to
the Sagnac effect. This means that in a rotating frame of
reference the propagation velocities of right-handed and left-
handed circularly polarizedwaves are different, the sign of the
difference being dependent on whether a wave travels in the
direction of rotation or in the opposite direction. To the best
of my knowledge, the latter effect has never been observed in
experiment despite the fact that it is a first order effect in v=c
and as such is a sufficiently large one. It should be recalled
that a similar erroneous result was obtained in Refs [111, 112,
114, 124, 125, 140] in the framework ofGTR (see Section 2.2).

The error contained in Ref. [133] is closely akin to that in
Refs [127, 130, 181 ± 186] where the Sagnac effect is regarded
as completely identical to the Aharonov ±Bohm effect.
Indeed, the rotation of a massive body results in the rotation
of the plane of polarization of a light beam passing nearby
[111, 199 ± 202, 262] in a trajectory of nonplanar curvature. In
this case, the rotation of the plane of polarization is actually a
manifestation of the Rytov effect [210 ± 212] for optically
inhomogeneous media, the inhomogeneity resulting from the
space curvature caused by a rotating mass, i.e. being due to
the Lense ±Thirring effect [100 ± 103]. This, in turn, affects the
propagation velocity of photons acquiring right- and left-
hand polarization. This means that even a vacuum exhibits
circular birefringence in the vicinity of a rotating mass.
However, the rotations of a real body and a frame of
reference lead to different physical phenomena (see above).
The authors of Refs [111, 112, 114, 124, 125, 133, 140, 260]
arrived at the wrong conclusion that optical inhomogeneity is
also inherent in a rotating reference system and accounts for
different propagation velocities of photons subject to right-
and left-hand polarization.

It is worthy of note that a light beam travelling in the
direction of rotation genuinely undergoes rotation of the
plane of polarization, i.e. Fermi's polarization drag [263,
264] which is very small in size [265] and remains of little
practical value for the measurement of angular velocities of
rotation. It will be recalled that the Sagnac effect is absent
when the axis of rotation coincides with the direction of
optical wave propagation, that is when Fermi polarization
effect takes place. This accounts for the possibility of
measuring the Fermi polarization effect using a ring laser
which rotates about one of its arms filled with an optical
medium [266].

5.7 Sagnac effect as a manifestation of electromagnetic
field inertial properties
Paper [136] offers the derivation of an expression for the
frequency difference between counterpropagating waves due
to the Sagnac effect in a ring laser, using the inertial properties
of an electromagnetic field in a ring resonator. This work
considers the rotation-induced deformation of the standing
wave structure in a ring resonator represented by an ideal
metal cylinder with the coefficient of reflection equalling
unity. The author of Ref. [136] describes his approach as ``a
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variant of the ether theory adapted to the special theory of
relativity at low linear rotational velocities''. We consider
such an approach to be in some measure analogous to the
foregoing interpretation of theDoppler effect as a cause of the
Sagnac effect. Also, we believe that the expression for the
frequency difference between counterpropagating waves in a
ring laser accurate to within small relativistic corrections was
obtained in Ref. [136] by virtue of proportionality between
this difference and the ratio v=c, where v � RO, and also
because the author dealt with a ring resonator containing no
optical medium.

It should be noted that the inertial properties of waves (or
wave packets, for that matter) are made use of in such
gyroscopic instruments as solid-state wave gyroscopes [267]
and also gyroscopes whose principle of action is grounded on
the macroscopic quantum properties of superfluid helium
[268 ± 270]. These instruments along with the Foucault
pendulum and mechanical gyroscopes [216, 217, 271] are
applied to determine the angular position in space. In
contrast, devices in which the Sagnac effect provides the
working principle (optical ring interferometers, ring lasers,
ring interferometers transmitting de Broglie waves, acoustic
and `slow' waves) serve as angular velocity pickups. This
makes the fundamental distinction between instruments
based on the Sagnac effect and those in which the property
of physical bodies or wave packets to maintain orientation in
space is employed.

5.8 Sagnac effect in incorrect gravitation theories
Numerous theories of gravitation proposed thus far also
include the so-called incorrect gravitation theories, the
corollaries of which are in conflict with the results of classical
experiments designed to verify GTR within the boundaries of
the solar system. Works [110, 272, 273] describe a multistage
procedure which having been applied allows us to consider a
gravitation theory as correct or incorrect based on the
evaluation of post-Newtonian parameters.

It appears from the above-cited works that the scalar
theory of H Yilmaz [25, 274 ± 276] is an incorrect gravitation
theory which came into being (along with a number of the
aforementioned correct theories of gravitation [107 ± 110,
272, 273]) as a consequence of difficulties incident to the
application of theMach principle in GTR. According to Refs
[110, 272, 273], Yilmaz's theory states, in particular, that the
angular velocity of the planets' rotation and precession of
their perihelia depend on the relative velocity between the
frame of reference attached to the central body about which a
planet moves in its orbit and a privileged reference system
imagined to be at rest with respect to the center of mass in the
Universe. It should be mentioned that the discovery of the
relict radiation anisotropy [277] provoked the discussion of
potential effects of the reference system velocity relative to the
privileged reference system on certain physical phenomena,
e.g. isotropy of the speed of light [169, 278, 279]. However,
experiments on a laser with an absorption cell have demon-
strated that there is no anisotropy of the speed of light to an
accuracy of 2� 10ÿ13 [280]. The accuracy of measuring the
anisotropy of the speed of light could be further improved by
three orders of magnitude using a Michelson fibre-optic
interferometer with arm lengths from 1 to 10 km [281].

H Yilmaz has investigated the Sagnac effect (which he
terms `mysterious') in considerable detail in the framework of
the gravitation theory [25, 274 ± 276]. It follows from the
results of Ref. [25] that the refractive indices of vacuum for

counterpropagating waves in a reference system attending
rotation are different:

1

n�
� 1� OR

c
:

The author of the work cited concludes that this gives rise to
the Sagnac effect. It should be recalled, however, that the
magnitude of the Sagnac effect is totally independent of the
refractive index of a medium.

5.9 Other incorrect explanations of the Sagnac effect
There are more incorrect explanations of the Sagnac effect,
which are however less known than the foregoing ones. They
are just listed below without offering much comment upon
each.

In Refs [282 ± 284] (see also Ref. [9]), the Sagnac effect is
considered as a result of broken time reversion for counter-
propagating waves in a ring interferometer (resonator) in a
rotating frame of reference. It is known that the time is
irreversible in the constant gravitational field created by a
rotating body [34]. However, it has been shown earlier in this
paper that the rotation of a massive body is not equivalent to
that of a coordinate system about a motionless massive body.
In other words, time is reversible in a rotating frame of
reference. Moreover, the Sagnac effect occurs regardless of
the presence of a massive body inside a ring interferometer.

In Ref. [223], the Sagnac effect is considered in terms of
the locality hypothesis broadly understood. In doing so, the
magnitude of the Sagnac effect is computed using the
following relationship between the photon energies E and E 0

in the stationary reference system and co-moving reference
system attached to rotating object, respectively:

E 0 � g�Eÿ OL� ;

where g � �1ÿ R2O2=c2�ÿ1=2,L is the photon orbital momen-
tum, O is the angular velocity of rotation, and R is the radius
of rotation. Evidently, the calculation method used in
Ref. [223] is analogous to that discussed previously [133],
which takes into account changes of the orbital momenta of
macroscopic photon orbits and the energy of generated
photons in a rotating ring laser. This method is incorrect
and leads to some mistakes (see above).

In Ref. [285], the Sagnac effect is considered to be a
corollary to the validity of the Fermat principle in a rotating
frame of reference. The motion of a free material particle in a
gravitational field is governed by the Fermat principle (the
principle of least time) which states that a travelling particle
seeks a path such that its world point follows a geodesic in the
four-dimensional space-time [34]. However, a photon in a
ring interferometer is not a free particle [261]; it undergoes
multiple successive reflections by the mirrors and progresses
through a light-guiding core of the SMOF toward the FRI.

In Ref. [286], the Sagnac effect is considered to be a
manifestation of the adiabatic invariant in a rotating frame of
reference.

According to Rosenbloom [287], the Sagnac effect relates
to the Schwarzschild solution [288] for a rotating reference
system. The author of Ref. [287] puts forward the hypothesis
that, through the force of the equivalence principle, gravita-
tional fields are applied to photons in a rotating frame of
reference, and the velocity of one counterpropagating wave in
a ring interferometer increases while that of the other
decreases. It should be emphasized that such a situation
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occurs only with the availability of angular acceleration [117];
therefore, the explanation of the Sagnac effect in Ref. [287] is
incorrect.Moreover, the author considers the Sagnac effect to
be an analogue of light beam deflection in the gravitational
field, proceeding from the erroneous results of an earlier work
by Einstein [175]. The paper [289] treats the Sagnac effect
almost in the samemanner as Ref. [287]. However, the author
addresses the subject with greater caution stating that the
standard computation of the Sagnac effect is not necessarily
incorrect. Moreover, he emphasizes the possibility of obtain-
ing the correct result in a stationary reference system in
Minkowski space, i.e. in the framework of STR.

The author ofRef. [227] makes thewrong assumption that
an accelerated motion (including rotation) is relative rather
than absolute in character and as a consequence this results in
the Sagnac effect.

Finally, Dieks [80] considers the Sagnac effect as a
consequence of the twin paradox in a rotating frame of
reference.

6. Conclusions

This review familiarizes the reader with selected works
concerning the Sagnac effect, which the author considers to
be especially important for its understanding. It illustrates a
wide variance of opinions as regards the physical causes of
this phenomenon. Evidently, no other effect has given rise to
such different and sometimes mutually exclusive interpreta-
tions.

The Sagnac effect was at different times the focus of
interest of O Lodge, A Michelson, M Laue, M G Sagnac,
A Einstein, P Langevin, L Silberstein, C Runge, B Pogany,
A Sommerfeld, F Zernike, C Mùller, M-A Tonnelat,
J Sakurai, and Y Aharonov. In this country, it attracted the
attention of S I Vavilov, L I Mandel'shtam, L D Landau and
E M Lifshitz, I L Bershte|̄n, G V Skrotski|̄, V A Ugarov, and
A A Logunov.

It has been shown before that the Sagnac effect is a
corollary to the relativistic law of velocity composition (the
propagation velocity of an arbitrary wave and rotational
velocity of an interferometer). This means that the Sagnac
effect constitutes a kinematic effect of STR [10, 11]. Also, it
has been demonstrated that calculations of the Sagnac effect
in terms of GTR and STR are virtually equivalent in the
absence of gravitating masses, i.e. in the absence of space
curvature. Nevertheless, certain authors question the rele-
vance of computation in accelerated frames of reference (in
particular, in rotating frames of reference) using STR. On
February 2, 1952, R Shankland addressed A Einstein for
clarification (in connection with the discussion about the
influence of Earth's rotation on the results of theMichelson ±
Morley experiments [12, 13] and those of DMiller [231, 232]).
The answer was [290]: ``O yes, that's right, so long as there is
no gravity; in all other cases the special theory of relativity is
applicable. Although the approach of the general theory of
relativity is probably better, it is not called for.''

Summarizing this review, it may be concluded that all
explanations of the physical nature of the Sagnac effect are
incorrect except the relativistic one, even though in some
specific cases they are likely to yield a result accurate to within
relativistic corrections. This is due to the fact that the Sagnac
effect, similar to certain other effects sometimes regarded as
its substitutes, is a first-order effect in v=c. This accounts for
the large number of incorrect explanations, from reducing the

Sagnac effect to a corollary of the Galilean law of velocity
composition or some other known first-order effects (Dop-
pler, Fresnel ± Fizeau, Aharonov ±Bohm, Lense ±Thirring
effects, etc.) to a vague and confused interpretation in the
framework of the incorrect gravitation theory [25] or a
reanimated luminiferous ether concept [136, 236, 237]. It has
been shown above that the Sagnac effect often occurs
concurrently with some other effects, which makes it difficult
to distinguish between them and accounts for inadequate
conclusions.

The numerical coincidence of the results obtained by the
correct method and incorrect computation does not necessa-
rily suggest the possibility to explain one and the same
phenomenon in two or more different ways. The validity of
this inference is exemplified by the expression for the speed of
light in a moving medium derived by O Fresnel in 1818 based
on the partial luminiferous ether drag theory [44]. This
expression is still in use in contemporary optics, giving a
highly accurate result, but it disregards a very small correc-
tion formedium dispersion, which can be obtained only in the
framework of STR [54]. It is not to be forgotten, however,
that this work by O Fresnel played a somewhat negative role
(besides a positive one) in the progress of physics. Specifically,
it provided a foundation on which the theory of luminiferous
ether had rested for almost 90 years until it was superseded by
STR. Had not O Fresnel postulated the entrainment of the
luminiferous ether by a moving medium, the inconsistency
between the experimental results of Michelson and Morley
[12, 13] and the luminiferous ether theory would have led
scientists to the discovery of the relativistic law of velocity
composition (and, possibly, even STR) earlier than it actually
came. Another example is the explanation of the gravitational
red shift as a consequence of a change of its potential energy
when moving in a gravitational field. This explanation
completely ignores conclusions drawn from GTR but yields
a correct result in absolute value. The authors of Ref. [41] give
evidence that this explanation is incorrect.

Thus, the possibility of obtaining a correct result by an
`incorrect' method may hinder the understanding of the
physical nature of the effect in question and retard the
development of an adequate theory.

I dedicate this work to the memory of my father
B F Malykin (4 May 1912 ± 26 June 1999) who inspired me
to concentrate on this most intriguing physical problem.

The author thanks Vl V Kocharovski|̄ for useful com-
ments on Section 2.1, and V I Pozdnyakova for assistance
during the work.

The work was supported in part by the Russian Founda-
tion for Basic Research (grants Nos 00-15-96732 and 00-02-
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