
Abstract. The propagation and reflection of electromagnetic
waves in stratified and nonstationary media are considered on
the basis of a unified approach, using exact analytical solutions
of Maxwell's equations. In this approach, the spatial structure
of a wave field in an inhomogeneous medium is presented as a
function of the optical path length of the wave (a one-dimen-
sional problem). These solutions predict strong dispersion of
both normal and abnormal types to occur in a given medium,
the magnitude of dispersion depending on the gradient and
curvature of the continuous smooth profile of the material's
inhomogeneous dielectric susceptibility e �z�. The effect of such
a nonlocal dispersion on the reflection of waves is described by
generalized Fresnel formulas. Exactly solvable models are
introduced to describe the effects of both monotonic and oscil-
latory e �t� dependences on the wave dispersion due to the finite
relaxation time of the dielectric constant.

1. Introduction. Optics of nonsinusoidal waves

This review is devoted to the effects of optical and radio wave
dispersion in a dielectric medium, which arise due to the
spatial nonuniformity or the temporal relaxation of its
dielectric properties. The variable velocity of propagation of
the wave fields in such a medium can completely change the

spectra of wave reflection and the spatiotemporal field
structure within the medium. The dependences of permittiv-
ity on the coordinates and time, which are described by
continuous and smooth functions of these variables, deter-
mine the domain of existence of nonlocal dispersion. For
certain values of the characteristic spatial nonuniformity
scales and relaxation times, this domain can be formed in a
frequency range remote from the natural resonances and
absorption bands of the material. Investigations into these
effects in different parts of the spectrum of electromagnetic
waves gain impetus from the problems of geophysics,
semiconductor and polymer optics, and the physics of
laboratory and cosmic plasmas. Harnessing materials with a
strong artificial dispersion opens up new avenues for the
synthesis of optoelectronic and radio engineering systems, the
development of nondestructive testing of complex materials,
and the elaboration of optimal modes of communication and
energy transfer through stratified and nonstationary media.
Moreover, the physical foundations and the mathematical
apparatus of the theory of electromagnetic waves in such
media are of interest in the analysis of wave fields in other
branches of the physics of continuous media.

The effect of nonlocal dispersion on the propagation and
reflection of electromagnetic waves in stratified and nonsta-
tionary media can be conveniently considered with the aid of
model dependences of the medium permittivity e on the
coordinates, e�r�, and time, e�t�. While discussing one-
dimensional problems for stratified media, there is good
reason to note several models of e�z� which allow exact
analytical solutions of the Maxwell equations. The same e�z�
dependences constitute exactly solvable models for the wave
equation in a medium with a variable wave velocity v 2�z� ��
e�z��ÿ1. One of the first such profiles v�z� was found by
Rayleigh in 1880 in the solution of the acoustic problem of the
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structure of a sound field propagating with a coordinate-
dependent velocity [1]:

v 2�z�
v 2�z � 0� �

�
1� z

L

�2

� e�z � 0�
e�z� : �1:1�

Here, the characteristic length L is the only free model
parameter. There also exists an exact solution for a more
gently sloping e�z� profile [2]:

e�z�
e�z � 0� �

�
1� z

L

�ÿ1
: �1:2�

Amore complex distribution containing four free parameters
makes up the Epstein layer [3]:

e�z�
e�z � 0� � 1ÿ Nf

1� f
ÿ 4Mf

�1� f �2 ;

f � exp
�
a�z� z1�

�
: �1:3�

A comprehensive analysis of the models (1.1) ± (1.3), which
describe media with a moderate natural dispersion of the
wave velocity, was performed in themonograph [4] concerned
with the problems of acoustics of stratified media.

In contrast to the models (1.1) ± (1.3), the distributions
(1.4) and (1.5) correspond to plasma-like dielectrics with the
frequency dispersion

e�z� � 1ÿ g�o�W�z� : �1:4�

Here, the g�o� factor depends on the wave frequency and the
parameters of the dielectric, while the dimensionless function
W defines the electron distribution. Exact solutions of the
Maxwell equations are known for linear [5], parabolic [6], and
exponential [7] profiles of the normalized densityW:

W � 1� z

L
; W � 1ÿ z2

L2
; W � exp

�
z

L

�
: �1:5�

When it comes to nonlocal dispersion, it is pertinent to
note that this review is devoted to dispersion effects related to
macroscopic medium-nonuniformity scale lengths L; in this
case, the ratio between the wavelength l in vacuum and the
quantity Lmay be arbitrary. It is not our intention to discuss
here the widely known effects of spatial dispersion [8]
determined by a microscopic medium inhomogeneity at
distances of the order of a, where a is the size of molecules
or the lattice spacing �a5 l�.

Since only a limited number of stratifiedmediamodels are
exactly solvable, investigators' attention is drawn to approx-
imate methods employed, for instance, in geometrical optics
[9, 10] and to the numerical simulation of wave problems,
which now forms the basis of the special course of studies
entitled ``Computer Electromagnetics'' in many universities
in Europe and the USA. Numerical techniques increase in
importance still further when we turn to the optics of
nonstationary media, where analytical results are seldom the
case. The limiting cases of adiabatic oscillations and rapid
jump-like variations of e�t� are described in Refs [11, 12].
Examples of amplitude-phase evolution of near-breakdown
fields in a plasma are illustrated numerically in Refs [13, 14].
Exact solutions for the fast dispersion distortion of short
video pulses in nonuniform dielectrics were found in Ref. [15].

The time-dependent diffraction of such pulses was considered
analytically in Refs [16, 17].

An analysis of these results suggests that the spatiotem-
poral envelopes of the electric and magnetic components E
and H of the wave field propagating through a layered or
nonstationary medium suffer complex distortions. In parti-
cular, when a wave with harmonic envelopes of E and H is
incident on the surface of a stratifiedmedium, the shape of the
spatial envelope of E within the medium becomes nonsinu-
soidal and changes during the propagation. Simultaneously
distorted is the spatial envelope of H, whose shape can
significantly differ from that of E. The rate of this distortion
is determined by the nonlocal dispersion of the medium.
Similar effects also develop in the time envelopes of E and H
in a nonstationary medium.

Therefore, a new branch of the wave theory Ð the optics
of nonsinusoidal waves Ð is formed in studies of electro-
magnetic fields in stratified and nonstationary media. Several
`burning' problems which are of consequence for the
development of this new avenue of investigation are dis-
cussed below.

1. Construction of exact analytical solutions of theMaxwell
equations for strato-nonuniform (one-dimensionally nonuni-
form) dielectrics. To find such solutions, we systematically
employ special transformations of the Maxwell equations
which eliminate the explicit dependence of these equations on
the e�z� distribution: in this case, the spatial field structure at a
point z within the medium depends on the phase path Z�z�
traversed by the wave from themedium boundary to the point
z (Z is the phase coordinate). The conditions of such a
transformation define broad classes of continuous e�z�
distributions allowing exact analytical representations for
the electromagnetic field components. The flexibility of such
models, which represent both monotonic and modulated
profiles of e�z� with an arbitrary modulation depth and
shape, is characterized by the existence of several free
parameters. The spatial field structure in the new variables
Ð the phase coordinates ZÐ is in some cases represented by
elementary functions (see Sections 2, 5, and 6).

Several previously known, exactly solvable models of e�z�
for nonuniform dielectrics prove to be special cases of the
multiparameter e�z� distributions derived here.

2. Strong nonlocal dispersion of electromagnetic waves in
stratified dielectrics. Employing exactly solvable models of
e�z� permits the dispersion of nonuniform dielectrics to be
represented by waveguide-type formulas. The characteristic
frequencies in these formulas are determined by the non-
uniformity scale of e�z�; the nonlocal dispersion can be either
normal or anomalous, depending on the e�z� profile. The
cutoff frequency for a stratified dielectric, which is deter-
mined by the e�z� profile, may occur in a spectral region far
from the resonance frequencies and the absorption bands of
the material (see Section 2).

For special e�z� profiles characterized by the absence of
nonlocal dispersion, the geometrical optics approximation
yields an exact solution of the wave equation (see Section 3).

3. Effects of broadband reflection and transmission of
radiation in nonuniform media. The nonlocal dispersion of a
nonuniform dielectric layer can radically change the reflec-
tion properties of the dielectric. Broad spectral intervals of
reflectionless transmission and strong reflection of radiation,
determined by the e�z� profile, arise in such a layer. The
compensation of phase shifts which appear as a wave passes
through a nonuniform dielectric and a dissipative medium
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permits the optimization of the parameters of broadband
reflectionless coatings for absorbing materials (see Sections 4
and 7). Advantage is taken of the phase coordinates to
consider the propagation of electromagnetic waves through
a plasma with a modulated density for symmetric and
asymmetric density profiles and an arbitrary modulation
depth (see Sections 5 and 6).

The importance of the gradient and the curvature of the
e�z� profile for the formation of broadband reflectionless
properties of dielectrics was demonstrated with the aid of the
generalized Fresnel formulas.

4. Dispersion of nonstationary media with a finite relaxa-
tion time. The exactly solvable models of nonuniform
dielectrics, considered above, are generalized to the case of a
time-dependent permittivity e�t�. The dispersion of such
dielectrics is described by waveguide-type formulas with
characteristic frequencies determined by the relaxation times
of e�t�. Exact analytical solutions of the Maxwell equations
describe nonsinusoidal waves in such media. We note the
feasibility of total wave reflection from a nonstationary
dielectric for certain relationships between the wave fre-
quency and the relaxation times of e�t� (see Section 8). The
effect of relaxation time on the reflection properties of a
conductor is demonstrated based on an exactly solvable
model for the telegraph equation with a time-dependent
conductivity s�t� (see Section 9).

A generalized model is constructed on the basis of the
Fresnel formulas for nonstationary dielectrics, which
describes the dynamic effects of the first and second
derivatives of the e�t� dependence on the amplitude oscilla-
tions and on the broadening of the spectrum of the reflected
wave.

5. Application of methods of the optics of stratified media to
the allied domains of the wave theory.We consider examples of
how the above mathematical formalism is applied to the
theory of long transmission lines with continuously distrib-
uted parameters, nonlinear optics, magneto-optics, and
quantum mechanics. Ways are highlighted toward broad-
ening the class of transformations of the Maxwell equations
in a continuous medium that lead to new exactly solvable
models of e�z� (see Section 10). We point out the prospects of
harnessing the optics of stratified and nonstationary media
for conducting prompt tests of the parameters of optoelec-
tronics materials.

2. Nonlocal dispersion of stratified media.
Phase coordinate method

This section is dedicated to the construction of a mathema-
tical scheme of describing large-scale dispersion effects in
stratified media. Let us consider the propagation of a plane
wave in a nonuniform, nonmagnetic dielectric whose permit-
tivity e depends on the z-coordinate. To distinguish the effects
associated with the nonuniformity of e, we assume that the
wave absorption and the material dispersion are insignificant
in the range of frequencieso under consideration. In this case,
the e�z� dependence in the transparency region �e > 0� can be
represented as

e�z� � n20U
2�z� ; U

���
z�0
� 1 : �2:1�

Here, n0 is the refractive index of the medium at the boundary
z � 0 and the dimensionless functionU 2 describes the spatial
permittivity distribution.

TheMaxwell equations for a linearly polarized wave with
components Ex and Hy, which travels in the z-direction
through a medium obeying expressions (2.1), are of the form

qEx

qz
� ÿ 1

c

qHy

qt
; �2:2�

ÿ qHy

qz
� n20U

2�z�
c

qEx

qt
: �2:3�

The function U 2�z� still remains unknown.
Unlike the exactly solvable models (1.1) ± (1.5) pointed

out in the Introduction, new analytical solutions of the system
(2.2), (2.3) will be derived employing a special transformation
in the space of phase trajectories. This approach leads to
several new, exactly solvable models for e�z� and allows a
clear representation of strong dispersion effects arising from
the permittivity profile. Expressing the Ex and Hy compo-
nents of the wave field in terms of some auxiliary function c
permits the system of first-order equations (2.2), (2.3) to be
reduced to one second-order equation for thec function. This
transformation can be accomplished in two different ways:

(1) the auxiliary function c is selected so that Eqn (2.2)
becomes an identity while the c function itself is defined by
Eqn (2.3);

(2) the c function that makes Eqn (2.3) an identity is
determined from Eqn (2.2).

It is appropriate to consider separately the solutions
constructed in these ways.

1. We express the wave field components in terms of a
vector potential A:

E � ÿ 1

c

qA
qt

; H � rotA : �2:4�

In the geometry of the problem (2.2), (2.3) under study, the
vector potential has only one component Ax �Ay � Az � 0�.
Expressing the Ax component in terms of the normalizing
constant A0 and the dimensionless function c�z; t� permits
Eqn (2.3), which determines the function c, to be written as

q2c
qz2
ÿ n20U

2�z�
c2

q2c
qt 2
� 0 : �2:5�

One can see from Eqn (2.5) that the unknown function c
obeys a wave equation with a coordinate-dependent velocity
of wave propagation.

Eqn (2.5) can be conveniently solved by introducing new
functions F and Q and a new variable Z [18]:

c � F����
U
p ; Q � Uÿ1 ; Z �

�z
0

U�z1� dz1 : �2:6�

In this case, Eqn (2.5) rearranges to the form

q2F
qZ2
ÿ n20

c2
q2F
qt 2
� F

"
1

2
Q

q2Q
qz2
ÿ 1

4

�
qQ
qz

�2
#
: �2:7�

The function Q�z� still remains unknown.
Consider, for instance, a simple particular solution of Eqn

(2.7) which corresponds to the function Q defined by the
conditions

1

2
Q

q2Q
qz2
ÿ 1

4

�
qQ
qz

�2

� p 2 : �2:8�
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Here, p 2 is some constant which will be defined below.
Assuming that the time dependence of the field F is
harmonic, Eqn (2.7) can be written, in view of expression
(2.8), as

q2F
qZ2
�
�
n20o

2

c2
ÿ p 2

�
F � 0 : �2:9�

Note that the Z-coordinate (2.6) is proportional to the
phase pathLp in the nonuniformmedium:Lp � n0Z. Eqn (2.9)
describes a sinusoidal wave traveling in the Z-direction:

F � exp
�
i�qZÿ ot�� :

We substitute this expression for the function F into Eqn (2.9)
to represent the dimensionless vector potential c as a
traveling wave with a spatially modulated amplitude:

c � exp
�
i�qZÿ ot������������
U�z�p ;

q � kN ; k � on0
c

; N �
���������������
1ÿ O 2

o2

s
; O 2 � p 2c2

n20
: �2:10�

The factorN (2.10) for p 2 > 0 is similar to the refractive index
for the waves propagating in a waveguide with a cutoff
frequency O. To calculate the electromagnetic field compo-
nents Ex and Ey from (2.10), the functionQ � Uÿ1 should be
found from Eqn (2.8), the parameter p 2 should be deter-
mined, and the Z-variable should be expressed in terms of the
z-coordinate. The profileU�z� that allows a representation of
the field c in the form (2.10) is given by the solution of
Eqn (2.8):

U�z� �
�
1� s1

z

L1
� s2

z2

L2
2

�ÿ1
;

s1 � 0;�1 ; s2 � 0;�1 : �2:11�

Here, L1 and L2 are the free parameters of the model
(2.11), which have the meaning of characteristic nonuni-
formity scale lengths for the permittivity. The distributions
(2.11) are shown in Fig. 1. If s1 and s2 are of the same
sign, the dependences U�z� are monotonic; when s1 and s2
are of different sign, there appear extrema of the functions
U�z�:

Umax � �1ÿ y 2�ÿ1 ; Umin � �1� y 2�ÿ1 ; y � L2

2L1
:

�2:12�

In the limiting case L2 !1 the function (2.11) corresponds
to the profile (1.1) for which the exact solution was pointed
out by Rayleigh [1].

We substitute formula (2.11) into (2.8) to obtain the
following expression for the parameter p 2:

p 2 � s21
4L2

1

ÿ s2

L2
2

: �2:13�

Depending on the ratio between the characteristic lengths L1

andL2 and the signs of s1 and s2, the parameter p 2 can assume
positive, negative, or zero values. In each of these cases, the Z-
variable (2.6) is represented by different formulas. For

instance,

Z
����
p 2>0; s2<0

� L2�������������
1� y2

p artanh
zLÿ12

�������������
1� y2

p
1� s1z=2L1

; �2:14�

Z
����
p 2>0; s2>0

� L2�������������
y2 ÿ 1

p artanh
zLÿ12

�������������
y2 ÿ 1

p
1� s1z=2L1

; y2 > 1 ;

�2:15�

Z
����
p 2<0; s2>0

� L2�������������
1ÿ y2

p arctan
zLÿ12

�������������
1ÿ y2

p
1� s1z=2L1

; y2 < 1 :

�2:16�

In the limit L2 !1, the Z-variable is of the form

Z � L1 ln

�
1� z

2L1

�
:

The case p 2 � 0 is considered below. All the quantities that
determine the vector potential c (2.10) are now expressed in
terms of the nonuniformity parameters.

Our results permit the effect of nonlocal dispersion of a
nonuniform dielectric (2.11) to be revealed. This effect,
determined by the parameters L1, L2, s1, and s2 of the profile
U�z�, is described by the factor N (2.10). For p 2 > 0, the
medium is characterized by a normal dispersion

N �
���������������
1ÿ O 2

1

o2

s
; O 2

1 �
c2�1� y2�

n20L
2
2

: �2:17�

0 x

U

1

2

3

a
1

2

0 x

U

1.0

0.5

b

1

2

Figure 1. Exactly solvable models of the spatial profiles of the normalized

permittivity U (2.11), x � zLÿ11 : (a) curve 1 corresponds to the case

s1 � ÿ1, s2 � �1, whereas the signs of s are similar for curve 2:

s1 � s2 � ÿ1; (b) curve 1 corresponds to the case s1 � �1, s2 � ÿ1 and

curve 2, to the case s1 � s2 � �1.
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Otherwise � p 2 < 0�, the permittivity nonuniformity is
responsible for an anomalous dispersion:

N �
���������������
1� O 2

2

o2

s
; O 2

2 �
c2�1ÿ y2�

n20L
2
2

: �2:18�

We emphasize that the resultant characteristic frequencies O1

andO2 are controlled by the nonuniformity parameters alone
and are not related to thematerial dispersion. The effect of the
characteristic frequencies O2 and O2 on the wave reflection
from a nonuniform dielectric is discussed in Sections 4 and 5.

Therefore, solving Eqns (2.2) and (2.3) through the first
procedure permitted the field in a nonuniformdielectric (2.11)
to be represented as modulated traveling waves. Before
discussing the properties of such fields, there is good reason
to dwell on other exactly solvable nonuniformity profiles in
dielectrics described in the context of the second procedure.

2. Unlike representation (2.4), the system (2.2), (2.3) can
be reduced to one equation by introducing an unknown
function Y according to the formulas [19]

Ex � B0

U 2�z�
qY
qz

; Hy � ÿB0n
2
0

c

qY
qt

: �2:19�

Here, B0 is the normalizing constant. Upon substitution of
formulas (2.19) into the system (2.2), (2.3), Eqn (2.3) becomes
an identity while the function Y is defined by the equation
following from Eqn (2.2):

q2Y
qz2
ÿ n20U

2�z�
c2

q2Y
qt 2
� 2

U

qU
qz

qY
qz

: �2:20�

Eqn (2.20) can be solved through the same procedure as Eqn
(2.5). We introduce new functions f and Q and use the Z-
variable (2.6):

Y � f
����
U
p

; Q � Uÿ1=2 : �2:21�

In view of expressions (2.21), Eqn (2.20) can be rearranged to
give

q2f
qZ2
ÿ n20

c2
q2f
qt 2
� f

Q

q2Q
qZ2

: �2:22�

We consider the nonuniformity profiles satisfying the condi-
tion

q2Q
qZ2
� p 2Q ; �2:23�

where p 2 is some constant. Depending on the sign of this
constant, the distributions of U � Qÿ2 described by
Eqn (2.23) can be represented as

U
���
p 2>0
� �cosh � pZ� �M sinh � pZ��ÿ2 ; p 2 > 0 ; �2:24�

U
���
p 2<0
� �cos � p1Z� �M1 sin � p1Z�

�ÿ2
; p 2

1 � ÿp 2 > 0 :

�2:25�

The constantsM and p 2 are determined by the parameters of
the U�z� profile. The case p 2 � 0 is treated separately.

When the condition (2.23) is fulfilled, the function f (2.22)
is represented by a traveling wave in the variables Z and t,

while the solution of Eqn (2.20) takes the form of a spatially
modulated wave

Y �
����������
U�z�

p
exp
�
i�qZÿ ot�� : �2:26�

The wave number q in expression (2.26) was defined in (2.10);
however, the profile U�z�, the parameter p 2, and the Z-
variable should be calculated anew. This consideration can
be conveniently performed separately for the cases p 2 > 0 and
p 2 < 0. We introduce the characteristic nonuniformity scale
length

L � j pjÿ1 �2:27�

and consider the following two cases.
Case 1: p 2 > 0. Solving expression (2.24) for the Z-

variable and comparing it with its definition (2.6), we arrive
at an equation for the profile U�z�:

qU
qz
� � 2U 2

L

��������������������������������
1ÿU�1ÿM 2�

q
; 04M4 1 : �2:28�

The plus and minus signs in the right-hand side of Eqn (2.28)
correspond to the ascending and descending U�z� depen-
dences, respectively. By solving this equation with the plus
sign, it is possible to investigate the growth of the dimension-
less function U from the value U � 1 at the boundary of the
medium to the maximum value Umax � �1ÿM 2�ÿ1:
z

L
� 1

2

�
Mÿ

��������������������������������
1ÿU�1ÿM 2�p

U

� �1ÿM 2� artanh Uÿ 1��������������������������������
1ÿU�1ÿM 2�p �MU

�
: �2:29�

The distance from the boundary to the point at which a
maximum Umax is attained, zm, is as follows:

zm
L
� 1

2

�
Mÿ �1ÿM 2� artanhM

�
: �2:30�

After the peak �z5 zm�, the nonuniformity profile U is
determined by the descending branch of the solution of
Eqn (2.28), which corresponds to the minus sign in the right-
hand side of this equation:

zÿ zm
L2

� 1

2

� ��������������������������������
1ÿU�1ÿM 2�p

U

� �1ÿM 2� artanh
��������������������������������
1ÿU�1ÿM 2�

q �
: �2:31�

This solution describes a decrease of U from U � Umax to
U � 1.

The dependences (2.24) and (2.31) characterize the family
of U�z� profiles with two free parameters M and L (Fig. 2a).
Unlike the explicit expression for the function U�z� (2.11)
obtained in the context of the first procedure, the profile
(2.29) is expressed through the inverse function z � z�U�.
This function is, together with its first derivative, continuous
at the maximum zm, where both branches are tangential to
one another. It is significant that this continuity is retained
even when the values of the parameters L and L2, which
characterize the branches (2.29) and (2.31), are different; if so,
the cases where L � L2 and L 6� L2 correspond to U�z�
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profiles symmetric and asymmetric about the maximum
Umax, respectively.

Case 2: p 2 < 0, p 2 � ÿp 2
1 , L1 � jp1jÿ1. The analysis is

performed according to the same procedure as in the case
where p 2 > 0. Taking advantage of relationship (2.25), it is
possible to write down the differential equation for U�z�:

qU
qz
� � 2U 2

L1

��������������������������������
U�1�M 2

1 � ÿ 1
q

: �2:32�

The descending and ascending branches of the solution of
Eqn (2.32), which determine the decrease of the function U
from U � 1 to the minimum U�z1� � �1�M 2

1 �ÿ1 and the
subsequent growth of U from the minimum to the value
U�z � z3� � 1, are described by the solutions of Eqn (2.32):

z

L1
� 1

2

"
M1 ÿ

��������������������������������
U�1�M 2

1 � ÿ 1
q

U

� �1�M 2
1 � arctan

1ÿU��������������������������������
U�1�M 2

1 � ÿ 1
q

�M1U

#
;

zÿ z1
L3

� 1

2

" ��������������������������������
U�1�M 2

1 � ÿ 1
q

U

� �1�M 2
1 � arctan

��������������������������������
U�1�M 2

1 � ÿ 1
q #

: �2:33�

The rise and fall of the function U are shown in Fig. 2b.

Now let us find the phase path Z (2.6) for the profiles (2.30)
and (2.33). Since the U�z� dependence is prescribed with the
aid of inverse functions z � z�U�, it is advantageous to make
use of the differential expression for Z in the form dZ � U dz.
We substitute the value of dz from Eqn (2.28) and rewrite
formula (2.6) as

Z � L

2

�U
1

dU1

U1

����������������������������������
1ÿU1�1ÿM 2�p : �2:34�

We calculate the integral (2.34) to obtain

Z � L

2
ln

tan
��1=2� arcsin �����������������������

U�1ÿM 2�p �
tan
��1=2� arcsin ����������������

1ÿM 2
p � : �2:35�

The phase path for the profile (2.33) is found in a similar way:

Z � 2L

�
arctan

�
M�

����������������
1�M 2

p �
ÿ arctan

� �����������������������
U�1�M 2�

q
�

��������������������������������
U�1�M 2� ÿ 1

q ��
: �2:36�

Therefore, the field in nonuniform dielectrics, which are
characterized by the z�U� profiles prescribed with the aid of
the inverse functions (2.30) and (2.33), is also represented as a
traveling wave (2.26) in the space of phase trajectories. The
nonlocal dispersion of such media, caused by the nonunifor-
mity of e�z�, is described by the parameter N (2.10). The
normal and anomalous dispersions are determined by
formulas (2.17) and (2.18), the characteristic frequencies
corresponding to the profiles (2.30) and (2.33):

O 2
1 �

c2

n20L
2
; O 2

2 �
c2

n20L
2
1

: �2:37�

Despite the fact that the formulas describing the nonuni-
form dielectric models (2.11) and (2.29) are different, several
common properties of these models are noteworthy.

1. In the determination of the wave number q � on0cÿ1N
(2.10), the local frequency dispersion of the refractive index
n0�o� is not taken into account. The dispersion-induced
variation in the wave number Dq corresponding to a
frequency shift Do is given by the relationship

Dqqÿ1 � Donÿ10

qn0
qo

:

Away from the resonance frequencies this ratio is small:
Dqqÿ1910ÿ2. At the same time, the nonlocal dispersion
characterized by the frequencies O1; 2 can radically alter not
only the magnitude of q, but the very nature of propagation,
for instance, for frequencies o < O1.

2. In the analysis of the models (2.11) and (2.29), it was
assumed that the nonuniformity distribution scale length L is
far shorter than the characteristic absorption lengths; in this
case, the absorption was neglected and the values of L were
real. However, these samemodels are easily generalized to the
case of an absorbing dielectric with a nonuniform distribution
of complex permittivity. In this case, the parameters L1 and
L2 are complex quantities: L � ReL� i ImL.

3. The traveling waves (2.10) describe only one of the
solutions of Eqn (2.9)Ð the direct wave. The second solution
of this equation (the return wave) corresponds to the
replacement of the factor exp�iqZ� with exp�ÿiqZ� in the
solution (2.10).

0 1.3 2.6

0.5

1.0

x

bU

0 0.8 1.6

1.0

2.0

1.5

x

aU

Figure 2. U�x� dependences, x � zLÿ1: (a) in the model (2.29), M � 0:7;
(b) in the model (2.33),M � 0:5.
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3. When does the WKB approximation yield
exact solutions of the wave equation?

The solution of a one-dimensional wave equation for a
medium with the coordinate-dependent refractive index
(2.10) provides a traditional example of constructing approx-
imate solutions within the framework of the WKB method
[9]. This method, based on the assumption that the refractive
index varies only slightly over a distance of a wavelength,
permits the approximate solution of Eqn (2.10) to be written
as

c � �U�z��ÿ1=2 exp�i�k �U dzÿ ot
��

; k � on0
c

: �3:1�

By comparing expression (3.1) with the exact solution (2.10),
it can easily be found that these solutions coincide when
k � q � on0Ncÿ1. In other words, the solution (3.1) is exact
when the parameter N (2.10) is equal to unity, i.e.,

p � 0 : �3:2�

As seen from the definition of the quantity p 2 (2.13), the
characteristic nonuniformity scale lengths L1 and L2 in this
case are related as L2 � 2L1. The profile of e�z� correspond-
ing to the equality (3.2) is determined by expression (2.11):

e�z� � n20

�
1� s1z

2L1

�ÿ4
: �3:3�

The Z-coordinate (2.6) for the profile (3.3) is given by the
expression

Z � z

�
1� s1z

2L1

�ÿ1
: �3:4�

The solution (3.1) corresponds to the WKB approxima-
tion for Eqn (2.5), which originates when the Maxwell
equations (2.2), (2.3) are transformed with the aid of the
function c (2.4). Transforming the same equations with the
aid of the function Y (2.19) leads to Eqn (2.20). The
approximate solution of Eqn (2.20) obtained within the
framework of the WKB approximation is of the form

Y �
����������
U�z�

p
exp

�
i

�
k

�
U dzÿ ot

��
: �3:5�

By analogywith the case (3.1), it can be shown that expression
(3.5) is an exact solution of Eqn (2.5) if the condition p � 0
(3.2) is fulfilled. The permittivity profile and the phase path Z
can be found from Eqns (2.21) and (2.23):

e�z� � n20

�
1� z

L

�ÿ4=3
; �3:6�

Z � 3L

��
1� z

L

�1=3

ÿ 1

�
: �3:7�

The resultant expressions (3.3) and (3.6) describe the
permittivity profiles for which the WKB approximations
coincide with the exact solutions. On the strength of
condition (3.2), the nonlocal dispersion does not occur for
waves propagating in these media.

Therefore, the WKB approximations for the field equa-
tions (2.5) and (2.20) can be regarded as special cases of the
general solutions derived by transforming the Maxwell
equations (2.2), (2.3) in the space of phase trajectories
Z � Z�z�. In other words, in the absence of artificial disper-
sion of the nonuniform layer � p � 0�, the nonuniformity
causes the amplitude and the phase of the field to change,
but the wave number q remains invariable during propaga-
tion. A similar effect is considered in Section 8 also for
nonstationary media: for a certain time dependence of the
permittivity (8.40), the wavelength of the radiation propagat-
ing through this medium does not vary.

4. Broadband reflectionless properties
of nonuniform dielectric layers

It was noted in Section 2 that the permittivity distributions
(2.11) and (2.29) are convenient for the description of
optically nonuniform layers of finite thickness and thin films
in particular. Such films deposited on a surface are widely
used to alter the reflectivity of this surface. Owing to the
interference of the waves reflected from the surface and from
the film coating, the reflected waves may quench each other.
This situation arises, for instance, when a wave is incident
normally from the air onto a film of thickness d, which covers
a half-space with a refractive index n1. If the quantities d and
n1, the wavelength l, and the refractive index of the film
material n0 are related as

n1 � n20 ; lm � 4n0d

m
; m � 1; 2; 3; . . . ; �4:1�

then, as is well known [23], all the waves enter the film-coated
half-space without reflection (a `quarter-wave' plate). How-
ever, this resonance effect arises in a uniform layer only for a
discrete wavelength spectrum (4.1). Nonuniform dielectric
layers with a special permittivity profile e�z� hold promise for
the formation of broadband reflectionless coatings. Techni-
ques for producing such coatings on the basis of polymers
[20], ZnSe-type semiconductor materials [21] and silicon
nitrides [22] have been elaborated in recent years.

To optimize the reflection properties of a nonuniform
layer over a broad frequency range, advantage can be taken of
the artificial dispersion effects (see Section 2). We consider a
plate of thickness d with a refractive index profile
n�z� � n0U�z�, which covers the surface of an optically
uniform material with a complex refractive index n2 � iK2
(Fig. 3); the dimensionless function U�z� is assumed to be of
the form (2.11). Let us assume that a wave with a frequencyo
is incident normally from the air onto a plate surface z � 0.
For the U�z� profile (2.11), the electric �Ex� and magnetic
�Hy� components of the wave field in the plate material
�04 z4 d� can be determined by substitution of the vector
potential (2.10) into formulas (2.4):

Ex � iA1ocÿ1Uÿ1=2 exp
�
i�qZÿ ot�� ;

Hy � iA1on0cÿ1U 1=2�Nÿ iG� exp�i�qZÿ ot�� ; �4:2�

G � c

2on0

�
s1
L1
� 2s2z

L2
2

�
: �4:3�

Here,A1 is the normalizing constant; the value of the quantity
N is given by formula (2.10); n0, L1; 2, and s1; 2 are the
parameters of the model (2.11).
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The total field within the plate, derived with the inclusion
of the wave reflected by the surface z � d, can be written as

Ex � ioA1c
ÿ1Uÿ1=2

�
exp�iqZ� � K exp�ÿiqZ�� exp�ÿiot� ;

�4:4�
Hy � ioA1n0c

ÿ1U 1=2
n
N
�
exp�iqZ� ÿ K exp�ÿiqZ��

ÿ iG
�
exp�iqZ� � K exp�ÿiqZ��o exp�ÿiot� : �4:5�

Expressions (4.4) and (4.5) imply that the amplitudes of the
direct and reflected waves are equal, respectively, to unity and
K. The components of the wave field in the air �z4 0� can be
written by introducing the electric-field reflectivity R [23]:

Ex � ioA0c
ÿ1�exp�ikz� � R exp�ÿikz�� exp�ÿiot� ;

Hy � ioA0c
ÿ1�exp�ikz� ÿ R exp�ÿikz�� exp�ÿiot� ;

k � ocÿ1 : �4:6�

Substituting expressions (4.4) ± (4.6) into the conditions for
continuity of the electric and magnetic field components at
the boundary z � 0 �Z � 0� permits the quantity R to be
represented as

R � 1ÿ B

1� B
; B � n0

�
N

�
1ÿ K

1� K

�
ÿ iG0

�
: �4:7�

The parameter G0 in expressions (4.7) is related to the
parameter G in formula (4.3):

G0 � G

����
z�0
� cs1

2on0L1
: �4:8�

The formula for the reflectivity R (4.7) contains an
unknown quantity K, which can be calculated from the
conditions for continuity of Ex and Hy at the boundary
z � d. By substituting the vector potential of the traveling

wave in the z5 d domain as

A2 exp
�
i�n2 � iK2��zÿ d� ÿ iot

�
;

it is possible to find the value of K:

K � ÿ n2 � iK2 � P1

n2 � iK2 ÿ P1
exp�2iqZ1� ; �4:9�

Z1 � Z�d� ; U1 � U�d� ; G1 � G�d� ;
P1 � n0U1�Nÿ iG1� : �4:10�

Upon substitution of K (4.9) into the formula that defines B
(4.7), we separate the real and imaginary parts of this
expression:

B � ReB� i ImB ; �4:11�
ReB � �n20N 2U1�1� t 2��n2Dÿ1 ; t � tan�qZ1� ; �4:12�
D � n2t

2 � �K2t� n0U1�N� G1t�
�2
; �4:13�

ImB � n0NDÿ1
n
t� nÿ22

�
K2 � n0U1�G1 ÿNt��

� �K2t� n0U1�N� G1t�
�oÿ n0G0 : �4:14�

With a knowledge of the values ofReB (4.12) and ImB (4.14),
it is possible to derive the complex reflectivity R from
expressions (4.7).

The amplitude and phase of the R coefficient essentially
depend on the characteristic nonuniformity scale lengths L1

and L2 as well as on the values of s1 and s2.
This dependence manifests itself, in particular, in the

influence of the artificial frequency dispersion (2.17), (2.18)
on the reflection processes. This effect can easily be illustrated
by the example of a simplified problem of reflection from a
nonuniform transparent plate in the air �n2 � 1, K2 � 0�. The
effects of normal � p 2 > 0� and anomalous � p 2 < 0� artificial
dispersion are treated below separately.

1. p 2 > 0. In this case, which corresponds to the upper
curve in Fig. 3, the medium is characterized by the cutoff
frequency O1 (2.17). By introducing the normalized wave
frequency x1 � oOÿ11 , it is possible to write the expression for
the parameter t (4.13) as

t � tan
� �������������

x21 ÿ 1
q

artanh u1

�
;

u1 �
�
dLÿ12

��������������
1� y 2

p �ÿ
1� ydLÿ12

�ÿ1
: �4:15�

From this point on, d is the layer thickness, and the values
x1 > 1 correspond to the transparent region. The frequency
dependence of the reflectivity for o > O1 is exemplified in
Fig. 4.

2. p 2 < 0. In this case, the lower curve in Fig. 3
corresponds to the profile of the refractive index. When
deriving the reflectivity for the given U�z� profile, one has to
use the expression for the parameter t corresponding to
formula (2.20):

t � tan
� �������������

1� x22

q
arctan u2

�
;

u2 �
�
dLÿ12

��������������
1ÿ y 2

p �ÿ
1ÿ ydLÿ12

�ÿ1
; x2 � oOÿ12 :

�4:16�
For an anomalous dispersion � p 2 < 0�, the cutoff effect does
not occur, and the characteristic frequency O2 is defined by

2

1

1

I
U

II

z

d

Figure 3.Transition layer I of a nonuniform dielectric of thickness d on the

surface of a uniform absorbing dielectric II. Curves 1 and 2 correspond to

the cases of normal and anomalous nonlocal dispersion in the modelU�z�
(2.11).
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expressions (2.18). The frequency dependence of the reflectiv-
ity for this model is exemplified in Fig. 5.

We can now revert to the more general case of reflection
from a nonuniform layer residing on the surface of an
absorbing dielectric with a complex refractive index n2 � iK2
(see Fig. 3). The reflection of a wave incident on the surface of
an absorbing dielectric from vacuum is, as is well known,
characterized by an absorption-dependent phase shiftjK [23]:

tanjK � 2K�1ÿ n2 ÿ K2�ÿ1 : �4:17�

However, the reflection from a nonuniform transparent layer
also gives rise to a phase shift controlled, in contrast to
expression (4.17), by the profile of the refractive index. The
mutual compensation of these shifts can substantially change
the reflection properties of the system, resulting, in particular,
in a weak reflection over a broad spectral range (Fig. 6).

As the characteristic nonuniformity lengths increase, the
frequencies O1 and O2 tend to zero, while formulas (4.11) ±
(4.14) pass into the well-known result for the reflectivity of a
uniform plate; in particular, for K2 � 0 in the limit L1 !1,
L2 !1 we obtain

N1 � U1 � 1 ; G0 � G1 � 0 ; qZ1 � on0dcÿ1 � g ;

ReB � n20 n
2
2

n22 sin
2 g� n20 cos

2 g
; ImB � n0�n22 ÿ n20� sin g cos g

n22 sin
2 g� n20 cos

2 g
:

�4:18�

The following tendencies characteristic of the reflection
properties of nonuniform layers can be traced in Figs 4 ± 6.

1. The cutoff frequency O1 for a material with a given
value of the refractive index n0 depends on the characteristic
lengths L1 and L2. By varying the parameters L1 and L2, it is
possible to produce the cutoff effect in any spectral region.
For instance, for n0 � 1:73, L1 � 100 nm, and L2 � 200 nm,
theO1 frequency is equal to 1:25� 1014 Hz.Referring toFig. 4
(the curve corresponding to the value a � dLÿ12 � 0:15), the
power reflectivity jRj2 of this layer for a thickness d � 30 nm
is no higher than 5% over the spectral range
0:5 < l < 1:5 mm. The same curve shows that a nonuniform
layer whose geometrical parameters are, say, ten times larger
(L1 � 1000 nm, L2 � 2000 nm, d � 300 nm) provides a weak
reflection �jRj2 < 0:05� over a broad far-IR frequency range
(5 < l < 15 mm).

Therefore, by selecting the proper values of the para-
meters L1, L2, s1, and s2, it is possible to optimize the
parameters of broadband reflectionless coatings for different
spectral regions using Fig. 4. Figure 4, as well as Fig. 5 which
follows, is plotted for normalized frequencies x � oOÿ1 and
different thicknesses of the reflecting nonuniform layer. A
more specific example of the effect of the U�z� profile on the
reflection spectrum of a layer with a given thickness appears
in Fig. 7.

2. In the case of a nonuniform layer with an anomalous
artificial dispersion � p 2 < 0�, transmission and enhanced-
reflection frequency bands (see Fig. 5) can form. For instance,
the power reflectivity of a layer with the parameters

1 2 3

0.01

0.03

0.05

jRj2

2 1

x1

Figure 4. Broadband weakly reflecting domain in the power reflection

spectrum jRj2 of a nonuniform dielectric layer with a normal nonlocal

dispersion (Fig. 3, curve 1). The normalized frequency x1 is defined by

expressions (4.15), n0 � 1:73. The effect of layer thickness d and of the

parametersL1 andL2 (2.11) is represented by curves 1 �dLÿ12 � 0:15� and 2
�dLÿ12 � 0:3�; y � 1 in both cases.

0 1 2 3 4

0.15

0.45

0.75

x2

jRj2

Figure 5. Spectral modulation of the reflection properties of a nonuniform

dielectric layer of thickness dwith an anomalous nonlocal dispersion (Fig.

3, curve 2). jRj2 is the power reflectivity, x2 is the normalized wave

frequency (4.16); the profile of U is defined by expression (2.11),

L2 � 1:5L1, d � L2.

2 3 4
0

0.02

0.04

x1

jRj2

1

2

Figure 6. Suppression of the reflection properties of a dielectric with losses,

coated with a nonuniform dielectric layer U�z� (2.11). The suppression

arises from the mutual compensation of the phase shifts, due to the losses

and the nonuniformity, in the reflected wave. jRj2 is the power reflectivity,
x2 is the normalized wave frequency; the effect of layer thickness d and

parameters L1 and L2 is demonstrated by the curves 1 �d � 0:25L2� and 2

�d � 0:3L2�. In both cases, y � 0:25.
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n0 � 1:73, y � 0:75, L2 � d � 900 nm �x2 � 1:45� for CO2-
laser radiation with a wavelength l � 10:2 mm is jRj2 � 0:73,
as can be seen from Fig. 5. The value of this coefficient for the
second harmonic radiation �x2 � 2:9� is an order of magni-
tude lower: jRj2 � 0:07. This property is of interest for the
spectral filtration of separate field harmonics.

3. For a specific wavelength, the thickness of a nonuni-
form reflectionless layer can be several times smaller than
the thickness of a uniform quarter-wave plate d1 (4.1). In
particular, for the wavelength l � 10:2 mm and the refrac-
tive index n0 � 1:73, the layer thickness d1 is 1.45 mm; at the
same time, as seen from Fig. 4, the thickness of the
nonuniform layer that limits the l � 10:2 mm wave reflec-
tivity to the level R � 0:01 is �a � 0:15� only 0.3 mm. This
distinction can be used to optimize the parameters of
reflectionless coatings.

Here, the reflection by a nonuniform dielectric is analyzed
assuming the permittivity profile to be prescribed by expres-
sion (2.11). The profiles of the form (2.29) and (2.33) can be
treated in a similar way. In particular, for profile (2.29), the
wave field components can be obtained on substitution of
expression (2.26) into expressions (2.19):

Ex � iA2q����������
U�z�p �

1� i

qL

��������������������������������
1ÿU�1ÿM 2�

q �
exp
�
i�qZÿ ot�� ;

�4:19�

Hy � iA2n
2
0c
ÿ1o

����������
U�z�

p
exp
�
i�qZÿ ot�� : �4:20�

The plus and minus signs in expression (4.19) correspond to
the ascending and descending branches of the U�z� profile
(see Fig. 2); the phase path Z is given by expression (2.35). By
using the continuity conditions for the field components at
the layer boundaries, it is possible to find the amplitude of the
reflected wave within the K layer [see expression (4.9)] and
calculate the reflectivity R. It is instructive to compare our
approach to the calculation of the reflectivity of a nonuniform
layer with the commonly used technique that involves the
replacement of the smooth U�z� distribution with a step-wise
profile and the description of each layer with the use of Abeles

matrices [25]. On the one hand, the formalism of these
matrices allows the reflectivity R of any multilayer coating
to be determined numerically. On the other hand, a regular
procedure for analyzing the reflectivity of these profiles Ð
monotonic or nonmonotonic, symmetric or asymmetric Ð
was constructed here with the aid of a set of U�z� profiles
involving several free parameters. Unlike a numerical calcula-
tion, the analytical solutions obtained allow several physical
characteristics of nonuniform media to be revealed: the
nonlocal dispersion, the cutoff frequency, and the transmis-
sion band. Moreover, unlike several exactly solvable models
which result in complex hypergeometric functions [4], the
structure of the field in the models considered in our work is
expressed in terms of elementary functions, which facilitates
and quickens the calculations.

5. Effects of the gradient and the curvature of
the e�z� profile on the nonlocal dispersion of
periodic nonsinusoidal dielectric structures

The wave reflection at the boundary of two uniform media,
caused by the jumps of refractive index, is described by the
well-known Fresnel formulas. The analysis of the reflection
properties of a nonuniform layer performed in Section 4
reveals the dependence of wave reflection on the jump of the
derivative of the refractive index [theG0 factor in relationship
(4.8)] at the layer boundary. The wave number q (2.10) in the
model (2.11) is also dependent on the magnitude of L1.
However, the model (2.11) also allows a more complicated
effect to be revealed Ð the dependence of reflectivity on the
second derivative of the refractive index of the medium,
characterized by the parameter L2. It is this effect that may
come to be the determining one in the wave reflection from a
dielectric with a periodic nonuniformity e�z�.

To demonstrate the contribution of the second derivative
q2U=qz2 to the efficiency of reflection, we consider the special
case where the values of both the refractive index and its first
derivative are continuous at the media interface. The
geometry of the problem is shown in Fig. 8: a nonuniform
layer of thickness d separates the domains with refractive
indices n1 �z4 0� and n2 �z5 d�. The profile of the refractive
index in the intervening layer 04 z4 d is composed of curves

1

U

d

1

2

a

0.75 0.95 1.15 1.35

0.2

0.4

0.6

0.8

2

3

1

R

l, nm

b

Figure 7.Effects of the gradient and the curvature of theU�z� profile on the
reflection spectrum of a nonuniform dielectric layer with a given thickness

d: (a) U�z� profiles (2.11) for the cases s1 � 0, s2 � �1 (curve 1) and

s1 � �1, s2 � ÿ1 (curve 2); (b) dependence of the power reflectivity on the
wavelength l. Curves 1 and 2 correspond to the reflection from the layers

with the nonuniformity profiles 1 and 2 in Fig. 7a, n0 � 1:73, d � 120 nm.

Curve 3 is the reflection spectrum of a uniform layer with the same values

of the refractive index n0 and the thickness d.

0

1

zz0 d

n1 n2
U2

U

U1

Figure 8. Smooth transition layer of thickness d composed of the curvesU1

and U2 (5.1) which are tangent to one another at the point z0.

1210 A B Shvartsburg Physics ±Uspekhi 43 (12)



U1 and U2:

U1 �
�
1� z2

L2
2

�ÿ1
;

U2 � U0

�
1� �dÿ z�2

l 22

�ÿ1
; U0 � n2

n1
: �5:1�

The curvesU1 andU2 are smoothly tangent to one another at
some point z0. The values of the refractive index n are
continuous at the layer boundaries z � 0 and z � d, the
values of grad n at the layer boundaries are equal to zero;
however, the curvatures of the arcs U1 and U2 at the points
z � 0 and z � d are different:

~k � q2U=qz2�
1� �qU=qz�2�3=2 ; ~k1 � ÿ 2

L2
2

; ~k2 � 2U0

l 22
: �5:2�

At the point of tangency of the profiles U1 and U2, the
following conditions are fulfilled:

U1

����
z�z0
� U2

����
z�z0

;
qU1

qz

����
z�z0
� qU2

qz

����
z�z0

: �5:3�

By substituting expressions (5.1) into conditions (5.3), it is
possible to find the coordinate of the point of tangency and
the relation between the parameters L2 and l2 which ensures
the smoothness of tangency. We assume for definiteness that
n2 < n1 and U0 < 1 to obtain

z0 � d

D0
;

L2
2

d 2
D0 � U0

1ÿU0
; D0 � 1�U0l

2
2

L2
2

: �5:4�

One of the parameters L2 and l2 in formulas (5.4) is free.
We consider a linearly polarized wave with a frequency o

incident normally from the z < 0 domain onto the boundary
z � 0. For each of the media shown in Fig. 8, the vector
potential of the wave field c (2.11) can be represented as

c � exp�ik1z� � R exp�ÿik1z� ; z4 0 ;

c � A1U
ÿ1=2
1

�
exp�iq1Z1� �Q1 exp�ÿiq1Z1�

�
; 04 z4 z0 ;

c � A2U
ÿ1=2
2

�
exp�iq2Z2� �Q2 exp�ÿiq2Z2�

�
; z0 4 z4 d ;

c � D exp�ik2z� ; z5 d : �5:5�

Here,R andD are the reflectivity and the transmittance of the
nonuniform layer; the coefficients A1, A2, Q1, and Q2 are
determined from the conditions of continuity at the planes
z � 0, z � z0, and z � d. The wave numbers k1, k2, q1, q2 and
the quantities Z1, Z2 are given by

k1; 2 � ocÿ1n1; 2 ; q1; 2 � k1; 2N1; 2 ;

N1 �
������������������������
1� c2

n21o2L2
2

s
; N2 �

����������������������
1ÿ c2

n22o2l 22

s
; �5:6�

Z1�z� �
�z
0

U1 dz1 ; Z2�z� � Z1�z0� �
�z
z0

U2 dz1 : �5:7�

As seen from expressions (5.6), the wave numbers k1, k2,
q1, and q2, which characterize the field structure in the four
regions shown in Fig. 8, are different; thus, the reflected and
transmitted waves are formed by reflections at the boundaries
z � 0, z � z0, and z � d. It is significant that the refractive
index and its gradient are continuous at each of these planes

and the reflections originate at the points of inflection of the
profile (5.2) owing to the jumps of the curvature ~k of the
profile at these points. The calculation of the reflectivity is
similar to that performed for a monotonic layer in Section 4.
It is noteworthy that the quantities R and D are found
employing the transformation (2.6) without expanding the
periodic function into a Fourier series.

By combining themodels (2.11) and (2.29), it is possible to
construct more complex, deeply modulated, nonsinusoidal,
periodic U�z� profiles with a continuous distribution of the
refractive index. In particular, of interest is a profile
composed of convex �U1� and concave �U2� curves (2.11); in
this case, the parameter values s1 � ÿ1, s2 � �1 and s1 � �1,
s2 � ÿ1 correspond to the U1 and U2 functions. We assume
for simplicity of analysis that these curves are tangent to one
another at points zn �n � 1; 2; 3; . . .� which lie in the straight
line U1 � U2 � 1. For each arc Un and Un�1, the distance
between the neighboring points of tangency dn � zn�1 ÿ zn
and the slope of the tangents at these points are determined by
the nonuniformity scale lengths L1 and L2:

dn � L2
2

L1
;

qU
qz

����
U�1
� � 1

L1
: �5:8�

The plus (minus) sign in expressions (5.8) corresponds to the
passage from a convex (concave) arc to a concave (convex)
one. The smoothness of tangency requires that the value ofL1

should be constant for all the arcs. Continuing the U profile
with obedience to the condition L1 � const gives a smooth
periodic distribution of the normalized profile of the
refractive index of U shown in Fig. 9.

The resultantU�z� distribution differs essentially from the
frequently considered periodic structures arising from the
harmonic modulation of the refractive index, specifically:

(1) the deviations of the maximum and the minimum of
the U�z� profile from the value U � 1 are not equal:

Umax � �1ÿ y2�ÿ1 ; Umin � �1� y2�ÿ1 ; y � L2

2L1
;

�5:9�

0 1 2 3

0.67

1.00

1.33

x

d1 d2

U2

U1U

Figure 9. Spatial modulation of the profile of the normalized refractive

index U�x� composed of `modulation half-waves' U1 and U2 (2.11),

x � zLÿ11 ; the `half-wave' lengths d1 and d2 (5.8) correspond to the values

y21 � 0:25 and y22 � 0:5.
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(2) the `modulation half-wave' lengths d1 and d2 (5.8) are
different if the values of the parameter L2 for the neighboring
curves U1 and U2 are not equal;

(3) by composing a continuous profile W of curves (2.11)
with different but periodically repetitive values of the L2

parameter �L1 � const�, it is possible to find the reflectivities
and the transmittances of modulated structures of complex
symmetry, for instance, doubly periodic structures.

A periodic profile composed of the arcs U1 and U2 (see
Fig. 2) is calculated in a similar manner. We compare
expressions (2.28) and (2.32), which determine the slope of
these curves, to obtain the condition for the smoothness of
tangency of U1 and U2 at the points zn which lie in the line
U1 � U2 � 1:

M

L
�M1

L1
: �5:10�

Thewave numbers q1 and q2 (5.6) of the wave propagating
through the portions U1 and U2 are different because p

2 > 0
and p 2

1 < 0, according to expressions (2.24) and (2.25). The
wave propagation is therefore accompanied by reflections at
the points zn. Similar reflections also originate at the points of
tangency of the arcs U1 and U2 (see Fig. 8), since the p 2

parameter values are not equal for the portions U1 and U2:

p 2
1 �

1

4L2
1

ÿ 1

L2
2

; p 2
2 �

1

4L2
1

� 1

L2
2

: �5:11�

Contrary to the cases considered above, a combination of
the models (2.11) and (2.34) allows us to construct an
interesting example of a continuous periodic U�z� profile
characterized by a constant value of the wave number q in the
convex and concave portions of the profile. To this end, we
represent the convex portion U1 with the aid of expression
(2.11), where s1 � �1 and s2 � ÿ1, and the concave one, U2,
with the aid of expression (2.29) and write down the condition
for the equality of the wave numbers q1 and q2:

1

4L2
1

� 1

L2
2

� 1

L2
: �5:12�

The condition (5.12) should be fulfilled simultaneously with
the condition for the profile smoothness at the points U � 1:

LLÿ11 � 2M : �5:13�

We substitute expression (5.12) into condition (5.13) to obtain
a relation between the parameters y � L2�2L1�ÿ1 and M for
the modulation half-waves U1 and U2 at a smooth tangency:

y2 �M 2�1ÿM 2�ÿ1 : �5:14�

The profile (5.14) is shown in Fig. 10. However, even in this
case �q1 � q2� the wave reflection is bound to occur at the
point of tangency of the curvesU1 andU2. To make sure that
this is the case, it would suffice to compare the expression for
the field components in the U1 domain, (4.2) and (4.3), with
the corresponding field components in the U2 domain, (4.19)
and (4.20). For instance, the requirement for the electric field
component that it be continuous for z � d, U � 1 would, in
the absence of reflection, lead to the unsatisfiable condition
n0N�1ÿ iM� � 1, where n0,N, andM are real quantities. The
origination of reflection is associated with the jumps of the
profile curvature at the point z � d.

Therefore, the combination of the models (2.11) ± (2.29)
allows constructing broad classes of exactly solvable models
of nonuniform dielectrics with nonsinusoidal periodic e�z�
distributions. Within the framework of these models, it is
possible to analytically represent the contribution of the
jumps of the refractive index as well as of its first and second
derivatives to the formation of reflected and transmitted
waves.

6. Dispersion of high-frequency waves in plasmas
with monotonic and nonmonotonic density
distributions

The above consideration of the wave propagation through
dielectric media implied the remoteness of resonance frequen-
cies; it was assumed in this case that the local effects of
material dispersion were negligible in comparison with the
dispersion effects caused by the nonuniform permittivity
distribution e�z�. For a number of dielectrics, however, the
e�z� nonuniformity may significantly alter the reflection and
transmission wave spectra in the proximity of local reso-
nances. These changes can be illustrated by the simple
example of the propagation of high-frequency transverse
waves in the electron plasma of a semiconductor with a
nonuniform carrier density N�z�.

In studies of the wave processes in a nonuniform plasma,
reference N�z� distributions are of frequent use, which allow
exact analytical solutions of the wave equation. In particular,
for a linear density profile (1.5), the field structure in the
plasma is, as is well known, represented in terms of of the Airy
functions [5]. For a parabolic profile, the exact solutions of
the wave equation are given by the functions of parabolic
cylinder [6]. However, the validity of these models, which
contain only one free parameter L, is limited to plasma layers
of finite thickness.

A more flexible model is treated below, which describes
the ionization profile throughout the z5 0 half-space
employing two parameters a and b [18],

W � N�z�
N0
� 1ÿ 1

b
�U 2�zaÿ1�

b
: �6:1�
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Figure 10. Modulated U�x� profile, x � zLÿ1, which provides a constant

wave dispersion, as composed of curvesU1 (2.29) andU2 (2.11), which are

tangent at the level U � 1 (5.14). The wave numbers q in the domains U1

and U2 are determined by formulas (2.10) and (2.27), respectively;

M � 0:5.
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Here, the characteristic length a and the dimensionless
quantity b are the free parameters of the model and N0 is the
ionization density at the medium boundary z � 0; the
function U�zaÿ1� satisfies the conditions

U

����
z�0
� 1 ; limU

����
z!1

� 0 : �6:2�

Therefore, the normalized electron density distribution (6.1)
describes the `saturation' of the ionization and the permittiv-
ity e of the plasma with depth:

lim e�z�
����
z!1
� eL

�
1ÿ O 2

0

o2
�1ÿ bÿ1�

�
;

O 2
0 �

4pe2N0

eLmeff
: �6:3�

Here, O0 is the plasma frequency, meff is the effective carrier
mass, and eL is the lattice contribution to the permittivity. The
values of the parameter b in formula (6.1) lie in the ranges
b < 0 and b > 1.

Now let us consider the propagation of an S-polarized
wave in themedium (6.1) for z5 0. The direction of the y-axis
is given by the kk component, which is perpendicular to the x-
axis. The Ex, Hy, and Hz components of the wave field are
interrelated by the Maxwell equations:

qEx

qz
� ÿ 1

c

qHy

qt
;

qEx

qy
� 1

c

qHz

qt
; �6:4�

qHz

qy
ÿ qHy

qz
� eL

c

�
1ÿ O 2

0

o2
�1ÿ bÿ1� ÿ O 2

0U
2�z�

o2b

�
Ex : �6:5�

Expressing the field components in terms of the component
Ax � A0c of the vector potential (2.4), we transform the
system (6.4), (6.5) into an equation for the function c:

q2c
qz2
� q2c

qy2
� eLo2

c2

�
1ÿ O 2

0

o2
�1ÿ bÿ1� ÿ O 2

0U
2�z�

o2b

�
c � 0 :

�6:6�

We rewrite Eqn (6.6) using the Z-variable (2.6) and
introducing a new function f :

c � fUÿ1=2 exp
�
i�kkyÿ ot�� : �6:7�

The function f satisfies the equation which follows from
Eqn (6.6),

q2f
qZ2
� f

"
p 2

U 2
ÿ eLO 2

0

c2b
ÿ 1

2U

q2U
qZ2
� 1

4U 2

�
qU
qZ

�2
#
� 0 ; �6:8�

p 2 � eL
c2
�
o2 ÿ O 2

0 �1ÿ bÿ1��ÿ k2k : �6:9�

To this point the functionU, which determines the carrier
density profile, has remained unknown. By using the Z-
variable, it is possible to construct models of both the
monotonic and nonmonotonic ionization profiles W�z�
admitting exact analytical solutions of the wave equation
(6.8).

1. A simple model of a monotonic ionization profile can be
represented by the formulaU � exp�ÿZaÿ1�, where a is some
characteristic length. However, this formula expresses the
profile U as a function of the Z-coordinate. To determine the

dependence of U in an explicit form, the expression
Z � ÿa lnU should be substituted into the definition of the
Z-variable. On solving the resultant equation, we find

U �
�
1� z

a

�ÿ1
: �6:10�

The W�z� density profiles corresponding to the distribution
(6.10) are shown in Fig. 11. We substitute expression (6.10)
into Eqn (6.8) and go over to the new variable u � Uÿ1 �
exp�Zaÿ1� to obtain the Bessel equation for the function f :

q2f
qu2
� 1

u

qf
qu
� f

�
a2p 2 ÿ q2

u2

�
� 0 ; �6:11�

q2 � O 2
0 a

2eL
c2b

� 1

4
; u � 1� z

a
: �6:12�

The parameter p 2 was defined by expression (6.9).
We first consider the frequency range defined by the

condition p 2 > 0. If q 2 > 0, the solution of Eqn (6.11) is
represented by the Hankel function H

�1�
q �apu�. Reverting to

the z-variable, we can represent the function c (6.7) as

c �
�����������
1� z

a

r
H �1�q

�
p�a� z�� exp�i�kkyÿ ot�� : �6:13�

We substitute the component Ax � A0c of the vector
potential into Eqns (2.4) to obtain the expressions for the
components of the wave field:

Ex � iA0ocÿ1c ; Hz � ÿiA0kkc ;

Hy � A0

a

�
1

2u
� pa

H
�1�
q �x�

qH �1�q �x�
qx

����
x�pau

�
c : �6:14�

By taking advantage of the asymptotic form of theHankel
functions

H �1�q �x�
����
x4 1

�
������
2

px

r
exp

�
i

�
xÿ pq

2
ÿ p

4

��
; �6:15�
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Figure 11. Plasma density profileW�x�, x � zLÿ1 (6.1), which tends to the

constant value W � 1ÿ bÿ1 with depth in the plasma. The respective

values of the b parameter for curves 1 ± 3 are 2,ÿ0:5, andÿ1. The function
U in expression (6.1) is defined for curves 1 and 2 by expression (6.10) and

for curve 3 by expression (7.11).
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we can easily show that the components of the wave field deep
in the medium �z4 a�, where the density nonuniformity
vanishes, are represented by a traveling harmonic wave. For
instance,

Ex � exp
�
i�pz� kkyÿ ot�� : �6:16�

The dispersion of a medium of this kind is described by
Eqn (6.9).

The density nonuniformity in the proximity of the plasma
boundary (6.1) can significantly alter the wave reflection
spectrum. For simplicity we consider the case of normal
wave incidence from the air onto the boundary of a solid-
state plasma. We introduce the reflectivity R, which can be
found from the conditions of continuity for the field
components at the plane z � 0

1� R

1ÿ R
� 2iac

o

�
1� 2ap

H
�1�
q �x�

qH �1�q �x�
qx

����
x�ap

�ÿ1
: �6:17�

By representing the Hankel function as the sum

H �1�q � Iq � iNq ;

where Iq and Nq are the Bessel and Neumann functions, and
using the Wronskian of the pair of functions Iq and Nq

Iq�x� qNq�x�
qx

ÿNq�x� qIq�x�qx
� 2

px
; �6:18�

we obtain the complex reflectivity from expression (6.17):

R � ÿReQ� i�2oacÿ1 ÿ ImQ�
ReQ� i�2oacÿ1 � ImQ� ; �6:19�

ReQ � ÿ1� 2pa

I 2q �N 2
q

�
Iq

qIq
qx
�Nq

qNq

qx

�
;

ImQ � 4

p
1

I 2q �N 2
q

: �6:20�

The argument of the Bessel and Neumann functions in
formulas (6.20) is the quantity pa.

In the calculations using the formulas (6.19) and (6.20),
the order q of theHankel functions can assume any real values
if the plasma density deep in the medium is lower than at the
boundary. Otherwise �b < 0�, the values of the parameter b
are bounded by the condition q 2 5 0 (6.12).

An example of the frequency dependence of the reflectiv-
ity of a nonuniform electron plasma of InSb is given in Fig. 12
for the simple case q � 1 (6.12). Comparing curves 1 and 2 in
this figure shows that the transition layer can significantly
suppress the reflection capacity of a semiconductor plasma
over a broad frequency range.

2. Models with a nonmonotonic ionization profileW can be
represented in terms of the function

U�Z� � cosh�Z=a0 ÿ arsinhM�����������������
1�M 2
p ; M5 0 : �6:21�

Here, a0 is the characteristic nonuniformity scale length and
M is a free dimensionless parameter. By resolving formula
(6.21) for Z and substituting it into expression (2.6), we find an

explicit expression for the U�z� profile:

U�z� �
�
cos

z

L
�M sin

z

L

�ÿ1
;

L � a0
����������������
1�M 2

p
: �6:22�

The distribution (6.22), defined in the interval 04 z < z1, is
minimum at the point zm, where

zm
L
� arctanM ; Umin � 1����������������

1�M 2
p ;

z1
L
� ÿ arctan

1

M
: �6:23�

The function U�z� (6.22) assumes the value U � 1 at the
points 0 and z1:

z1
L
� arcsin

2M

1�M 2
: �6:24�

The points zm (6.23) and z1 lie in the domain of definition of
the function U�z�: zm < z1 < z1.

We substitute the U�z� distribution (6.22) into expression
(6.1) and consider the ionization profile, which comprises, in
the interval 04 z4 z1, the convex arc (6.1), where b1 < 0; the
continuation of the profile in the interval is described by the
concave arc (6.1) for b2 > 1. The condition for the smooth-
ness of tangency at the point z1 relates the parameters of these
profiles:

M1

M2
� jb1jL1

b2L2
: �6:25�

By continuing to construct the sequence of such arcs, we will
obtain a continuous, smooth, oscillatory ionization profile
N�z�. The maxima and minima of this profile are

Nmax

N0
� 1� 1

jb1j
M 2

1

1�M 2
1

;
Nmin

N0
� 1ÿ 1

b2

M 2
2

1�M 2
2

: �6:26�
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Figure 12.Modulus of the reflectivityR for a wave incident normally onto

the surface of a nonuniform electron plasma of InSb (eL � 12:5,
N0 � 5� 1017 cmÿ3) as a function of the normalized wave frequency

v � oOÿ10 (curve 1). Profile of the carrier density is specified by Eqn (6.1);

b � 2; the functionU is given by expression (6.10), a � 10ÿ4 cm. Curve 2 is

a plot of the reflectivity R for a uniform plasma �a!1�.
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In the simplest case, whenM1 �M2 and jb1j � b2, a periodic
electron density profile arises with the period 2z1 (6.24) shown
in Fig. 13.

To find the wave field, for instance, in the domain
04 z4 z1, the function U�Z� (6.21) should be substituted
into Eqn (6.8). We introduce a dimensionless variable x and
rewrite Eqn (6.8) as

q2f
qx2
� f

�
q2 ÿ T

cosh2x

�
� 0 ; T � 1

4
ÿ �pL1�2 ; �6:27�

q2 � 1

4
� eLO 2

0L
2
1

c2jb1j ; x � Z
a0
ÿ arsinhM : �6:28�

An equation of the type (6.27) coincides formally with the
SchroÈ dinger equation of quantummechanics which describes
the particle scattering by the potential coshÿ2 x [26]. In this
case, there is good reason to emphasize once again that the
potential coshÿ2 xwas defined here as a function of the `phase
Z-coordinate'; in the real space, the potential is defined by a
different function (6.22). We go over to the new variable

u � 1

2
�1ÿ tanh x�

and substitute the unknown function f of the form

f � �cosh x�iqF ; �6:29�

to obtain, for the function F, the hypergeometric equation

u�1ÿ u� q
2F

qu2
ÿ �gÿ u�1� a� b�� qF

qu
ÿ abF � 0 ;

a; b � 1

2
�1ÿ 2iq� 2pL1� ; g � 1� iq : �6:30�

Since the parameters a, b, and g (6.30) are related as

a� b� 1 � 2g ; �6:31�
the fundamental solutions of Eqn (6.29) can be expressed in
terms of the hypergeometric function G [27]:

F1 � G�a; b; g; u� ; F2 � G�a; b; g; 1ÿ u� : �6:32�

By using expression (6.28) for the u-variable, it is possible to
write the solution of the equation for the vector potential c
(6.7) as

c �
����������������������������������
cos

z

L
�M sin

z

L

r
�cosh x�iq exp�i�kkyÿ ot��

� �G�a; b; g; uÿ� � SG�a; b; g; u��
�
: �6:33�

Here, S is a constant determined from the boundary
conditions and G is the hypergeometric function of the
argument

u� � 1

2
�1� tanh x� : �6:34�

The solutions of Eqn (6.7) in the adjacent domain z1 4 z4 z2,
which corresponds to the concave arc of the W profile (see
Fig. 13), can be constructed in a similar way (6.33). By
invoking the conditions for the continuity of the field
components at the points z � 0; z1; z2; . . . ; it is possible to
investigate the field structure in a plasma with a periodic
profile of electric density. To calculate the field at these
points, the corresponding values of the x-variable (6.28)
should be found. These values can be obtained on substitu-
tion of the function U�z� (6.22) into formula (2.6):

x � ÿarsinhM� ln

���� 1�m� tan�z=2L�
1ÿmÿ tan�z=2L�

���� ;
m� �

����������������
1�M 2

p
�M : �6:35�

Upon substituting the values z � 0 and z1 (6.24) into
expression (6.35), we have

x
���
z�0
� ÿarsinhM ; x

���
z�z1
� arsinhM : �6:36�

For z! z1 (6.23), the x-variable (6.35) increases indefinitely.
The resultant values of x (6.36) are used to calculate the values
of the function f (6.33) at the points of inflection
z � 0; z1; z2; . . . ; etc., which separate the concave and convex
portions of theW profile. The difference between these values
determines the wave reflection at the points of inflection of
the periodic ionization profile involved.

By combining theU�z� distributions (6.10) and (6.22), it is
possible to find the field structure in plasmas with nonmono-
tonic ionization profiles; this refers, for instance, to the
density distribution (6.1) composed of the convex arc U
(6.22), where b � ÿb1 �b1 > 0�, and the monotonically
decreasing function U (6.10), where b � b2 > 1. The condi-
tion for the smoothness of tangency of these curves at the level
U � 1 is of the form

M

jb1jL �
1

b2a
: �6:37�

The resultant nonmonotonic carrier density distribution,
which is characterized by the single peak Nmax and which
tends to the constant valueNc deep in the medium, is given in
Fig. 14 (curve 1):

Nmax

N0
� 1� M 2

jb1j�1�M 2� ;
Nc

N0
� 1ÿ Ma

jb1jL : �6:38�

This distribution contains four free parameters:M, b1, L, and
a. A similar distribution of N, characterized, unlike the
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W

Figure 13.Deeply modulated harmonic plasma density distribution W�x�
described by formula (6.1), where the functionU is defined by expressions

(6.22). The parameter b in expression (6.1) for domains 1 and 2 is equal to

�1,M � 2, x � zLÿ1. The modulation depth K is 80%.
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distribution (6.38), by a single negative peak Nmin,

Nmin

N0
� 1ÿ M 2

b1�1�M 2� ;
Nc

N0
� 1�Ma

b1L
; �6:39�

is shown in Fig. 14 (curve 2).
To calculate the reflectivities and the transmittances of a

nonuniform plasma described by the curve (6.22), the
hypergeometric functions G�a; b; g; u� should be tabulated.
One way to independently verifying the precision of this
tabulation is to consider, in the context of Eqn (6.27), a
simple problem of wave propagation, for the parameter T in
Eqn (6.27) equal to zero, i.e., 4�pL1�2 � 1. In this case, the
solution of Eqn (6.27) is described by the harmonic wave

f � exp�iqx� � S exp�ÿiqx� ; �6:40�

where the wave number q and the x-coordinate are defined by
expressions (6.28) and (6.35). By using the solution (6.40), it is
easy to find, for instance, the reflectivity of a nonuniform
plasma layer containing one `half-wave' of the spatially
modulated carrier density (see Fig. 13). On the other hand,
this reflection coefficient can be calculated in the context of
the general approach with a recourse to the eigenfunctions c.
Comparing the results would allow an estimation of the
precision of the calculations with the use of hypergeometric
functions.

As seen from Figs 11 ± 14, the use of the phase coordinate
considerably extends the scope of exactly solvable models in
the problems of wave propagation in nonuniform dispersion
media. The reflection properties of such media are signifi-
cantly changeddue to the coordinate dependence (seeFig. 12),
which results in the formation of broad low-reflectivity
spectral intervals. The resultant analytical solutions, which
contain several free parameters, allow the wave reflection
spectra to be studied over a broad parameter range. An
alternative statement of the reflection problem involves a
search for a medium nonuniformity profile which provides
broadband reflectionless wave passage through the medium
boundary. Examples of such profiles for normal wave

incidence onto the boundary of a dielectric described by the
Debye or Lorentz models for constant values of the para-
meters O0 and eL were found by numerical techniques in
Ref. [28].

7. Surface electromagnetic waves
in a nonuniform dielectric

In the foregoing, the propagation of electromagnetic fields
along the direction of the gradient of e�z� in a nonuniform
dielectric was discussed. However, the e�z� nonuniformity can
significantly affect the dispersion properties of the waves
which propagate in the direction perpendicular to HHe, in
particular, the waves on the surface of a nonuniform
medium. Effects of this type, which are known in the radio
and IR ranges [23], can be conveniently considered by the
example of a surface wave in a nonuniform plasma medium.

For an abrupt boundary between two uniform media,
characterized by a jump of the permittivity, the localization of
waves in the vicinity of this boundary is possible only on
condition that [29]

(i) the spectrum of surface waves in the plasma has an
upper bound oc � O0=

���
2
p

, where O0 is the plasma frequency;
(ii) all the components of the surface wave field decay

exponentially with depth within the medium, the character-
istic decay depth being the same for all the components;

(iii) the polarization structure of the surface wave
propagating in the y-direction close to the boundary z � 0 is
determined by two electric componentsEy andEz and a single
magnetic componentHx (the TM wave).

The interest in the properties of surface electromagnetic
waves (SEWs) in a plasma with a blurred boundary fostered
the development of a two-layer model. This model corre-
sponds to a plasma layer with a finite thickness and a linear
ionization profile, adjacent to a half-space bounded by a
conventionally adopted plane and filled with a uniform
plasma. The TM-polarized waves in this system, which
resembles a strip line with a nonuniform cross section placed
on a uniform substrate, were considered in Ref. [30].

In contrast, the surface waves in a nonuniform plasma are
considered here within the framework of the method of the
phase coordinate Z (2.6). Employing this method does not
necessitate invoking conventional boundaries in the bulk of
the medium, which are inherent in the multilayer model, and
furnishes the possibility of obtaining exact analytical solu-
tions for the surface wave fields in a plasma with a continuous
density distribution. This approach makes it possible to
reveal branches of surface waves not subject to the limita-
tions (i) ± (iii), which are intrinsic in the waves at the surface of
the media with an abrupt interface.

Some of the results of Section 6 can be used in the analysis
of the problem under consideration. We begin with the
Maxwell equations for an S-polarized wave with the
components Ex, Hy, and Hz (6.4), (6.5), which propagates
through the plasma with a carrier density profile prescribed
by expression (6.1). Assuming that the carrier density
distribution is defined by the function U � �1� zaÿ1�ÿ1
(6.10), we arrive at Eqns (6.11) and (6.12) for the vector
potential of the wave field. The solutions of the resultant Eqn
(6.11) depend on the values of the parameter p 2. The domain
p 2 > 0 considered in Section 6 corresponds to the waves
which travel deep inside the nonuniform plasma. The
solutions of Eqn (6.11) for negative values of the parameter
p 2 (6.9) are constructed below.

0 3 5
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1.0
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x

1 2

2 1

W

Figure 14. Nonmonotonic profiles of the normalized plasma density W

(6.1), x � zLÿ1. For curve 1, b1 � ÿ1 and b2 � 1. For curve 2, b1 � 2 and

b2 � ÿ2. The function U is defined by expressions (6.22) and (6.10) in the

ranges of the dimensionless coordinate 04 x4 p and x5 p, respectively;
M � 1.
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The solutions of Eqn (6.11) for p 2 < 0 are the modified
Bessel functions Kq�z�, whose values decrease with the
increase of the z-coordinate. These functions describe the
structure of the field localized near the plasma boundary
z � 0. By introducing the designation p 2

1 � ÿp 2 > 0, it is
possible to represent the function c (6.7) as

c1 �
�����������
1� z

a

r
Kq

�
p1�a� z�� exp�i�ksyÿ ot�� : �7:1�

The wave field components in the medium �z5 0� can be
found by substituting expression (7.1) into Eqns (2.4):

Ex � iA1ocÿ1c1 � exEx

���
z�0

;

Hz � iA1ksc1 � hzHz

���
z�0

;

Hy � ÿA1

a

�
1

2u
� 1

Kq�pu�
qKq�pu�

qu

�
c1 ;

u � 1� zaÿ1 : �7:2�

To calculate the components of the field localized in the air
close to the plasma boundary, we first find the corresponding
function c0 from Eqn (6.6) by putting O0 � 0 and eL � 1:

c0 � exp

�
i�ksyÿ ot� � z

l

�
: �7:3�

Here, l is the characteristic scale length for the decay of the
surface wave in the air. We substitute expression (7.3) into
Eqns (2.4) to determine the values ofEx,Hy, andHz in the air:

Ex � iA0ocÿ1c0 ; Hy � ÿA0l
ÿ1c0 ; Hz � iA0ksc0 :

�7:4�

The dispersion equation which relates o, ks, and l follows
from the Maxwell equations (6.4) and (6.5):

k2s �
o2

c2
� 1

l 2
: �7:5�

By comparing the field components in the air (7.4) and in the
plasma (7.2) and invoking the conditions of continuity at the
boundary z � 0 �u � 1�, we obtain the relationships

a

l
� 1

2
� 1

Kq�pa�
qKq�pau�

qu

����
u�1

: �7:6�

Note that the left-hand side of equality (7.6) is positive
and the derivative of the decaying Kq function is negative.
Since the limiting value of the second term in relationships
(7.6) is equal toÿq, the constraint alÿ1 > 0 limits the values of
the q index in the expression for the vector potential c1 (7.1):

1

2
5 q5 0 : �7:7�

As seen from the definition of the q index (6.12), condition
(7.7) can be fulfilled only for negative values of the parameter
b of the carrier density distribution (6.1). These values
correspond to the growth of the carrier density deep in the
plasma (see Fig. 11).

The spectra of surface waves in a nonuniform plasma
obtained by solving Eqns (7.5) and (7.6) in combination are
given in Fig. 15. These spectra essentially depend on the
parameters a and b in the carrier density distribution (6.1).
The field decay scale length in the air, l, determined from
Eqn (7.5), also depends on these parameters. As is clear from
the condition for the existence of SEWs � p 2 < 0�, their
frequencies are bounded from above:

o2 4o2
c � O 2

0

ÿ
1� jbjÿ1�� k2s c

2eÿ1L : �7:8�

In the domain of low values of the parameter pa �pa5 1�, it is
possible to obtain an approximate dispersion equation for the
waves under study even without a numerical solution of the
system (7.5), (7.6):

k2s �
o2

c2
� 1

a2

�
1

2
ÿ q

�2

: �7:9�

The surface waves whose spectra are shown in Fig. 15
propagate along the plane air ± plasma interface. However,
when a wave is obliquely incident from the air onto the
plasma, the projection of the wave vector kk onto this plane
is always smaller than the modulus of the wave vector of the
plasma wave ks (7.9). To excite a surface wave in this case, the
magnitude of kk should be increased, for instance, by passing
the incident wave through a prism with a refractive index
n > 1 located on the z � 0 plane [29]. In this case, the
condition for matching the incident and surface waves has
the form

n sin g � kscoÿ1 : �7:10�

Referring to Fig. 15, the condition for the excitation of a SEW
(7.10) can be fulfilled over a broad IR frequency range.

The above analysis shows how the prerequisites to the
existence of surface electromagnetic waves (i) ± (iii) change if
at least one of the contiguous media is nonuniform:
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Figure 15. Spectra of TE-polarized surface waves in a nonuniform electron

plasma of InSb (eL � 12, N0 � 3� 1016 cmÿ3, a � 10ÿ4 cm,

meff � 0:01m0), ks � k� 103 cmÿ1, o � v� 1013 rad sÿ1. The normalized

distribution of the carrier density is described by the models (6.1) and

(6.10), x � zaÿ1. Curves 1 ± 3 correspond to different values ofW deep in

the medium; the dimensionless parameter b for these curves is equal to

ÿ0:7, ÿ0:5, and ÿ0:4, respectively.
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(1) the spectrum of surface waves broadens: in lieu of the
limitation o < O0=

���
2
p

, the condition (7.8) arises, which is
indicative of the existence of a SEW with a frequency higher
than the plasma frequency O0 at the surface z � 0;

(2) unlike themonotonic exponential decay of all the SEW
components in a uniform medium, the spatial structure of
surface waves in a nonuniform plasma (7.2) is nonmonotonic:
the Ex and Hz components pass through a maximum while
theHy component is sign-variable (Fig. 16);

(3) the electromagnetic wave at the surface of a nonuni-
form plasma is TE-polarized; it should be mentioned that a
TE-polarized SEW at the boundary of a granular medium
was reported in Ref. [31].

Eqn (6.8) can be used to analyze the SEW in a plasma for
other carrier density profiles as well. Consider, for instance,
the distribution (6.1) for an exponential variation of the
function U�z� (see Fig. 11, curve 3):

U � exp

�
ÿ z

a

�
� 1ÿ Zaÿ1 : �7:11�

We substitute expression (7.11) into Eqn (6.8) and introduce a
new function Q to obtain

Q � f����
U
p ;

q2Q
qx2
� 1

x

qQ
qx
�Q

�
n2 � p 2a2

x2

�
� 0 ; �7:12�

x � exp

�
ÿ z

a

�
; n2 � eLO 2

0 a
2

jbjc2 : �7:13�

The solution of Eqn (7.12), which decays with depth in the
medium and corresponds to the case b < 0, p 2 � ÿg2 4 0,
can be expressed in terms of the Bessel function Iga�nx�.
Reverting to the z-variable, we obtain an expression for the
component of the vector potential of a surface wave c (6.7):

c � Iga

�
n exp

�
ÿ z

a

��
exp
�
i�ksyÿ ot�� : �7:14�

We substitute the function c (7.14) into Eqns (2.4) to
obtain the field components in the plasma. The asymptotic

form of the Bessel functions for small values of the argument
x,

In�x�
����
x5 1

�
�
x

2

�n
1

C �n� 1� ; �7:15�

where C is the gamma-function, shows that the field
components decay exponentially with depth in the medium:

Iga

�
n exp

�
ÿ z

a

�������
z4 a

�
�
n
2

�ga
exp�ÿgz�
C �1� ga� : �7:16�

With the use of the continuity conditions for the field
components in the air (7.4) and in the medium for z � 0, we
obtain, in view of Eqn (7.5), a SEWdispersion equation of the
form

n
�
Igaÿ1�n� ÿ Iga�1�n�

�
2Iga�n� �

���������������������������������
�ksa�2 ÿ

�
oa
c

�2
s

: �7:17�

The domain of existence of such waves, which is defined by
the condition g 2 5 0, coincides with that defined by condition
(7.8). In the special case of n5 1, Eqn (7.17) can be simplified
using the asymptotics (7.15):

�ksa�2 ÿ
�
oa
c

�2

�
�
1� agÿ n2

4ag

�2
: �7:18�

We should emphasize the difference between the SEW
dispersion equations (7.6) and (7.17) and their respective
approximations (7.9) and (7.18). These equations describe
models of a nonuniform plasma wherein the carrier densities
at the surface U

��
z�0� 1 and at the depth U

��
z4 a
� 1ÿ bÿ1

coincide; moreover, the values of the density gradients near
the surface z � 0 also coincide. The difference in the SEW
spectra of these models, which are defined by Eqns (7.6) and
(7.17), is related to the carrier density distribution W deep in
the medium (see Fig. 11). This SEW field sensitivity to the
profile ofWmay be of interest for the density diagnostics of a
nonuniform plasma through the use of surface electromag-
netic waves.

8. Dispersion properties of nonstationary
dielectrics

Wave phenomena in media whose electromagnetic character-
istics are time-dependent are the key to understanding a
variety of problems of space physics [32], short-pulse wave
dynamics in continuous media [33], and optical diagnostics of
fast processes [34]. Temporal variations in permittivity can
radically alter the reflection and refraction properties of such
media. Unlike the Doppler effect, where the tuning of the
reflected wave is related to the reflector motion, the subject to
be discussed here is the time evolution of electromagnetic
fields in immobile media whose permittivity is a function of
time t.

An important characteristic of such nonstationary wave
processes is a finite relaxation time of the electromagnetic
parameters of the medium and, in particular, its permittivity.
Individual cases that correspond to adiabatic periodic
variations of e�t� and a linear variation of e�t� were
considered in Refs [11, 35]. However, in a number of
problems, both applied and academic, situations occur
whereby the period of field oscillation T and the medium

0 20 40

ÿ1
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1
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x

Figure 16. Spatial structure of the normalized field components of a TE-

polarized surface wave deep within a nonuniform plasma (see Fig. 15,

b � ÿ0:5). Curves 1 and 2 correspond to the components ex and hy (7.2),

x � zaÿ1.
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relaxation time t0 prove to be of the same order of magnitude.
In these instances the ratios t0T

ÿ1 or Ttÿ10 are not small
parameters, and exact analytical solutions of the Maxwell
equations with time-dependent coefficients are required to
analyze the wave problems. Here, such solutions are con-
structed for simple models assuming that the dynamics of
medium relaxation are determined by factors independent of
the wave field, for instance, by heating, ionization, or phase
transitions [36]. In particular, such a model is of interest for
the analysis of fast relaxation processes inmedia perturbed by
a laser pulse [37]. In the context of this model, the inductionD
of the field E in the medium can be represented as

D�t� � e�t�E�t� ; e�t� � n20U
2�t� : �8:1�

Here, n0 is the refractive index of the medium prior to the
onset of the relaxation process and the dimensionless U�t�
function describes the dynamics of this process. For simplicity
we neglect the wave absorption in what follows, i.e., the e�t�
dependence is described by a real U�t� function. Three
problems should be solved to find the reflection and the
refraction of electromagnetic waves at the medium boundary
(8.1);

(i) to construct solutions of theMaxwell equations for the
medium (8.1);

(ii) to find explicit expressions for the functions U�t�
which lead to such solutions;

(iii) to generalize the Fresnel formulas for the description
of wave reflection by themedia characterized by the functions
U�t�.

These problems for nonstationary media can be conve-
niently considered developing the method of the phase
coordinate, which was previously employed in the optics of
nonuniform dielectrics (see Section 2). By analogy with the
phase coordinate Z (2.6), we introduce a t-variable, which has
the dimensionality of time:

t �
�t
0

dt1
U�t1� ; �8:2�

This permits us to find broad classes of analytical solutions
for nonstationary Maxwell equations in the form of traveling
waves. Such solutions make it possible to represent, in an
explicit form, the effect of the finite relaxation time of the
medium permittivity on the wave dispersion.

To demonstrate the principal stages of this approach, we
consider a normal incidence of waves from vacuum onto the
half-space z5 0 occupied with a nonstationary dielectric
(8.1). In this half-space, the propagation of a linearly
polarized wave with the components Ex and Hy in the z-
direction is described by the Maxwell equations

qEx

qz
� ÿ 1

c

qHy

qt
; ÿ qHy

qz
� 1

c

qDx

qt
: �8:3�

Let us solve the problems (i) ± (iii) for the system of equations
(8.3).

Problem (i). By extending the analogy with the approach
described in Section 2, it is possible to solve the system (8.3) in
two ways.

1. By expressing the field components Ex andHy in terms
of the function c1 (2.4), we reduce the first of Eqns (8.3) to an
identity; in this case, the second equation in (8.3) assumes the
form

q2c1

qz2
ÿ n20U

2�t�
c2

q2c1

qt 2
� n20

c2
qU 2

qt 2
qc1

qt
: �8:4�

We introduce the new function

F1 � c1

���������
U�t�

p
�8:5�

and, using the t-variable (8.2), rewrite Eqn (8.4):

q2F1

qz2
ÿ n20

c2
q2F1

qt2
� ÿ n20

c2
F1

"
U

2

q2U
qt 2
� 1

4

�
qU
qt

�2
#
: �8:6�

Although the function U�t� is still unknown, the transforma-
tions (8.2) and (8.4) allowed us to eliminate the time-
dependent coefficient in the left-hand side of Eqn (8.4); the
nonstationary effect is described by the expression bracketed
in the right-hand side of Eqn (8.6).

To determine the dependence U�t�, we consider a simple
case where the expression in the square brackets in Eqn (8.6) is
equal to some constant ÿp 2

1 :

U

2

q2U
qt 2
� 1

4

�
qU
qt

�2

� ÿp 2
1 : �8:7�

In this case, all the coefficients of Eqn (8.6) are constant [37]:

q2F1

qz2
ÿ n20

c2
q2F1

qt2
� n20 p

2
1

c2
F1 : �8:8�

The solution of Eqn (8.8) can be written in the form of a
traveling wave:

F1 � exp
�
i�q1zÿ ot�� ;

q1 � on0cÿ1N ; N �
����������������������
1ÿ p 2

1o
ÿ2

q
: �8:9�

We substitute expression (8.9) into the equality (8.5) to obtain
an expression for the function c1:

c1 �
A1 exp

�
i�q1zÿ ot�����������
U�t�p : �8:10�

Here,A1 is the normalizing constant.With the use of relations
(2.4), we find expressions for the field components in the
nonstationary medium:

Ex � io
cU�t�

�
1ÿ i

2o
qU
qt

�
c1 ; Hy � iq1c1 : �8:11�

2. An alternative way of solving the system (8.3) involves
representing the field components in terms of an auxiliary
function c2 by analogy with formulas (2.19):

Ex � 1

n20U
2�t�

qc2

qz
; Hy � 1

c

qc2

qt
: �8:12�

Unlike the first way of solution, on substitution of expres-
sions (8.12) into the system (8.3), the second of Eqns (8.3) is
identically fulfilled and the first one assumes the form

q2c2

qz2
ÿ n20U

2�t�
c2

q2c2

qt 2
� 0 : �8:13�

We introduce a new function F2 � c2U
ÿ1=2 and, using the t-

variable, rewrite Eqn (8.13) as

q2F2

qz2
ÿ n20

c2
q2F2

qt2
� n20

c2
F2

"
U

2

q2U
qt 2
ÿ 1

4

�
qU
qt

�2
#
: �8:14�
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By equating the expression bracketed in the right-hand side of
Eqn (8.14) to some constant p 2

2 ,

U

2

q2U
qt 2
ÿ 1

4

�
qU
qt

�2

� p 2
2 ; �8:15�

we arrive once again at an equationwith constant coefficients,
which coincides, after the change p2 ! p1, with Eqn (8.8). By
writing down the solution of this equation in the form of a
traveling wave, we can represent the function c2 as

c2 � A2

���������
U�t�

p
exp
�
i�q2zÿ ot�� ;

q2 � on0cÿ1N2 ; N2 �
����������������������
1ÿ p 2

2oÿ2
q

: �8:16�

We substitute expression (8.16) into expressions (8.12) to
obtain the components of the wave field:

Ex � iq2

n20U
2�t� c2 ; Hy � ÿ io

U�t�
�
1ÿ i

2o
qU
qt

�
c2 : �8:17�

Expressions (8.11) and (8.17) describe two types of
solutions of the nonstationary Maxwell equations. These
solutions correspond to different dependences U�t� defined
implicitly by Eqns (8.7) and (8.15). We will now seek these
dependences in an explicit form, assuming the function U to
be equal to unity at the instant of commencement of the
permittivity relaxation.

Problem (ii). We first consider the model of the nonsta-
tionary permittivity U�t� described by Eqn (8.7). Upon the
change U � Q 2 and the passage to the t-variable (8.2), the
solutions of Eqn (8.7) can assume one of two forms,
depending on the sign of the constant p 2:

U1 �
�
cos

t
T1
�M1 sin

t
T1

�2

; p 2 � ÿT 2
1 < 0 ; �8:18�

U2 �
�
cosh

t
T2
�M2 sinh

t
T2

�2

; p 2 � T 2
2 > 0 : �8:19�

Here, M1 and M2 are free parameters of the models and T1

and T2 are the characteristic permittivity relaxation times.
We emphasize: it is the parameter t rather than the real

time t that appears in expressions (8.18) and (8.19). To obtain
the dependences U�t� in real time, one can resolve these
formulas for t and substitute the result into the definition of
t (8.2).The mathematical formalism of this approach is
similar to the determination of U in the problems on
nonuniform dielectrics (2.29) ± (2.33). Specifically, using
expression (8.18), we obtain

t
T1
� arccos

����������������
U1

1�M 2
1

s
� arcsin

M1����������������
1�M 2

1

q : �8:20�

By differentiating expressions (8.20) and (8.2) and equating
the expressions for the differentials dt, we obtain the equation
that characterizes the dependence of U on the real time t:

qU1

qt
� � 2

T1

������������������������
1�M 2

1

U1
ÿ 1

s
: �8:21�

The plus and minus signs correspond to the ascending and
descending branches of the function U1, respectively.

The ascending branch of the solution of Eqn (8.21)
describes the growth of the function from the value U1 � 1
to the peak Umax � 1�M 2

1 :

t

T11
� 1

2

"
M1 ÿ

�������������������������������������
U1�1�M 2

1 ÿU1�
q

� �1�M 2
1 �
 
arcsin

����������������
U1

1�M 2
1

s
ÿ arcsin

1����������������
1�M 2

1

q !#
:

�8:22�

The duration of this process ~t1 is

~t1
T11
� 1

2

"
M1 � �1�M 2

1 � arccos
1����������������

1�M 2
1

q #
: �8:23�

The solution of Eqn (8.21) that corresponds to the decrease of
the function from the value Umax to U � 1 is of the form

tÿ ~t1
T12

� 1

2

" �������������������������������������
U1�1�M 2

1 ÿU1�
q
� �1�M 2

1 �
 
p
2
ÿ arcsin

����������������
U1

1�M 2
1

s !#
: �8:24�

Here, T11 and T12 are the characteristic increase and decrease
times of the function U1�t�. It is significant that these times
may be different; forT11 6� T12, the shape of theU1�t� curve is
asymmetric about the peak Umax.

The model U�t� in the case of expression (8.19) can be
found in a similar way. The decrease of the function U � U2

from the initial value U � 1 to the minimum Umin � 1ÿM 2
2

(it is assumed that M 2
2 < 1) and the duration ~t2 of this

decrease are determined by the expressions

t

T21
� 1

2

"
M2 ÿ

�������������������������������������
U2�U2 �M 2

2 ÿ 1�
q

� �1ÿM 2
2 �
 
arcosh

1����������������
1ÿM 2

2

q ÿ arcosh

����������������
U2

1ÿM 2
2

s !#
;

�8:25�
~t2
T21
� 1

2

"
M2 � �1ÿM 2

2 � arcosh
1����������������

1ÿM 2
2

q #
: �8:26�

The ascending branch of the U�t� curve is given by the
function

tÿ ~t2
T22

� 1

2

" �������������������������������������
U2�U2 �M 2

2 ÿ 1�
q
� �1ÿM 2

2 � arcosh
����������������

U2

1ÿM 2
2

s #
: �8:27�

Here, T21 and T22 are the characteristic relaxation times.
By alternating the branchesU1 andU2, provided that their

tangency is smooth, it is possible to model continuous
oscillations of the permittivity e�t�. The solutions that
describe these branches contain two free parameters Ð the
quantity M, which determines the oscillation amplitude and
shape, and the characteristic time T. The conditions for the
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smoothness of tangency impose limitations on the values of
M for the neighboring branches. Specifically, for a tangency
at the level U � 1, these quantities are related as follows:

M1

M2
� T12

T21
: �8:28�

An example of nonsinusoidal oscillations of the function
U�t� described by formulas (8.22) ± (8.28) is given in Fig. 17.

Unlike the above U�t� model defined by Eqn (8.7), the
solution of Eqn (8.15) describes a simpler dependence U�t�
similar to the model (2.11):

U�t� � 1� s1t

t1
� s2t

2

t 22
: �8:29�

Here, t1 and t2 are the characteristic relaxation times; the
quantity p 2

2 (8.15), t1 and ~t2 are related as follows

p 2
2 �

s2

t 22
ÿ s21
4t 21

; s1 � 0;�1 ; s2 � 0;�1 : �8:30�

The function (8.29) can describe both monotonic permittivity
variations and the formation of an extremum Um at some
point in time, depending on the values of the parameters s1, s2,
t1, and t2.

The smooth tangency of the curves (8.29) and the curves
obtained in the solution of Eqn (8.21) makes it possible to
further extend the scope of exactly solvable models of the
propagation of electromagnetic waves in nonstationary
dielectrics.

Problem (iii). To investigate the reflection of a plane wave
incident normally from vacuum onto the surface of a
nonstationary medium, we represent the function c0, which
describes the field in vacuum, as

c0 � A0 exp
�
i�k0zÿ ot�� : �8:31�

This function satisfies the field equations (8.6) and (8.14) for
vacuum �n0 � 0, U � 1�. The reflectivity is found from the

conditions of continuity for the electric and magnetic field
components at the medium boundary z � 0. In the descrip-
tion of the wave reflection by the medium's surface (8.7), the
field components in vacuum can be found by substituting
expression (8.31) into expressions (2.4). The field components
in the medium are, in the model considered (see Fig. 17),
defined by relations (8.11). By using the continuity condi-
tions, it is possible to express the reflectivity for this medium
as

R1 � 1ÿ n1
1� n1

; n1 � n0U1�t�N1

�
1ÿ i

2o
qU1

qt

�
: �8:32�

For the model (8.29), the reflectivity is calculated in a similar
way:

R2 � 1ÿ n2
1� n2

; n2 � n0U2�t�N2

�
1� i

2o
qU
qt

�ÿ1
: �8:33�

Formulas (8.32) and (8.33) are the generalization of the
Fresnel formulas to the case of reflection by a nonstationary
medium. These results reveal the dynamic nature of the
reflection: the coefficients R1; 2 depend not only on the
instantaneous values of U�t�, but also on their derivatives.
In the special case where the time dependence disappears
�U1; 2 � 1, N1; 2 � 1�, expressions (8.32) and (8.33) pass into
the well-known Fresnel formula for a stationary medium

R � �1ÿ n0��1� n0�ÿ1 :

The imaginary parts of the complex reflectivities describe
the spectral changes in the wave reflected from a nonsta-
tionary medium. For instance, in the reflection from the
medium (8.29), the reflectivity R2 (8.33) can be written as
R2 � jR2j exp�ij�, where j is the time-dependent phase:

sinj � n0N2U2U
0
2oA

ÿ1=2 ; U 02 �
qU2

qt
;

A �
"
N 2

2 ÿ �n0U2�2 ÿ
�
n0U2U

0
2

2o

�2
#2
�
�
n0N2U2U

0
2

o

�2

:

�8:34�

We determine the frequency perturbation of the reflected
waveDo, which is caused by the time dependence of the phase
j (8.34), by the formula

Do
o
� ÿ 1

o
qj
qt

�8:35�

and differentiate the expression (8.34) for j to obtain the
frequency perturbation in the reflection from a medium with
e�t� � n20U

2�t�
Do
o
� ÿ n0N2

o2
����
A
p

�
U2U

00
2 � �U 0�2 ÿ

A 0UU 00

2A

�
�
"
1ÿ

�
n0N2

o
UU 0����

A
p

�2
#ÿ1=2

: �8:36�

The application of the results obtained can be exemplified
by the problem of spectrum broadening in the wave reflection
from a semiconductor inwhich the carrier density rises steeply
owing to the ionization induced by a high-power laser beam.

0 1 2 3

0.8

1.0

1.5

1.8

dbo

a

c

v

U2

Figure 17. Nonharmonic oscillations of the function U2�v�, v � tT ÿ111 ,

represented by the solutions (8.23) ± (8.27) for the parameter values

M1 � 0:4 and M2 � 0:6. The branches oa, ab, bc, and cd determined by

these solutions correspond to the characteristic times T12 � 0:5T11,

T21 � 0:75T11, and T22 � 1:5T11.
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We represent the time-dependent dielectric permittivity as
[24]

e�t� � eL

�
1ÿ O 2

0K�t�
o2

�
� eL

�
1ÿ O 2

0

o2

�
U 2�t� : �8:37�

Here, eL is the lattice contribution to the permittivity and the
dimensionless quantity K�t� satisfies the condition K

��
t�0� 1.

The function U�t� is assumed to be of the form (8.29); in this
case, the ionization build-up corresponds to a decrease of
U�t�. We consider the mode whereby the ionization peaks
within a time T and thereafter retains a constant magnitude
Nm � N0Km; in this case, the function U reaches a minimum
Um < 1. To find the values of the parameters t1 and t2 in the
model (8.29), we take into account that the following
conditions are fulfilled at the moment of time t � T:

qU
qt

����
t�T
� 0 ;

U 2
m

����
t�T
�
�
1ÿ t 22

4t 21

�2

�
�
1ÿ O 2

0Km

o2

��
1ÿ O 2

0

o2

�ÿ1
: �8:38�

We obtain the values of t1, t2, and p 2
2 from Eqns (8.38):

t1 � T

2�1ÿUm� ; t2 � T���������������
1ÿUm

p ; p 2
2 �

Um�1ÿUm�
T 2

:

�8:39�

The relative broadening of the spectrum of the reflectedwaves
is shown in Fig. 18. The red frequency shift of the reflected
wave is related to a decrease of the semiconductor index of
refraction due to the rise in the carrier density.

In conclusion of this analysis, we draw the reader's
attention to the wide diversity of exactly solvable models of
time-dependent permittivity composed of different branches
of the functionsU1 andU2. The flexibility of such a modeling
is ensured by the existence of no less than two free parameters
for each branch of the functions U1 and U2.

Employing the models considered above permits con-
structing broad classes of exact analytical solutions of the
Maxwell equations for nonstationary dielectrics. These
solutions describe the time evolution of the fields for an

arbitrary ratio between the wave period T and the medium
relaxation time t0. We note some features of this evolution.

1. Dynamic effects (8.32), (8.33) related to the first and
second derivatives of the time dependence e�t� may be
significant in the wave reflection by a nonstationary med-
ium. These effects resemble the effect of the profile gradient
and curvature on the wave reflection from a nonuniform
dielectric, which was already noted in Section 4.

2. Formulas (8.9) and (8.16) are evidence for the
formation of normal and anomalous dispersion in nonsta-
tionary media. These dispersion effects, characterized by the
factors N1 and N2, are determined by the finite permittivity
relaxation times.

If the characteristic times t1 and t2 in theU�t�model (8.29)
are related as tÿ22 � �4t 21 �ÿ1, the parameter (8.30), which
determines the medium dispersion, vanishes and the disper-
sion factor is equal to unity in this case. Therefore, in the
special case where the dependence (8.29) is

U2 �
�
1� s1t

2t1

�2

; �8:40�

the dispersion arising from the finiteness of the e�t� relaxation
times disappears.

3. The dispersion equations (8.9) and (8.16) for waves in
nonstationary media resemble the dispersion equation for
high-frequency waves in a plasma; in this case, the quantities
p 2 are similar to the plasma frequency squared. For
pÿ2o2 � 1, a total wave reflection from a nonstationary
dielectric occurs.

9. Telegraph equation for media
with time-dependent conductivities

In Section 8, the influence of fast carrier density variations in
a dielectric on the wave dispersion in the optical and near-IR
ranges was considered without taking account of the medium
conduction and the wave absorption. However, the conduc-
tion may play an important role if the contribution of the
unperturbed carrier density N to Re e is not large and the
perturbations of N under consideration do not change this
relation. In this case, Re e � eL, and the perturbations of the
conductivity s vary in direct proportion with N�t�. In this
case, the effect of variable carrier density on both the
dispersion and the wave absorption should be taken into
account.

Let us consider the case where a wave is normally incident
onto the surface of such a nonstationary conductor.We resort
to Eqns (8.3) once again, now assuming that [38]

Dx � eLEx �
�t
0

s�t 0�Ex dt
0 : �9:1�

By representing the variable conductivity s�t� in terms of the
dimensionless function P�t� as

s�t� � s0P�t� ; P�t�
���
t�0
� 1 �9:2�

and expressing the field componentsEx andHy in terms of the
function c (2.4), it is possible to reduce the system (8.3) to the
equation

q2c
qz2
ÿ 1

v 2
q2c
qt 2
� P�t�
v 2T

qc
qt

: �9:3�
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Figure 18. Nonstationary spectrum broadening of the l � 30 mm wave

�Dooÿ1 � u� 103�, which is reflected from the InSb plasma surface

(eL � 12:25; N0 � 1017 cmÿ3), in response to a hundred-fold increase in

the carrier density within the characteristic time T � 100� 10ÿ15 s.
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In Eqn (9.3), v and T are the wave velocity and the
characteristic field settling time in the unperturbed medium:

v � c�����
eL
p ; T � eL

s0
: �9:4�

Unlike the conventional telegraph equation, the coeffi-
cient in the right-hand side of Eqn (9.3) is an unknown
function of time [39]. To determine the form of this
function, allowing an exact analytical solution of Eqn (9.3),
we will seek a solution of Eqn (9.3) in the form

c � F�z; t� exp
�
ÿ
�t
0

a�t 0� dt 0
�
: �9:5�

We substitute expression (9.5) into Eqn (9.3) to obtain an
equation for the function F :

q2F
qz2
� o2

v 2
F � 1

v 2

�
AF� B

qF
qt

�
; �9:6�

A � a2 ÿ qa
qt
ÿ aU

T
; B � P�t�

T
ÿ 2a : �9:7�

We impose additional conditions

A � 0 ; B � const � 1

t0
: �9:8�

Then, Eqn (9.6) reduces to the conventional form of the
telegraph equation with constant coefficients:

q2F
qz2
ÿ 1

v 2

q2F
qt 2
� 1

v 2t0

qF
qt

: �9:10�

The meaning of the parameter t0, which has the dimension-
ality of time, will be established below.

We now seek the time dependence of the conductivityP�t�
and the function a�t� from Eqns (9.7) and (9.8). Representing
the function a in the form (9.7)

a � 1

2

�
P

T
ÿ 1

t0

�
�9:11�

and substituting expression (9.11) into the condition (9.8), we
obtain an equation for the functionU�t�. The functionU�t� is
represented in either of two forms

P1 �
�
g tanh

�
artanh gÿ1 � t

2t0

��ÿ1
; g � t0

T
> 1 ; �9:12�

P2 � gÿ1 tanh
�
artanh g� t

2t0

�
; g � t0

T
< 1 �9:13�

depending on the ratio between the times t0 and T (9.4). One
can see from expressions (9.12) and (9.13) that the parameter
t0 characterizes the conductivity relaxation time. Figure 19
represents the models (9.12) and (9.13); these describe the
`saturation' of conductivity, which increases or decreases with
time. Curve 1, in particular, illustrates the conductivity build-
up mode related to the rise of carrier density s � N�t�. In a
time t4 2t0, the conductivity reaches the value P � gÿ1.

We now construct the function c (9.5), which describes
the field in a nonstationary medium. The solution of the

telegraph equation (9.10) for the function F is of the form

F � exp
�
i�qzÿ ot�� ;

q � o
c
ns ; ns � �����

eL
p �������������������������

1� i�ot0�ÿ1
q

: �9:14�

Substituting the values of P�t� from expressions (9.12) and
(9.13) and then calculating the exponential factor in expres-
sion (9.5), we obtain, for instance, for a fast relaxation �g < 1�

exp

�
ÿ
�t
0

a�t 0� dt 0
�
� 1�������������

1ÿ g 2
p exp�t=2t0�

cosh�artanh g� t=2t0� :

�9:15�
By combining the results (9.14) and (9.15), after algebraic
rearrangements we arrive at a simple solution of the
nonstationary telegraph equation (9.3) corresponding to the
model P1�t� (9.12):

c � 2Dÿ1 exp
�
i�qzÿ ot�� ;

D � 1� g� �1ÿ g� exp
�
ÿ t

t0

�
: �9:16�

The substitution of the solution (9.16) into relationships (2.4)
gives the electric and magnetic components of the wave field
in the conductor (9.12):

Ex � io
c

�
1ÿ i�1ÿ g�

Dot0
exp

�
ÿ t

t0

��
c ; �9:17�

Hy � io
c

ns
�����
eL
p �������������������������

1� i�ot0�ÿ1
q

c : �9:18�

Using the boundary conditions at the conductor boundary,
we obtain the complex reflectivity R:

R �
�
1� i�1ÿ g�

ot0D
exp

�
ÿ t

t0

�
ÿ q

�
�
�
1� i�1ÿ g�

ot0D
exp

�
ÿ t

t0

�
� q

�ÿ1
; limR

����
t4 t0

� 1ÿ q

1� q
:

�9:19�
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Figure 19. Normalized conductivity P as a function of time v � ttÿ10 .

Curves 1 and 2 correspond to the values g � 0:5 (9.12) and g � 2 (9.13).

The dashed lines correspond to the asymptotic values P � gÿ1 for v4 1.
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The amplitude and phase of the reflected wave change with
time, these changes developing in a characteristic time t0. For
times t4 t0, the amplitude and phase of the coefficientR tend
to constant values determined by formula (9.19).

It is interesting to note the special case of the model under
discussion which corresponds to the valueB � 0 in the system
of equations (9.8). In this case, Eqn (9.10) for the function F
assumes the form of a wave equation in free space:

q2F
qz2
ÿ 1

v 2

q2F
qt 2
� 0 : �9:20�

The solution of this equation is an arbitrary doubly differ-
entiable function F�tÿ zvÿ1�. The function P�t�, which can
be determined from the conditions A � 0 and B � 0,
decreases according to the formula

P �
�
1� t

2T

�ÿ1
: �9:21�

Upon calculating the exponential factor in the function c
(9.5) for the model (9.21), we obtain the solution of the
telegraph equation in the form

c �
�
1� t

2T

�ÿ1
F

�
tÿ z

v

�
: �9:22�

The solution (9.22) resembles a wave which traverses a
communication line free of dispersion distortions [23]. The
substitution of expression (9.22) into Eqns (2.4) shows that
the envelope of the magnetic component of the wave field
retains its shape as it propagates through a nonstationary
conductor (9.21).

The time-dependent conductivity s�t� � s0P�t� (9.12),
(9.13) and the electromagnetic field (9.17), (9.18) are an
example of an exactly solvable model of a nonstationary
conductor. The dispersion field distortions in this medium are
determined by the ratio between the characteristic relaxation
times T and t0. A search for solutions of the nonstationary
telegraph equation (9.3) is of interest for the analysis of
transmission lines with a time-dependent impedance.

10. Conclusions. Phase coordinates
in problems of the radiophysics
of guidance systems, nonlinear optics,
and quantum mechanics

The exact solutions of theMaxwell equations for nonuniform
and nonstationarymedia were constructed above with the aid
of new variables Ð the phase coordinates Z (2.6) and t (8.2).
These variables allowed the complex structure of the electro-
magnetic fields in the media under consideration to be
represented as harmonic waves in the spaces �Z; t� and �z; t�.
This approach is also possible in the solution of wave
problems in other branches of physics. Several examples of
such applications are discussed below.

I. Long line with nonuniformly distributed parameters.As is
well known, the distribution of the current I and the voltageV
in a loss-free distributed-parameter line is described by the
pair of equations [23]

qV
qz
� L

qI
qt
� 0 ; �10:1�

qI
qz
� C

qV
qt
� 0 : �10:2�

Here,L andC are the line inductance and capacitance per unit
length; the resistance and the leakage current are neglected for
simplicity.

Within the framework of the system (10.1), (10.2) we
consider the case where L and C are nonuniformly distrib-
uted. For instance, let the inductance vary lengthwise along
the line according to the low

L � L0U
2�z� ; U

���
z�0
� 1 : �10:3�

The solution of the system (10.1), (10.2) can be sought in two
ways.

1. By introducing an auxiliary function c through the
relationships

I � ÿC qc
qt

; V � qc
qz

; �10:4�

we obtain the following wave equation for c:

q2c
qz2
ÿU 2�z�

V 2

q2c
qt 2
� 0 : �10:5�

Eqn (10.5) coincides in form with Eqn (2.5), and both are
subsequently analyzed in the same way: we introduce the
phase coordinate Z (2.6), find the function c (2.10) for the
inductance distribution (2.11), and lastly calculate the current
and voltage envelopes (10.4).

2. By expressing, unlike relationships (10.4), the current
and voltage in terms of an auxiliary function Y through the
relationships

I � 1

L0U 2

qY
qz

; V � ÿ qY
qt

; �10:6�

we reduce the system (10.1), (10.2) to an equation which
coincides, upon the change V 2 ! c2nÿ20 , with Eqn (2.20). We
next construct the function Y as a traveling wave in the
variables �Z; t� (2.26), employ the distribution U�z� shown in
Fig. 2, etc. The derivation of the reflectivities and the
matching of line segments are performed by analogy with
the calculations in Section 4.

A wave equation with a time-dependent velocity of the
type (10.5) arises in the description of a number of processes
in a nonuniform continuous medium. In particular, this
equation describes the AlfveÂ n waves propagating along the
magnetic field in a variable-density plasma [40].The cutoff
frequency for the AlfveÂ n waves was found in Ref. [41] for
several plasma density profiles.

II. Nonlinear SchroÈ dinger equation for a medium with a
parabolic profile of the refractive index. As is well known, the
self-action of waves in Kerr media is described by the
nonlinear SchroÈ dinger equation (NSE). If such a self-action
develops in a medium with a nonuniform refractive index, the
solution of the NSE is hampered owing to the coordinate
dependence of the coefficients. However, in this case the
coordinate dependence can also be eliminated by a special
transformation of the variables and the function in this
equation.

We consider this approach for aKerr mediumwherein the
refractive index obeys the parabolic distribution

n�r� � n0 ÿ g2r2

2
: �10:7�
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The nonlinear SchroÈ dinger equation that describes the
evolution of the envelope E of a pulse traveling in the z-
direction in the medium (10.11) is of the form

i
qE
qz
� ÿ 1

2k

�
q2E
qx2
� q2E

qy2

�
� kg2r2

2
Eÿ n2kjEj2E

n0
� 0 :

�10:8�

Here, n2 is theKerr coefficient and k � on0cÿ1.We go over to
the normalized variables

E � E0c ; x1 �
��
s
p

xaÿ10 ; y1 �
��
s
p

yaÿ10 ;

z1 � sz�ka20�ÿ1 ; n2 � ka20gs
ÿ1 ; s � n2E

2
0 k

2a20n
ÿ1
0

�10:9�
(a0 is the effective radius of the wave beam and E0 is the field
amplitude) and substitute expressions (10.9) in Eqn (10.8) to
rewrite the NSE in the dimensionless form

i
qc
qz1
� ÿ 1

2

�
q2c
qx21
� q2c

qy21

�
� n2

2
�x21 � y21�cÿ jcj2c : �10:10�

Eqn (10.10) describes, in particular, the nonlinear field
dynamics in a light guide with a parabolic profile of n�r�.

Extending the approach employed in Section 2, we
introduce a new function f to be found (2.21) and the Z-
variable (2.6) using an auxiliary function U:

c � f
����
U
p

; U � cosÿ2�nz1� ;

Z � 1

n
tan�nz1� : �10:11�

This transformation brings Eqn (10.10) to the form

i

�
qf
qZ

1

cos2�nz1� ÿ n f tan�nz1�
�

� ÿ 1

2

�
q2f
qx21
� q2f
qy21

�
� n2

2
�x21 � y21� fÿ

j f j2f
cos2�nz1� : �10:12�

We introduce a new function j [42] to eliminate from
Eqn (10.10) the term which contains the sum of squares:

f � j
�

x1
cos�nz1� ;

y1
cos�nz1� ; Z

�
exp

�
ÿ n2

2
�x21 � y21�

�
: �10:13�

We substitute expression (10.13) into Eqn (10.12) to obtain
the nonlinear SchroÈ dinger equation in the form

i
qj
qZ
� ÿ 1

2

�
q2j
qx21
� q2j

qy21

�
ÿ jjj2j : �10:14�

Therefore, the transformations (10.11) ± (10.13) convert
the nonuniform NSE (10.10) into an equation with constant
coefficients (10.14), which significantly alleviates the study of
the nonlinear modes of wave beam propagation.

III. Energy levels of a particle in a potential well. The
discrete energy levels en of a particle in the simple model of a
square potential well of width a are determined by the well-
known formula

en � p2n2�h 2

2ma2
: �10:15�

In this model, however, the derivatives of the potential U�z�
exhibit jumps at the bottom of the well �U � 0�, at the points

z � 0 and z � a. To find the energy levels for a potential
profile of finite width, as in the case of formula (10.15), which,
however, has no corners, we can use the functionU1 � U 2�z�,
where the dependence U�z� is defined by expression (6.22)
withM � 0.

The SchroÈ dinger equation with a potential of this kind is
of the form

q2c
qz2
� 2m

�h 2

�
eÿ U0

cos2�z=L�
�
c � 0 : �10:16�

The potential is defined in the interval z1 4 z4 z2, where

z1 � ÿ p
2
L ; z2 � p

2
L : �10:17�

The U1 function is shown in Fig. 20. This function has a
minimum at the point zm � 0:

U1

���
z�zm
� 1 : �10:18�

For high values of the potentialU1, at which the well walls are
nearly vertical, the profile U1�z� approximates a square
potential well, being close to the parabola U1 � 1� z2Lÿ2

near the minimum z � 0.
To solve the SchroÈ dinger equation (10.16), we introduce a

new function f and a new dimensionless variable x:

f � c������������������
cos�z=L�p ; x � 1

L

�z
0

dz 0

cos�z 0=L� : �10:19�

We substitute expressions (10.19) into Eqn (10.16) to obtain

q2f
qx2
� f

�
ÿq2 � T

cosh2x

�
� 0 ; �10:20�

q2 � 1

4
� 2mU0L

2

�h 2
; T � 2mL2e

�h 2
ÿ 1

4
: �10:21�

Eqn (10.20) bears a formal resemblance to the SchroÈ din-
ger equation for the potential coshÿ2x [26]. However, unlike
the traditional problem of level determination, the unknown
energy levels e appear, in the case of this potential, in the
coefficient q 2 rather than in the constant T. By introducing

ÿ1 0 1

1

2

3

4

x

U1

Figure 20. Potential well (2.16); x � 2z�pL�ÿ1, U0 � 0:5.
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once again a new functionW and a new variable u,

f � �cosh x�ÿqW ; u � 1

2
�1ÿ tanh x� ; �10:22�

we obtain a hypergeometric equation for theW function:

u�1ÿ u� q
2W

qu2
� �gÿ u�1� a� b�� qW

qu
ÿ abW � 0 ; �10:23�

g � 1� q ; a; b � 1

2

�
1� 2q� ��������������

1� 4T
p �

: �10:24�

To determine the range of values of the u-variable (10.22),
we should calculate the values of the x-variable (10.19) which
correspond to the points z1 and z2 (10.17) bounding the
domain of definition of the potential cosÿ2�zLÿ1� (10.16).
The equalities

sin
z2
L
� 1 ; tan

z2
2L
� 1 �10:25�

are fulfilled at the point z2. By substituting the value z2 into
formula (6.35), we obtain x2 !1 and u2 � 0. Similar
calculations for the point z1 give x1 ! ÿ1, u1 � 1.

The solution of Eqn (10.2), finite for u � 0, is the
hypergeometric function W�a; b; g; u�. For this solution to
remain finite at u � 1, the following conditions should be
fulfilled:

s�s� 1� � T ; qÿ s � ÿn ; n � 0; 1; 2 . . . �10:26�

By uncovering the values of the parameters q and T (10.21),
we obtain the following formula which determines the energy
level spectrum en of a particle in the potential well depicted in
Fig. 20:

en � �h 2

8mL2

 
1� 2n�

��������������������������
1� 8mL2U0

�h 2

s !2

: �10:27�

We note several features of this spectrum:
(1) the value of the parameter U0, which characterizes the

minimum of the potentialU1, is arbitrary in the rangeU0 > 0;
(2) unlike the square potential well (10.15), where the

lowest energy level corresponds to the value n � 1, the lowest
level in the spectrum (10.27) corresponds to n � 0;

(3) by introducing the quantity a, which determines the
well width (10.17), into formula (10.27) and neglecting the
rooted terms, it is possible to obtain the spectrum for high n
values:

en � n2�h 2

2mL2
� p2n2�h 2

2ma2
: �10:28�

As one could expect, in the limit of high quantum numbers
expression (10.27) coincides with the spectrum of an infinitely
deep square potential well (10.15).

In the opposite limiting case �U0 4 �h2�8mL2�ÿ1�, the
spectrum (10.27) gives for low-lying energy levels

en � U0 � �ho0

�
n� 1

2

�
; o0 �

���������
2U0

mL2

r
: �10:29�

As is well known, formula (10.29) describes the spectrum of a
harmonic oscillator. Therefore, two model problems fre-
quently used in quantum mechanics Ð the energy spectrum
of a particle in a square potential well (10.28) and the energy

spectrum of a harmonic oscillator (10.29) Ð are special cases
of the spectrum (10.27).

In summary, it should be noted that the problems of
electromagnetic wave dispersion caused by the nonunifor-
mity or the nonstationary state of the medium have been
considered here for simple one-dimensional problems. The
unified approach to such problems based on the use of new
variables Ð phase coordinatesÐ allowed the construction of
exact analytical solutions of theMaxwell equations for broad
classes of coordinate- or time-dependent continuous permit-
tivity distributions. The flexibility of these models stems from
the existence of several free parameters characterizing the
nonuniformity scale lengths or the material relaxation times.
In the new variables, the spatiotemporal structure of electro-
magnetic fields is described in some cases by sinusoidal waves
and elementary functions while the dispersion is determined
by waveguide-type formulas.

In the consideration of more complex two- and three-
dimensional problems of wave reflection and diffraction, the
approach proposed here is beneficial to the physical inter-
pretation of the results obtained through computer simula-
tions. Also of interest are the results of combined (analytical
and numerical) research into such problems and their
applications, for instance:

Ð the influence of a permittivity gradient on the reflection
of waves incident obliquely on a plane dielectric surface [43];
this effect is employed to monitor the e�z� distribution in thin
films;

Ð the effect of a double curvature of the reflecting
surface, which is responsible for the effective nonuniformity
of the near-surface layers, on wave reflection [44]. This effect
determines corrections to the Fresnel formulas related to the
finite wavelength;

Ð the localization of the near-surface light waves near the
equator of a glass microsphere due to the variation of the
phase path deep in the sphere [45]; this effect is of interest in
the formation of high-Qmicrocavities.

In view of the flexibility of the exactly solvable models of
e�z� and e�t� considered here and the ease of the correspond-
ing solutions, the following steps can be contemplated to
advance this approach:

1. The generalization of the analytical methods developed
for isotropic nonuniform media to the problems of aniso-
tropic and gyrotropic media, to the problems of magnetoop-
tics in particular. Particularly, in the analysis of the Faraday
effect in the simple case of inwardwave propagation along the
magnetic field (the z-axis) in a variable-density plasma �z5 0�
described by model (6.1), the fields of ordinary and extra-
ordinary waves can be expressed in terms of the function c�:

E� � Ex � iEy � i

c

qc�
qt

; H� � Hx � iHy � qc�
qz

:

�10:30�
Following the treatment of the similar problem for an
isotropic medium (see Section 6), we introduce the phase
path Z and the functions f� � c�Uÿ1=2; in this case, the
Maxwell equations for the ordinary f� and extraordinary fÿ
waves can be written as

q2f�
qZ2
� f�

"
p 2
�

U 2
ÿ oO 2

0

o� oH

eL
bc2
ÿ 1

2U

q2U
qZ2
� 1

4U 2

�
qU
qZ

�2
#
� 0 ;

p 2
� �

o2eL
c2

�
1ÿ O 2

0

o�o� oH� �1ÿ bÿ1�
�
: �10:31�
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Here, oH is the electron gyrofrequency and eL the part of
the material permittivity independent of the electron
density.

Consider, for instance, the wave propagation in the
direction of density increase (b < 0, b � ÿjbj). We use the
simple model U�z� � 1� zaÿ1 (6.10) to obtain equations of
the type (6.11) for the functions f�, where the parameters q 2

�
(6.12) are

q 2
� �

1

4
ÿ eLa2O 2

0o
c2jbj�o� oH� : �10:32�

The structure of the wave field in the medium depends on the
parameters p 2

� and q 2
�, which in turn depend on the spatial

nonuniformity scale length a and the plasma density deep in
themediumW � 1� jbjÿ1 (6.1). In particular, for p 2

� > 0 and
q 2
� > 0, the medium is transparent for both the ordinary and

extraordinary waves, and these wave fields can be expressed
with the aid of expressions (10.30) in terms of the Hankel
functions H

�1�
q� (6.13):

c� �
�����������
1� z

a

r
H �1�q�

�
p��a� z�� exp�ÿiot� : �10:33�

The interference of the wavesE� andEÿ in the medium is,
as is well known, responsible for the rotation of the
polarization plane (the Faraday effect). However, unlike the
even rotation of this plane in a uniform plasma, the Faraday
effect in the problem under consideration is characterized by
an uneven rotation of the vectors E andH.

2. The selection of the transformations of coordinates
which correspond to the given model of the medium's
nonuniformity. Problems of the optics of nonuniform media
were considered here with recourse to the transformations of
the Maxwell equations involving the introduction of the Z-
variable and the function F (2.6). In this case, the Z-variable
has the meaning of the phase path in the medium. However,
for some distributions of the nonuniform permittivity, it is
advantageous to resort to more complex representations for
the Z-variable and the related function F. Thus, when
considering the wave equation with a coordinate-dependent
refractive index n � n0U�z�,

q2c
qz2
ÿU 2�z�

V 2
0

q2c
qt 2
� 0 ; V0 � c

n0
; �10:34�

one can introduce a new function F and a new Z-variable:

c � FU p ; Z �
�z
0

�
U�z1�

�q
dz1 : �10:35�

By representing the function U as U � S m and choosing the
values p � ÿmÿ1 and q � 2mÿ1, it is possible to rewrite the
wave equation (10.34) as

q2F
qZ2
� F

�
ÿ 1

S

q2S
qZ2
� o2

V 2
0S

4ÿ2m

�
: �10:36�

We denote the characteristic nonuniformity scale length byL,
introduce a new variable u, and prescribe the function S as

S � u n ; u � exp
Z
L
; n � 1

2ÿm
; �10:37�

to rewrite Eqn (10.36) in the form of the Bessel equation:

q2F
qu2
� 1

u

qF
qu
� F

��
oL
V0

�2

ÿ 1

�2ÿm�2u2
�
� 0 : �10:38�

Here, the parameterm assumes any values with the exception
of m � 2. The case m � 2 corresponds to the transformation
(2.6) considered earlier.

The solutions of Eqn (10.38) are Bessel functions. The
relationship between the u-variable and the z-coordinate can
be found from expressions (10.35) and (10.37):

u �
�
1ÿ 2

mÿ 2

z

L

�1ÿ2=m
: �10:39�

The permittivity profile e�z� � n20U
2�z� is determined by

substituting expression (10.39) into expression (10.37):

e�z� � n20

�
1ÿ 2

mÿ 2

z

L

�ÿm
: �10:40�

The solution of the wave equation (10.34) for the nonuni-
form dielectric (10.40) is of the form

c �
�
1ÿ 2

mÿ 2

z

L

�ÿm=2
�
�
In

�
oL
V0

u

�
� KIÿn

�
oL
V0

u

��
exp�ÿiot� : �10:41�

Here, K is a constant.
The family of solutions (10.41) is continuously dependent

on the parameterm (with the exception of the valuem � 2). In
the special case where m � 1, the e�z� distribution (10.40)
passes into the profile (1.2); the linear e�z� profile and the
corresponding field structure determined by the Airy func-
tions is described by expressions (10.40) and (10.41) for
m � ÿ1. Therefore, the transformation (10.35) defines the
family of exact analytical solutions of the Maxwell equations
for the e�z� profiles (10.40) containing the free parameters m
and L. The subsequent extension of the classes of such
coupled transformations is a burning problem of the optics
of stratified and nonstationary media.

3. The construction of exactly solvable models of nonuni-
form and nonstationary media, simultaneously taking into
account the dependences e�z� and s�z� or e�t� and s�t�. The
simultaneous inclusion of the dispersion effects caused by the
nonuniformity and the nonstationary state of themedium, for
instance, the effects of a nonuniformity in the form of a
traveling wave of variations e�z; t�.
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