
Abstract. A comparative analysis of the descriptions of fluctua-
tions in statistical mechanics (the Gibbs approach) and in
statistical thermodynamics (the Einstein approach) is given.
On this basis solutions are obtained for the Gibbs and Einstein
problems that arise in pressure fluctuation calculations for a
spatially limited equilibrium (or slightly nonequilibrium)
macroscopic system. A modern formulation of the Gibbs ap-
proach which allows one to calculate equilibrium pressure fluc-
tuations without making any additional assumptions is
presented; to this end the generalized Bogolyubov ±Zubarev
and Hellmann ± Feynman theorems are proved for the classical
and quantum descriptions of a macrosystem. A statistical ver-
sion of the Einstein approach is developed which shows a funda-
mental difference in pressure fluctuation results obtained within
the context of two approaches. Both the `genetic' relation
between the Gibbs and Einstein approaches and the conceptual
distinction between their physical grounds are demonstrated.

To illustrate the results, which are valid for any thermody-
namic system, an ideal nondegenerate gas of microparticles is
considered, both classically and quantum mechanically. Based
on the results obtained, the correspondence between the micro-
and macroscopic descriptions is considered and the prospects of
statistical thermodynamics are discussed.

1. Introduction

The development of mesoscopic-level physics and applica-
tions of it (especially in the field of nanotechnologies) is
associated with the increasing interest in studying more and
more chaotic (including low-dimensional) systems (see, for
example, Ref. [1]). Fluctuations of physical quantities are
very important in such systems even at or near thermal
equilibrium.

It would be reasonable to assume that the importance of
the physics of fluctuations will only grow with time. From the
theoretical standpoint, however, the situation with the
description of fluctuations cannot yet be regarded as
adequate.

Even leaving alone the yet unsolved problem of the
linkage between quantum dynamic and thermodynamic
fluctuations, one has to admit that any consistent description
of proper thermodynamic fluctuations of physical quantities,
characterizing the macroscopic system at or near thermal
equilibrium, is currently not available.
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1.1 Two approaches to the description of thermodynamic
fluctuations
It is commonly held that thermodynamic fluctuations can be
described on the basis of two distinct approaches: statistical
mechanics or the Gibbs approach [2], and statistical thermo-
dynamics or Einstein's approach [3] (the latter is sometimes
loosely referred to as the quasi-thermodynamic theory of
fluctuations). Despite the abundance of monographs and
textbooks on statistical physics (see, for example, Refs [6, 7,
11, 13 ± 32]), it is hard to find a comparative analysis of these
two approaches. At the same time, the physical results of
these two approaches tally far from always. For example, the
two approaches give the same results for the dispersions of the
extensive thermodynamic quantities, but different results for
the dispersions of the intensive observables.

A careful analysis reveals that such disagreement arises
neither by accident nor by mistake. As a matter of fact, it is a
natural consequence of the conceptual distinction between
the two approaches, even though both the approaches are
statistical in nature. First of all, as opposed to Einstein's
approach, the `ensemble' ideology of the Gibbs approach
excludes situations when in the state of thermal equilibrium
between macroscopic system and thermostat, two thermo-
dynamically conjugate macroscopic parameters may fluctu-
ate simultaneously (for example, energy and temperature,
volume and pressure, etc.) 1. Another important distinction is
that the fluctuations themselves occur in an entirely different
`spaces of events': in themicroscopic phase space according to
Gibbs, and in the space of thermodynamic macroparameters
according to Einstein.

In addition, the approaches of Gibbs and Einstein differ
considerably in the treatment of the essential concept of
thermal equilibrium or the zero principle of thermodynamics
(this was apparently first noted by Planck [6]). Unlike the
Gibbs approach, the approach of Einstein does not require
the exact coincidence of the thermodynamic parameters
descriptive of the macrosystem and thermostat. According
to Einstein's approach, these parameters fluctuate in the
macrosystem but not in the thermostat, so that the agre-
ement between respective means is sufficient.

The distinction between the approaches of Gibbs and
Einstein becomes even more vivid if we recall that the
conventional methods of finding the statistical distribution
functions descriptive of observed approaches are essentially
different: the dynamic method is used in the Gibbs approach,
and the thermodynamic method in Einstein's approach.

In view of the above, it seems worthwhile to discuss this
range of problems, paying special attention to the conceptual
distinctions between the approaches ofGibbs and Einstein, as
well as to the `genetic' linkage between these approaches. We
shall also discuss the applicability of these approaches to the
description of actual stochastic macroscopic systems in states
close to thermal equilibrium.

In this review we have selected pressure fluctuations (PFs)
as the typical study object for analyzing the similarities and
differences of the approaches of Gibbs and Einstein. Such a
choice is justified by the fact that it is the pressure (by contrast
to, for example, the temperature or chemical potential) that
has a straightforward and clear-cut physicalmeaning, and has
an obvious mechanical `prototype'. On top of that (see
Section 1.2), the study of PFs is of interest on its own.

1.2 Problems of Gibbs and Einstein with regard
to pressure fluctuations
According to the general principles of the statistical descrip-
tion of equilibrium macrosystems, the absolute pressure
dispersion is defined as follows:

�DP�2 � �Pÿ P�2 � P2 ÿ P
2
; �1:1�

where the over-bar denotes averaging over the distribution
function used in the approaches of Gibbs and Einstein (where
necessary, we shall specify this operation with superscripts
G and E, respectively).

The two approaches differ in the physical meaning of
pressure P even before the operation of averaging: in the
Gibbs approach the pressure is generally a dynamic quantity,
whereas in the Einstein approach it is a thermodynamic
quantity. In addition, the averaging itself is not the same in
the two approaches (for more details see Section 4).

There still is no consensus in the scientific literature (see
Section 1.3) as to the method of calculating the pressure
dispersion (1.1) even for an ideal gas of microparticles under
the classical description in nondegenerate conditions. The
results available in the Gibbs approach are rather incon-
sistent, and do not agree with the results obtained in the
framework of Einstein's approach.

The calculation of PFs for macrosystems is a nontrivial
task indeed; it splits into two problems which are naturally
referred to as the Gibbs problem and the Einstein problem.

According to the Gibbs approach, the pressure dispersion
(1.1) is defined by the following expression (see its develop-
ment in Section 2.4)

�DP�2
G

� 1

b

ÿ
w�P�T �C

�
: �1:2�

The right-hand side of Eqn (1.2), along with the conventional
thermodynamic meansÐ the isothermal compressibility w�P�T ,
and the pressure P, i.e.

w�P�T �
�
qP
qV

�
T

� 1

b
q2F�b;V�

qV 2
; P � 1

b
qF�b;V�

qV
; �1:3�

involves the so-called nonthermodynamic mean

C � ÿ qP
qV
� q2HV

qV 2
; �1:4�

which, unlike the quantities (1.3), is not expressible in terms of
the Massieu ± Planck function F�b;V� and its derivatives.
Obviously, thermodynamic stability of the macroscopic
system is ensured by the inequalities

w�P�T < 0; C > 0; C >
��w�P�T

�� : �1:5�

Expressions (1.3) are supplemented by the conventional
definitions

F�b;V� � lnZ�b;V�; Z�b;V� �
�
dG exp

�ÿ bHV�G�
�
;

�1:6�

where Z�b;V� is the statistical integral, HV�G� is the
Hamilton function, G is the set of arguments that define the
phase space of the macrosystem in the classical case, the1 In this connection see, for example, the discussion in Refs [4, 5].
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quantities b � 1=kBT and V have the meaning of the inverse
temperature (thermodynamic parameter) and volume
(mechanical external parameter). Expression (1.2) also holds
for the quantum case, when Z�b;V� is the partition function,
and bHV is the Hamiltonian of the macrosystem.

The Gibbs problem for PFs is whether (and if so, how) it is
possible to calculate the nonthermodynamicmean (1.4), while
remaining within the framework of the Gibbs approach and
without any additional assumptions.

The Einstein problem for PFs consists in that within
Einstein's approach for the pressure dispersion (1.1), as
demonstrated by Landau and Lifshitz [7], the following
expression results:

�DP�2
E

� ÿ 1

b
w�P�S ; �1:7�

which is considerably different from Eqn (1.2) both in
structure and in numerical value (this was apparently first
noted by MuÈ nster [8]. Unlike relation (1.2), expression (1.7)
only contains the thermodynamic mean Ð the adiabatic
compressibility

w�P�S �
�
qP
qV

�
S

� g
�
qP
qV

�
T

; w�P�S < 0 ; �1:8�

where g � CP=CV > 1 is the Poisson coefficient. It turns out
that in all cases one has

�DP�2
E

> �DP�2
G

: �1:9�
It must be noted that the problems of Gibbs and Einstein

for PFs are encountered even for the simplest macroscopic
systemÐ an ideal gas (which we are going to use solely in our
concrete calculations). The existing situation with the solu-
tion of these problems is far from being satisfactory (see
Section 1.3). The aim of this paper is to give a consistent
analysis of the Gibbs and Einstein problems and to propose
constructive ways for their solution. The main difficulties, as
will become clear from the discussion that follows, are
associated not only with the computational hurdles but also
with the conceptual basics of both approaches, and the
feasibility of establishing links between them.

The main portion of the review that follows this intro-
ductory Section 1 is structured as follows. In Section 2 we give
a brief listing of the main elements of the Gibbs approach,
including the linkage between the dynamic and thermody-
namic quantities (Sections 2.1 and 2.3), and present the
combined Gibbs lemma for the correlation functions of
physical quantity fluctuations (Section 2.4). Special atten-
tion is paid to the accurate definition (Section 2.2) of pressure
P and compressibility C as quasi-dynamic quantities (by
analogy with the quasi-means in the sense of Bogolyubov
[9]). In this case, the role of the external field that removes the
spatial degeneracy of the macrosystem state is played by the
singular potential of walls of the `box' that encloses the
system. Observe that the explicit form of this potential is not
used anywhere (its `projective' property is sufficient).

In Section 3 we introduce and explicitly construct the
dynamic equations of state (DEOS) which relate the pressure
and the compressibility to the Hamilton function or the
Hamiltonian of the macrosystem (in the classical and
quantum cases, respectively). With this purpose we genera-
lize the theorems of Bogolyubov ±Zubarev [10, 11] and
Hellmann ±Feynman [12, 13] (Sections 3.1 and 3.2). Statis-

tical averaging of DEOS (Section 3.3) leads to thermody-
namic equations of state (TDEOS), which allows us to solve
the Gibbs problem.

In Section 4 we present the Einstein approach and
establish its `genetic' linkage with the Gibbs approach
(under the assumption of independence of the set of intensive
parameters). The main element of this linkage is revealed by
the `stochastization' of the conjugate thermodynamic para-
meters upon transition `fromGibbs to Einstein' (Section 4.2).

In Section 5 we extend the results of Section 4 to the case
of the dependent intensive macroparameters that define the
initial Gibbs ensemble. In Section 5.1 we obtain the `working'
expressions for the correlation functions and dispersions of
the extensive macroparameters (which are the same for the
approaches of Gibbs and Einstein), and for the correlation
functions and dispersions of the intensive macroparameters
in Einstein's approach.

Building on these results, in Section 5.2 we give a solution
of Einstein's problem for PFs in the case of an ideal gas, and
analyze the physical background of the disagreement between
the results for PFs in the approaches under consideration.
With this purpose we carry out the original calculation of PFs
by statistical method using only the TDEOS of the macro-
system. In Section 5.3 we compare these results with those
obtained inRef. [7] by the traditional thermodynamicmethod
of calculation of PFs, and also find the corrections to PFs that
arise upon transition from the purely classical description for
T4T0 to the calculation that takes into account the lowest
quantum (exchange) corrections for T0T0, where T0 is the
temperature of degeneration of an ideal gas.

In the concluding Section 6 we discuss the general
implications of the Gibbs and Einstein approaches as applied
to the description of quasi-equilibrium states in stochastic
macrosystems. This discussion is especially relevant in the
context of the lively debate concerned with the relationship
between statistical mechanics and statistical thermody-
namics.

In the Appendix (Section 7) the reader will find the proof
of the generalized Bogolyubov ±Zubarev theorem, and the
derivation of classical DEOS.

1.3 Brief review of the literature
The general problem of fluctuations of physical quantities in
equilibrium and quasi-equilibrium states of macroscopic
systems is discussed in practically all known treatises on
statistical physics (see, for example, Refs [6 ± 8, 11, 14 ± 32]).
However, the character of treating this problem as a whole
(and the treatment of PFs, in particular) is much different.

Some of the above references [6, 11, 14, 16 ± 22] treat the
approaches of Gibbs and Einstein, while Refs [7, 15] only deal
with Einstein's approach. In Refs [6, 11, 15, 20], however, PFs
are not discussed at all, and in Refs [7, 14, 16 ± 19, 21, 22] they
are only worked out according to Einstein, and only by the
thermodynamic calculating method.

So it is clear that none of the problems formulated in
Section 1.2 can be found in the references cited above.

In some other sources [8, 23 ± 32], the fluctuations of
physical quantities are only considered within the framework
of the Gibbs approach, and in Refs [23, 24, 26 ± 29] PFs are
not calculated at all, whereas in Refs [8, 25, 30 ± 32] the Gibbs
problem is formulated but, in our opinion, does not receive an
adequate treatment. As far as the Einstein problem is
concerned, to the best of our knowledge it is only formulated
in Ref. [8], without any attempt at a solution.
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Let us discuss in some detail the ways proposed for solving
the Gibbs problem in the original papers [32 ± 34], which
actually served as basis for the treatments given in books [8,
31]. The formidability of a straightforward solution of the
Gibbs problem within the framework of the Gibbs approach
itself compelled the authors of Refs [32 ± 34] (and some other
researchers as well) to resort to various additional assump-
tions and technical tricks. Moreover, in Ref. [28] it is
maintained that PFs can only be calculated with the methods
of the theory of random processes, and in Ref. [35] the very
existence of equilibrium pressure fluctuations is questioned.

As it is, the authors of Refs [32 ± 34] proposed departing
from the ensemble approach of Gibbs, and returning to the
purely mechanical treatment of Bernoulli Ð the treatment
based on the straightforward consideration of collisions
between particles of the ideal gas and the walls of the
container (which, for the sake of simplicity, is a cubic box).
Then, according to Refs [32, 33], the particular form of the
potential of interaction between particles and the walls of the
container becomes important 2 (which is different in Refs [32]
and [33]). However, the use of model potentials in place of the
exact singular potential of the idealized walls of the box leads
(as the parameters characterizing the `steepness' of the walls
tend to infinity) to positive but divergent 3 expressions for the
compressibility C, and to some other anomalies. Naturally,
such results cannot be regarded as satisfactory.

In Refs [33, 34] it was proposed to vary the volume by
moving the wall of the container with a finite velocity, and
comparing it with the rate of changing the microstates of the
particles, which effectively amounts to going beyond the
scope of equilibrium thermodynamics. In this manner,
keeping within the limits of applicability of Ehrenfest's
adiabatic invariants, the authors of Refs [33, 34] gave a
validation of the equality C � ÿw�P�S � ÿgw�P�T , which, as will
be shown below, holds at least for an ideal gas and gives in this
case the solution of the Gibbs problem. In Refs [33, 34],
however, this equality is derived outside the framework of the
Gibbs approach.

Later in Ref. [8] Ð also with an additional tool (the Gibbs
identity that links the mean values for the canonical and
microcanonical ensembles) Ð an expression for the PFs in an
ideal gas was obtained that only holds in the case of the
classical description.

From this brief review of the available literature it is clear
that the situation with the Gibbs and Einstein problems for
PFs is quite perplexing, which originally stimulated this
paper. In our opinion, we have succeeded in giving suffi-
ciently convincing solutions of both problems.

2. Main elements of the Gibbs approach
for the canonical ensemble

2.1 Dynamic quantities and dynamic equations of state
The Hamiltonian function and generalized forces.As is known
(see, for example, Refs [2, 7, 11]), the dynamic or the purely

mechanical description of adiabatically isolated macrosystem
of N interacting microparticles (where N4 1) is based on a
certain set of dynamic quantities XV �G; fag�, where
fag � �a1; . . . ; ak; . . .� is the set of mechanical parameters (as
a rule, external force fields), V is the volume occupied by the
system in the configuration space, and all the parameters fag
and V are given by the environment of the macrosystem 4.

If the macrosystem is not adiabatically isolated but is in
thermal equilibrium with the thermostat, the external para-
meters are supplemented by the thermodynamic parameters
(for example, the temperature T, the chemical potential m,
etc.). By definition, however, the dynamic quantities cannot
depend on these (such a dependence is only exhibited by their
mean values X; see Section 2.2).

The dynamic nature of quantities XV �G; fag� consists in
that they are all defined in the phase space of themacrosystem
fGg (or part of it), which is the set of all possible (or
admissible) values of 2 f N dynamic variables Ð the canoni-
cally conjugate momenta fpg and coordinates fqg. Here and
further f � 1; 2; 3 is the number of translational degrees of
freedom of each particle 5, which coincides with the dimen-
sionality of the configuration space; the dimensions of the
coordinate fqg and momentum fpg parts of the phase space
fGg are the same, and equal to f N. If there are no restrictions
imposed on the macrosystem, then all f momenta and
coordinates �a � 1; . . . ; f � of each of the N particles
�i � 1; . . . ;N� assume all possible values

ÿ1 < p
�a�
i <1; ÿ1 < q

�a�
i <1 : �2:1�

The quantum analogs of dynamic quantities XV�G; fag� are
the operators bXV�fag� which act in the space of wave
functions of the macrosystem in question.

The main dynamic quantity that, according to Gibbs [2],
determines the thermodynamic properties of a macrosystem
at the state of thermal equilibrium, is the energy of the
system 6. In the classical description, the energy of the system
is defined by the Hamiltonian function H�G; fag�, and in the
quantum description 7 by the Hamiltonian bH�q̂; p̂; fag�.

If the system is free (all fag � 0) and unlimited
(V!1), then its Hamiltonian function H�0��G� �
H�0��q; p� depends only on the dynamic variables p and q
of the system itself. If there are mechanical external
parameters or generalized coordinates fag, then it is
expedient to introduce the canonically conjugate general-
ized forces fAg � �A1; . . . ;Ak; . . .�:

Ak�G; fag� � ÿ qH�G; fag�
qak

: �2:2�

As a rule, the homogeneous static force fields which enter
the Hamiltonian function H�G; fag� as a linear combination

2 It was Maxwell who, when deriving the equilibrium statistical distribu-

tion for an ideal gas, demonstrated that the form of this distribution (and

hence the form of all mean values) cannot depend on the particulars of the

contact interaction of particles with walls of the container, or particles

with one another.
3 Observe that Gibbs [2] admitted the feasibility of `very large' (but

apparently finite) values of the dynamic compressibility C (and accord-

ingly C > jwj).

4 In future we shall always assume that N � const, which implies

impermeability of the walls bounding the volume V.
5 For the sake of simplicity we assume that the microparticles do not

possess any internal degrees of freedom. As long as the translational

motion and the internal motions are independent, however, the inclusion

of internal degrees of freedom does not affect the results obtained here.
6 Without compromising the generality, we may assume that all other

integrals of motion of this system (the total momentum and the total

anqular momentum) are zero.
7 Further on we shall write all formulas in the classical version, while the

transition to the quantum description will be specially stipulated (see, for

example, Section 3.2).
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assume the role of the external parameters fag. Then,
according to Eqn (2.2), we have

H�G; fag� � H�G� ÿ
X
k

akAk�G� ; �2:3�

with the generalized forces Ak�G� 8 themselves no longer
depending on fag, so that for any k and l the equality is valid:

qAk�G�
qal

� ÿ q2H�G; fag�
qal qak

� 0 : �2:4�

Observe that because of Eqns (2.4) and (2.3) the definition
(2.2) is purely formal, since it yields an identity when
combined with Eqn (2.3) [equation (2.2) is only convenient
for calculating the mean values of generalized forces Ak; see
Section 2.3]. As a matter of fact, for the quantities Ak�G� (at
least for their values per unit volume) in the case of a
completely free macrosystem there is a definition indepen-
dent ofH�0��G� in terms of dynamic variables p; q and certain
physical characteristics of particles (charge, mass, electrical
and magnetic dipole moments, etc.). Needless to say the
external field a may affect Ak, so that Ak�a� 6� Ak�0�. But
generally Ak�G; 0� 6� 0.

Volume and pressure. A thermodynamically equilibrium
macrosystem may be free (all fag � 0) but it must necessarily
be enclosedÐ that is, it must have a finite volumeV andmust
be separated from the environment (thermostat) by `walls' of
some kind. For the sake of simplicity in the subsequent
discussion we assume that the volume is a cubic box with the
edgeL; it is also considered that thewalls conduct heat but are
impenetrable for the microparticles. This means that not the
entire coordinate part fqg of the phase space is accessible to
the system: it splits into two regions, namely,
fqg � fqg�I� � fqg�II�, where fqg�I� is the spatial domain
inside the box, and fqg�II� is the region outside the box
including its walls. Accordingly, for the allowable values of
p and q for any i and a, in place of Eqn (2.1) we have

ÿ1 < p
�a�
i <1 ; ÿL

2
< q

�a�
i <

L

2
;

fq�a�i g2 fqg�I�; L � V 1=f; f �1; 2; 3; 0 < V <1:
�2:5�

Depending on the physical conditions of the contact
between macrosystem and thermostat, different types of
impermeable walls are possible (with N � const); we shall
consider two possible situations: isobaric (constant pressure,
P � const), and isochoric (constant volume, V � const).

(1) In the isobaric case, the pressure P is set in the capacity
of the external intensive generalized coordinate, and the walls
(at least one wall of the six) are assumed to bemovable, so that
the size of the region fqg�I� may vary. Then the extensive
generalized force (the dynamic quantity) is the volume

V�G; a;P� � ÿ qH�G; a;P�
qP

: �2:6�
The meaning of the isobaric situation is that at the state of
thermal equilibrium the mean valueV adjusts so as to balance

the pressure in the system and the externally applied pressure
P 9, so thatV �V�P�. Then in the framework of the Gibbs
approach the volume V can fluctuate, while the pressure P
cannot, and the Gibbs problem for pressure fluctuations does
not arise at all (we shall only consider such a situation in
Section 5.1 in connection with the transition from the Gibbs
to the Einstein approach).

It is obvious that the quantity (2.6) is completely similar to
the quantity (2.2) in the following respect. Just like the
quantities Ak�G� can be computed independently of defini-
tion (2.2) in the case a � 0, the quantity V�G� can be
calculated at P � 0. Consequently, the quantity V�G� does
not depend on P (unlike, of course, the mean value V).
Therefore, at P 6� 0 the Hamiltonian function becomes

H�G; a;P� � H�G; a� ÿ PV�G� ; �2:7�
where according to definition (2.5)

V�G� �
�Yf

a�1
dq
�a�
i ; q

�a�
i 2 fqg�I� ; �2:8�

and

qV�G�
qP

� ÿ q2H�G;P�
qP2

� 0 :

(2) The statement and solution of the Gibbs problem for
PFs is based below on the isochoric situation, which assumes
that the walls are fixed and absolutely rigid. Then the external
extensive generalized coordinate is the volume V 10, which is
conjugatedwith the intensive generalized force represented by
the pressure PV�G; a�, with

PV�G; a� � ÿ qHV�G; a�
qV

: �2:9�
This definition agrees well with the conventional mechanical
definition of pressure as the normal force acting upon unit
area of the walls, used by Daniel Bernoulli in the 18th century
for relating the pressure to the kinetic energy of particles of an
ideal gas.

According to Eqn (2.9), the pressure produced by the
macrosystem is a dynamic quantity, and in the framework of
the Gibbs approach exhibits both the mean value P and the
fluctuations (see Sections 2.3 and 2.4). Despite the outward
similarity between definitions (2.9) and (2.6) and (2.2), there is
also an important distinction. It is impossible in principle to
define the internal pressure for an unbounded system
(V!1) described by the Hamiltonian function H�0��G�,
since

P �0��G� � ÿ qH�0��G�
qV

� 0 �2:10�

(in other words, `no walls Ð no pressure'). This means that
the pressure PV�G� has no independent definition other than
(2.9), unlike Ak�G� and V�G�.

In addition, as will be shown below, unlike fag and P the
parameter V enters the Hamiltonian function HV�G� in an
essentially nonlinear manner. Because of this, in addition to

8 For the sake of simplicity, further we shall confine ourselves to one pair

of conjugate quantities a and A. In most of the concrete calculations of

pressure and its fluctuations we shall assume that the macrosystem is

free Ð that is, a � 0.

9 It is easy to see the complete analogy with the isothermal situation,

T � const, when the mean energy of the systemH settles at the valueH�T�
determined by the externally set temperature T.
10 Hereinafter we shall denote the dependence on volume V for dynamic

quantities with the appropriate subscript.
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the dynamic quantity Ð pressure (2.9), there is another
nonzero quantity 11 Ð the dynamic compressibility

CV�G; a� � ÿ qPV�G; a�
qV

� q2HV�G; a�
qV2

6� 0 ; �2:11�

as well as, generally speaking, higher derivatives of HV with
respect to V. The difference in properties of quantities (2.4)
and (2.11) is important in calculating fluctuations of
quantities Ak and P (see Section 2.4).

Equations of state. Just as in the Gibbs approach the
practice is to distinguish between the dynamic quantities
A�p; q� pertaining to the microscopic description of the
system and the thermodynamic (mean) quantities A pertain-
ing to the macroscopic description, we hold it necessary also
to distinguish between the respective equations of state. If, for
example, for some particularmacroscopic system it is possible
to calculate independently the right-hand sides of Eqns (2.9)
and (2.11), then relations (2.9) and (2.11) acquire the sense of
the dynamic equations of state (DEOS-I and DEOS-II,
respectively). The averaging of these equations according to
Gibbs in the state of thermal equilibrium leads to equations of
state in the conventional sense Ð the thermodynamic equa-
tions of state (TDEOS-I and TDEOS-II, respectively).

The first of these equations (TDEOS-I), which relates the
mean pressure P to the volume V and temperature T, is
referred to as the thermal equation of state; it is equivalent to
the classical Clausius virial theorem (for more details see
Section 3.1). As far as the second equation (TDEOS-II) is
concerned, it is not found in the scientific literature known to
us. At the same time, as shown in Section 2.3, it is TDEOS-II
together with the isothermal compressibility w�P�T that deter-
mines the PFs and allows in principle the solution of the
Gibbs problem for a system of a sufficiently general form. The
consistent derivation of the two dynamic equations of state,
which are used in turn for expressing the two TDEOS,
constitutes the burden of Section 3.

2.2 Pressure and compressibility as quasi-dynamic
quantities
In connection with the definition of pressure, there is the issue
of the adequate introduction of the volume V into the
Hamiltonian function HV�G; a�, so as to give meaning to
definition (2.9) [definition (2.7) is obviously not suitable,
because it leads to an identity]. The difficulty consists in the
possible dual interpretation of the designated finite volumeV.

(1) On the one hand, the parameter V reflects a rather
simple and purely kinematic constraint in the form (2.8). It is
clear that in this case the parameterV does not enter explicitly
into the Hamiltonian function H�G� [or the HamiltonianbH�q̂; p̂�] but is rather introduced `by hand' at the stage of
averaging in the classical description, or as an additional
boundary condition in the quantum description. As a result,
definitions (2.9) and (2.11) do not work, and equations
DEOS-I and DEOS-II simply have no physical meaning. As
a rule, this circumstance is ignored in the scientific literature
but does not create any complications only because the
DEOS-II for compressibility CV�G; a� is commonly left
unconsidered at all, and neither is the equation TDEOS-II
for the nonthermodynamic mean CV which determines the
PFs.

As far as DEOS-I for the pressure PV�G; a� is concerned,
this equation is usually interesting not by itself but only for
expressing TDEOS-I for the mean pressure PV. It is obvious
that TDEOS-I has meaning only because the quantity PV

according to Eqn (1.3) is a thermodynamic mean. (Indeed, in
the course of averaging according to Eqn (2.9), the derivative
with respect to V is `switched over' from the Hamiltonian
function H to the functions F and Z.) Then, in the statistical
integral (and consequently in the Massieu ± Planck function),
the dependence on the parameterV appears in the integration
with respect to dG in Eqn (1.6) in accord with the kinematic
constraints of the form (2.5) [for more details see Section 2.3,
formulas (2.26) and (2.27)]. Obviously, for nonthermody-
namic means (includingCV) such a procedure is not possible
by definition, which mandates finding a different way of
expressing the initial DEOS.

(2) On the other hand, onemay assume that the parameter
V shows evidence of a dynamic (force) quantity, because the
walls of the box bounce all the incident particles back into the
box, thus ensuring its impermeability in both the classical and
quantum descriptions. Then the dynamic nature of the
volume V can be taken into account by adding to the
Hamiltonian function of the unbounded macroscopic sys-
tem,H�0��G; a�, the external singular repulsive potential 12

UV�q� � 0; for all fq�a�i g 2 fqg�I� ;
1; for any fq�a�i g 2 fqg�II�;

(
�2:12�

where fq�a�i g is the set of all f coordinates �a � 1; . . . ; f � of all
N particles �i � 1; :::;N� in the macrosystem; the definitions
of regions fqg�I� and fqg�II� were given in front of Eqn (2.5).

Observe that such a dynamic equivalent of kinematic
constraints is used in a number of other physical problems.
For example, the inclusion of quantum indistinguishability of
microparticles and the symmetry properties of the complete
wave function even in the ideal gas model gives rise to an
additional `exchange' term in the Hamiltonian bH (see, for
example, Refs [7, 21, 26]). This term describes the effective
repulsion (attraction) for a Fermi or Bose gas, respectively,
which is entirely absent in aMaxwell ± Boltzmann gas. Such a
correction is necessary for the degenerate regime (which is not
considered in this paper); however, the contribution from
quantum exchange corrections to TDEOS and PFs in the
nondegenerate regime (in the lowest order in powers of T0=T,
where T0 is the degeneracy temperature of the gas) is
accounted for in Section 5.4.

In this way, the total Hamiltonian function of the
bounded macrosystem must be written as

H�e�V �G; a� � H�0��G; a� � eUV�q� : �2:13�

Similarly, for the Hamiltonian we get

bH�e�V �q̂; p̂; a� � bH�0��q̂; p̂; a� � eUV�q̂� ; �2:14�

where the formal parameter emay take on any positive values.
As will be shown in Section 3, it is the dynamic treatment of
the volume V as the external parameter that best matches the
Gibbs approach and allows, in particular, the solution of the
Gibbs problem for PFs. In practice, however, it is quite

12 A similar potential (the `hard-core' model type) is usually also used in

the description of mutual collisions between absolutely rigid particles of

finite size.

11 Not to be confused with the conventional thermodynamic compressi-

bility w � qP=qV, where P is the mean pressure.
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difficult to implement definitions (2.9) and (2.11) with the
Hamiltonian function (2.13) owing to the singular delta-
shaped potential (2.12).

In our opinion, the most natural way out of this
complication consists in following the ideas of the Bogolyu-
bov method of quasi-averages [9]. This means that in place of
the conventional dynamic quantities (2.9) and (2.11) in the
framework of the classical description of a macrosystem
(Section 3.1) it is expedient to consider the quasi-dynamic
quantities Ð the pressure

eP �0�V �G� � lim
e!�0

P
�e�
V �G� � lim

e!�0

�
ÿ qH�e�V �G�

qV

�
; �2:15�

and the compressibility

eC �0�V �G� � lim
e!�0

�
ÿ qP �e�V �G�

qV

�
� lim

e!�0

�
ÿ q2H�e�V �G�

qV 2

�
:

�2:16�
Then, generally speaking, unlike Eqn (2.11) we have

eC �0�V �G� 6� ÿ
q eP �0�V �G�

qV
;

so that DEOS-I and DEOS-II must be developed indepen-
dently of one another. In the quantum description (Section
3.2), quasi-operators will be defined for these quantities in a
similar fashion.

The meaning of definitions (2.15) and (2.16) is as follows.
After the potentialUV�q�, like Schiller's moor 13, has done its
job (raising a wall in the system), like themoor it has to depart
Ð and the physical results must not be dependent on the form
of UV�q� but must instead be completely determined by the
form of H 0�G�. In the method of quasi-averages [9], the role
of `the moor' is usually played by the external field propor-
tional to e, which removes the degeneracy of the system and
ensures the nonzero mean value of the degenerate physical
quantity in the limit of e! 0. In our case, such a procedure
ought to be accomplished yet at the level of dynamic
quantities Ð the pressure and the compressibility become
nonzero when the potential UV�q� is applied to remove the
degeneracy 14 of the macrosystem described by the initial
Hamiltonian functionH�0��G�.

Calculation of the right-hand sides in Eqns (2.15) and
(2.16) yields the explicit form of the classical DEOS-I and
DEOS-II. This calculatingmethod and the result obtained for
a very general case comprise the content of the generalized
Bogolyubov ±Zubarev theorem, which is discussed in Section
3.1 (for a complete proof see Section 7). Similar calculations
for quantum macrosystems and a derivation of correspond-
ing quantum DEOS constitute the generalized Hellmann ±
Feynman theorem, discussed in Section 3.2. It is important
that in all cases the quantities eP �0�V �G� and eC �0�V �G� (or their
quantum counterparts) are completely determined by the
form of the initial Hamiltonian function H�0��G� alone (or
the corresponding Hamiltonian).

Notwithstanding some difference in the methods and
details of computations, the classical and quantum descrip-
tions share one important common property with respect to
the inclusion of the singular potentialUV�q� from Eqn (2.12).
According to the general approach (see, for example, Ref.
[39]), the operations of differentiation of singular functions
(2.15) and (2.16) (and the quantum counterparts of these
expressions) are conveniently expressed in terms of func-
tionals of some kind or another. Then the potential (2.12)
acts similarly to the projection operator onto the states with
finite volume V in the corresponding space of states of the
macrosystem.

Obviously, for the states in the classical description it is
convenient to take the coordinate part fqg of the phase space
of the macrosystem, and in the quantum description the wave
functions jqi in SchroÈ dinger's q-representation. Accordingly,
the statistical integralZ�e��� dG exp�ÿbH�e�V �G�� is used for the
functionals in the classical case, and the mean value of the
Hamiltonian, hqjbH�e�V jqi, in the quantum case. The projection
in the classical case is onto the finite region fqg�I� of the phase
subspace fqg (the volume enclosed by the box), and in the
quantum case onto the family of wave functions that satisfy
the boundary condition jqi � 0 on the inner surface of the box
of volume V.

2.3 Mean values and thermodynamic equations of state
Statistical mechanics or the Gibbs approach [2] is based on
the ergodic hypothesis which allows replacement of the time
averages of the dynamic quantities by the statistical ensemble
averages of the same quantities. It is these averages that are
identified in the Gibbs approach with the observables at the
state of thermal equilibrium. This means that in such a state
every dynamic quantity XV�G; a� is a random variable in the
phase space G (but, of course, a single-valued function of a
and V parameters). It is important here that the Gibbs
distribution function rGV �G; a� is the same for all quantities
XV�G; a� and depends only on the form of the statistical
ensemble for the system under consideration. The selection of
the ensemble in its turn depends on the conditions of thermal
equilibrium, defined by the set of thermodynamic and
mechanical parameters 15 which are determined by the
environment.

In the event of isothermal and isochoric ensemble
(canonical ensemble according to Gibbs), this set contains
just one thermodynamic parameter T � 1=kB b � const, and
one mechanical parameter V � const. Then, according to
Gibbs theorem [2], the function rG takes the form

rGV �G; a; b� � exp
�ÿF�a;V; b� ÿ bHV�G; a�� : �2:17�

The Massieu ± Planck function F in Eqn (2.17) is found
from the normalization condition imposed on rG:�

rGV �G; a; b� dG � 1 : �2:18�

Here and further the element of phase volume is

dG � dp dq

N !�2p�h� f ; dp dq �
Yf
a�1

YN
i�1

dp
�a�
i dq

�a�
i ; �2:19�

13 ``The moor has done his job, let the moor depart'' Ð quote from

Friedrich Schiller's play `Fiesco's Conspiracy at Genoa' (Act 3, Scene 4)

(1783) Ð Transl. note.
14 This degeneracy is due to the spatial homogeneity and the invariance of

the initial Hamiltonian function with respect to an arbitrary transforma-

tion of coordinates fqg in the configuration space, including one into

another mapping of the internal and external (with respect to volume V)

regions fqg�I� and fqg�II�, defined by condition (2.12).

15 Observe that in the formal limit N!1, when the fluctuations of

physical quantities describing the macrosystem are unimportant, all the

ensembles become thermodynamically equivalent (see, for example, Refs

[11, 25]).
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and integration in Eqn (2.18) and subsequent expressions
(2.21) for Z and (2.23) for the mean values is performed over
the region of phase space fGg accessible to the macrosystem.
If there are no constraints, the integration in these expressions
according to Eqn (2.1) is performed over all possible values of
momenta and coordinates of all the particles.

In the quantum case, the integration over the phase space
in Eqn (2.18) (and in other expressions involving this
operation) is replaced by summation over all quantum states
accessible to the system.

To facilitate the notation, we introduce the designation
fxg � �a;V; b� for the set of all external parameters govern-
ing the Massieu ± Planck function and some other quanti-
ties 16; then the quantity x will denote any of the parameters
from the set fxg. Substituting function (2.17) into condition
(2.18), we find

exp
�ÿFfxg�Zfxg � 1 : �2:20�

Here

Zfxg �
�
exp
�ÿbHV�G; a�� dG �2:21�

is the classical statistical integral (by assumption, it has a finite
value for all or at least for some of the values of parameters
entering fxg).

From Eqn (2.20) it follows that

Ffxg � lnZfxg � ÿbFfxg ; �2:22�

where Ffxg is the thermodynamic potential (the Helmholtz
free energy), commonly used in the calculations based on the
canonical ensemble.

As will become clear from the discussion to follow
(especially in Sections 4 and 5), the Massieu ± Planck
function Ffxg in some respects is more convenient than
Ffxg by virtue of its `generating' properties with respect to
all variables in the set fxg (in particular, with respect to the
dimensionless inverse temperature b, the use of which is more
natural than the use of the thermodynamic temperature T).
Observe that the dependence on a andV of the functionsZ;F
and F is defined directly by the Hamiltonian function (2.13),
whereas the dependence on b is introduced by the Gibbs
canonical distribution function (2.17).

The mean value of the arbitrary dynamic quantity
XV�G; a� in the Gibbs approach is defined as follows

X fxg �
�
XV�G; a� rG�G; fxg� dG ; �2:23�

where the common practice is to distinguish between
thermodynamic and nonthermodynamic averages. The former
include those mean values that can be expressed in terms of
the functionFfxg and its derivatives of any order with respect
to any of its arguments entering fxg; all the rest are classified
as nonthermodynamic mean values.

In this way, the computation of any mean values of the
first type reduces to finding just one quantity Zfxg. It is well
known that this calculation is difficult by itself, and depends
considerably on the form of the Hamiltonian functionH. The

calculation of the mean values of the second type, however, is
an evenmore formidable task, whichmay be referred to as the
Gibbs problem in the broad sense. No general formulas are
available for its solution, and in every event one needs to
know the explicit form of the quantity XV�G; a�. Further we
shall only be interested in the particular case of the Gibbs
problem, related to the calculation of PFs when XV�G; a�
coincides withCV�G; a� � ÿq2HV�G; a�=qV 2.

The thermodynamic averages in the context of the
canonical Gibbs ensemble include first of all the mean values
of the Hamiltonian function itself (the mean or internal
energy) and the mean values of its derivatives Ð the general-
ized forces (2.2) and pressure (2.9). The equation for themean
valueH is usually referred to as the caloric TDEOS, and those
for the mean values A andP as the thermal TDEOS.

The appropriate TDEOS can be developed by differen-
tiating sequentially the normalization condition (2.18) with
respect to each variable x from the set fxg. Then we get�

dGrG�G; fxg� � 1 ;

�
dG

qrG�G; fxg�
qx

� 0 ; �2:24�

where, according to Eqn (2.17), one finds

qrG�G; fxg�
qx

� ÿrG�G; fxg�
�
qFfxg
qx

ÿDx�G; fxg�
�
:

�2:25�

Here we have introduced the generalized (in this case, a three-
component) dynamic quantity

Dx�G; fxg� � ÿ q
qx

�
bHV�G; a�� ; fxg � fa;V; bg ; �2:26�

which allows us to simplify and unify the expressions for both
the mean values and the fluctuations and correlations.

Substituting expression (2.25) into the second equation in
(2.24), and considering the first equation and definition
(2.23), we find that

qFfxg
qx

ÿDx � 0 ; Dx � Dx�G; fxg� : �2:27�
From Eqn (2.27) we see that all the mean values Dx are,

according to our definition, thermodynamic averages. Setting
the variable x in the right-hand side of Eqn (2.26) equal
sequentially to a, V and b, we get

Da � bA; DV � bP ; Db � ÿH : �2:28�

Having regard to the general expression (2.27) for the
averages Dx, we express the thermal TDEOS

Da � bA � qF
qa

; A � 1

b
qF
qa

; �2:29�

DV � bP � qF
qV

; P � 1

b
qF
qV

; �2:30�

and the caloric TDEOS

Db � ÿH � qF
qb

; H � ÿ qF
qb

: �2:31�

Obviously, all the results obtained in this section for the
classical case also hold their forms for the quantum case; then
for the Massieu ± Planck function one should use not its

16 Arguments of functions may be dropped as long as this does not lead to

confusions.
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classical form FC as defined by Eqn (2.22), but rather the
quantum expression FQ � lnZQ, where the partition func-
tion is given by

ZQfxg � Sp exp
�ÿbbHV�a�

�
: �2:32�

2.4 Fluctuations and correlation functions
Along with its mean value (2.23), any random dynamic
quantity XV�G; fag� is also characterized by its deviation
from this mean value called fluctuation:

DX�G; fxg� � XV�G; a� ÿ Xfxg ; �2:33�

and by virtue of the linearity of averaging operation in Eqn
(2.23), we obviously have

DX�G; fxg� � 0 : �2:34�

Because of this, an adequate measure of fluctuations is
only given by the fxg-dependent bilinear correlation functions
of the form

DXDY �
�
DX�G; fxg�DY�G; fxg� rG�G; fxg� dG ; �2:35�

where YV�G; a� in the general case is an arbitrary dynamic
quantity. In particular, if Y � X, then the measure of
fluctuations is the autocorrelation function or the absolute
variance

�DX�2 � ÿDX�G; fxg��2 � X 2
V�G; a� ÿ X

2fxg : �2:36�

Obviously, both the absolute variance (2.36) and the relative
variance x2X satisfy the condition of thermodynamic stability:

�DX�2 5 0 ; x2X � �DX�2=X
2
5 0 : �2:37�

Of particular interest is the case when Y in formula (2.35)
is substituted by the generalized quantityDx from Eqn (2.26).
In this case the combined Gibbs lemma holds, which according
to Ref. [2] (see also Ref. [31]) can be obtained by differentiat-
ing the mean value (2.23) with respect to any variable x from
the set fxg. Then we have

qX
qx
�
�
dG
�
qXV�G; a�

qx
rG�G; fxg�

� XV�G; a� qr
G�G; fxg�
qx

�
� qX

qx
�
�
dGrG�G; fxg�XV�G; a�DDx�G; fxg�: �2:38�

Here we have used the fact that, by virtue of relation (2.27)
and definition (2.33), the derivative of the function rG from
Eqn (2.25) can be written in a more convenient form

qrG�G; fxg�
qx

� rG�G; fxg�DDx�G; fxg� :

Taking into account definition (2.33) and the property (2.34)
for DDx, it is easy to find the final expression for the
correlation function (2.35) with Y � Dx:

DXDDx � w�X; x� � c�X; x� ; �2:39�

where, by definition 17, one has

w�X;x� � qX
qx

; c�X;x� � ÿ qX
qx

; �2:40�

and for any given X the quantities (2.40) have three
components each.

The physical meaning of quantities w and c is sufficiently
clear. The quantities w are the generalized thermodynamic
susceptibilities that define the so-called static response, which
is the change of the mean valuesX under very slow variations
of the external parameter x (field a, volumeV, or temperature
T � 1=kBb). The values of c are the mean values of the
`dynamic' susceptibilities (or, as Gibbs called them, mechan-
ical `elasticities' [2]). It is obvious that in the general case for
arbitrary X the quantities of both types are not thermody-
namic averages Ð that is, they are not expressible in terms of
the function F and its derivatives with respect to x.

If we confine our treatment to the analysis of correlation
functions only for the three-component dynamic quantityDx,
then in formula (2.39) we must set DX � DDx 0 . Then, setting
in the general case x 0 6� x, we find

DDx 0DDx � w�Dx 0 ;x� � c�Dx 0 ; x� : �2:41�

It is obvious that the matrix of correlation functions (2.41)
consists of nine components. Using definition (2.40) and
considering expression (2.27) for Dx 0 , we arrive at

w�Dx 0 ; x� � qDx 0

qx
� q2F

qx qx 0
; �2:42�

whence it follows that all nine quantities in the last formula
are thermodynamic averages.

Accordingly, using definition (2.40) and considering
expression (2.26) for Dx 0 , we get

c�Dx 0 ;x� � ÿ qDx 0

qx
� q2

qx qx 0
�
bHV�G; a�� : �2:43�

It is easy to verify that out of nine quantities in relationship
(2.43) five are zero, three are thermodynamic averages, and
only one (at x � x 0 � V) which defines just the PFs is a
nonthermodynamic average Ð that is, the subject of the
Gibbs problem.

Indeed, let us consider in greater detail the `diagonal' case
x0 � x in expression (2.41), which corresponds to the
calculation of the variance �DDx�2, and set x equal sequen-
tially to a, b, and V. At x � a, according to Eqns (2.43) and
(2.28), we obtain

c�Da; a� � ÿ qDa

qa
� ÿb qA

qa
� 0 : �2:44�

Here we have used the property (2.4) of linearity of the
Hamiltonian function H with respect to the external field a,
so that for the variance of the generalized force we have

�DA�2 � 1

b
qA
qa
� 1

b2
q2F
qa2

: �2:45�

17 When the derivative is taken with respect to any variable x, all other

variables from the set fxg are assumed fixed.
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Similarly, with x � b, according to Eqns (2.43) and (2.28),
we get

c�Db ;b� � ÿ qDb

qb
� qH

qb
� 0 : �2:46�

Since the Hamiltonian function H, like any other dynamic
quantity, does not depend on b, for the energy variance we
find

�DH�2 � ÿ qH
qb
� 1

kBb
2
CV; a � q2F

qb2
; �2:47�

where CV; a � qH=qT is the heat capacity at constant volume
and fixed external field 18. Observe that in the cases (2.45) and
(2.47) the condition of stability (2.37) is satisfied when the
corresponding thermodynamic susceptibilities w�Da; a� and
w�Db; b� are positive.

The most complicated situation arises at x � V, since the
quantity

c�DV;V� � ÿ qDV

qV
� ÿb qP

qV
� b

q2H
qV 2

�2:48�

in the general case is nonzero owing to the property (2.11) of
nonlinearity ofHwith respect toV. Accordingly, the pressure
dispersion in the Gibbs approach is written as

�DP�2
G

� 1

b

�
w�P;V� � c�P;V�� : �2:49�

Here we have taken into account that

w�DV;V� � bw�P;V� ; c�DV;V� � bc�P;V� ; �2:50�

and

w�P;V� � w�P�T � qP
qV
� 1

b
q2F
qV 2

�2:51�

is the conventional thermodynamic susceptibility (in this case,
the isothermal compressibility), while

c�P;V� � ÿ qP
qV
� q2H

qV 2
�2:52�

is the nonthermodynamic average of the `dynamic elasticity'.
Thus, the relations (2.49), (2.51) and (2.52) reconstruct the
formula (1.2), i.e. one of the seminal formulas of this paper.

Comparing the expressions (2.45), (2.47) and (2.49), it is
easy to verify that the pressure dispersion (2.49) is much
different from the variances of generalized force (2.45) or
energy (2.47). First of all, to ensure the thermodynamic
stability of the macrosystem, the thermodynamic susceptibil-
ities in the cases (2.45) and (2.47) are positive, whereas the
quantity w�P�T in formula (2.49) is always negative. Secondly,
the expressions (2.45) and (2.47) do not contain the non-
thermodynamic term, whereas in formula (2.49) this term is
nonzero. What is more, in order to satisfy condition (2.37) in
this case it is necessary that the quantity c�P;V� � C be
positive and greater (in absolute value) than w�P;V� � w�P�T ,
which is equivalent to condition (1.5).

3. Equilibrium pressure fluctuations
in the Gibbs approach

As follows from the results of Section 2 [in particular, from
expression (2.49)], calculation of equilibrium PFs requires
knowing the quantities w � qP=qV and C � ÿqP=qV. Since,
according to Eqns (2.30) and (2.51), the quantities P and w are
thermodynamic averages, the problem reduces to finding the
explicit form (with subsequent averaging) of DEOS-II, as
defined by Eqn (2.16). Observe that the calculations using
formulas (2.30) and (2.51) do not require knowingDEOS-I as
defined by Eqn (2.15); however, the derivation of the latter is
nevertheless of interest, especially for nonidealmacrosystems.

For the particular case of an ideal gas it turns out that the
quasi-dynamic quantity eP�G� (and, similarly, the compressi-
bility eC�G�) is no longer independent at the dynamic level and
is a linear function of the energyH�G� (which, as a matter of
fact, has been known to D Bernoulli). This observation
immediately brings us to a simple thermal TDEOS which is
directly proportional to the caloric TDEOS [see Eqn (3.22)].
The circumstance that is especially interesting for us is that
the problem of calculating pressure fluctuations reduces
thereby to the calculation of energy fluctuations 19. The
latter, according to formula (2.47), is much simpler because
it does not involve nonthermodynamic averages.

Thus, in the case of an ideal gas the Gibbs problem has an
additional solution apart from the direct one. Of course, both
methods of calculating PFs, as will be shown below, lead to
the same results. It is important that all the postulates
formulated above equally apply (see Section 3.2) to both
classical and quantum descriptions of an ideal gas.

In the more general case of a nonideal macrosystem, the
DEOS for pressure and compressibility can also be developed
for both classical and quantum descriptions, but the methods
of their derivation differ essentially. The fact is that the
boundary conditions stemming from the existence of walls
and being of major interest for the problem considered have
to be taken into account in a principally different manner. In
the quantum or even quasi-classical descriptions, the micro-
particles Ð by virtue of their wave properties Ð `feel' the
global properties of the wall potential (2.12). This leads to the
dependence of the eigenfunctions and eigenvalues of the
Hamiltonian of the system on the volume V. Differentiating
these with respect to V, one may then apply the Hellmann ±
Feynman theorem (Section 3.2) to obtain the quantum
DEOS.

In the purely classical case, where the wave properties are
completely ignored, the particles only `feel' the local proper-
ties of the potential at the walls (2.12). In other words, the
particles are only engaged in the contact interaction with the
walls, and this interaction only shows itself in straightforward
collisions 20. In so doing, the boundary conditions and the
dependence onV are only involved in the limits of integration
for the statistical integral (2.21). The dependence on the
volume V of the quasi-dynamic quantities can only be found
in explicit form by applying the canonical scale transforma-
tion to variables of the phase space. Then one can apply the
Bogolyubov ±Zubarev theorem (Section 3.1) to developing

18 Hereinafter we consider the simplest case of a � 0, and explicitly

indicate the remaining arguments V and T from the set fxg.

19 This result confirms MuÈ nster's hypothesis [8].
20 Of course, within the statistical Gibbs approach, by contrast to the

purely mechanical approach of Bernoulli, there is no need to consider

explicitly the details of this interaction. Its role (like the role of collisions

between the particles) reduces to the system thermalization Ð that is, to

the establishment of an equilibrium distribution of the form (2.17).
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the classical DEOS Ð that is, explicitly calculating the right-
hand sides in relations (2.15) and (2.16).

The applicability of the results obtained in this way is
essentially different: in the classical case the range of
applicability is much broader than in the quantum case.
Indeed, the classical DEOS can be obtained for a macro-
system described by the arbitrary (including also nonadditive
with respect to p and q) Hamiltonian function H�p; q�Ð its
differentiability with respect to p and q will suffice for this
purpose. A similar degree of generality in the quantum case
would imply finding the energy spectrum for themacrosystem
with an arbitrary Hamiltonian bH�p̂; q̂�, which in the general
form is hardly feasible.

3.1 DEOS in the classical description.
Generalization of the Bogolyubov ±Zubarev theorem
The derivation ofDEOS-I for the pressure as a quasi-dynamic
quantity (2.15) makes up the content of the Bogolyubov ±
Zubarev theorem, first applied in Ref. [10] and further
developed in Ref. [11]. Building on the proof evolved in Refs
[10, 11] (see Section 7), we proposed a generalization of this
theorem Ð the development of DEOS-II for the compressi-
bility as a quasi-dynamic quantity (2.16), not found in the
scientific literature before. It should be observed that the
literature also has no references to the explicit use of the idea
of Bogolyubov's method of quasi-averages [9] in connection
with the proof of the Bogolyubov ±Zubarev theorem.

The Bogolyubov ±Zubarev theorem and method are
applied to the system of interacting microparticles described
by the Hamiltonian function H�0��q; p� of a sufficiently
general form [the superscript `0' has the meaning of e � 0 in
the context of formula (2.13)]. The main conclusion of the
Bogolyubov ±Zubarev theorem is that the limit (2.15) exists
and is equal to

eP �0�V �G� � eP �0�V �p; q� � ÿ
1

f V

�
qH�0��p=l; lq�

ql

����
l�1

�
: �3:1�

This expression represents DEOS-I for the system under
consideration, whose explicit form depends on the form of
the functionH�0��p; q�.

We used the samemethod to demonstrate (see paragraphs
3, 4 in Section 7) that the limit (2.16) also exists and is equal toeC�0�V �G� � eC�0�V �p; q�

� 1

V
eP �0�V �p; q� �

1

� f V�2
�
qH�0��p=l; lq�

ql

����
l�1

� q2H�0��p=l; lq�
ql2

����
l�1

�
: �3:2�

This expression represents DEOS-II for the same system; its
explicit form is also determined by the form of the Hamilto-
nian functionH�0��p; q�. It is important that the quantity (3.2)
required for calculating the pressure fluctuations cannot be
obtained directly from formula (3.1) by performing differ-
entiation with respect to the volume V.

The proof of relationships (3.1) and (3.2) is based on the
functionals

Z �e�V �
�
dG exp

�ÿbH�e�V �G�
�
; �3:3�

Z�0��V� �
�
:::V:::

dG exp
�ÿbH�0��G�� : �3:4�

Expression (3.3) involves H�e�V �G� defined in Eqn (2.13), and
the domain of integration (2.1) with respect to dG has no
constraints; hence formula (3.3) displays an improper integral
and admits differentiation with respect to the parameter V.
The integral (3.4) involves H�0��G� from Eqn (2.13), but its
domain of integration f:::V:::g with respect to the coordinate
part of fGg has restrictions of the form (2.5). Accordingly, the
differentiation with respect to V in formula (3.4) reduces to
the differentiation of the integral with respect to its upper
limit.

The details of the derivation of relations (3.1) and (3.2)
can be found in the Appendix (Section 7); here we only mark
the main points of the procedure. First, we proceed from an
almost evident equality

lim
e!�0

Z �e�V � Z�0��V� ; �3:5�

it suffices to take into account that the integrand in formula
(3.3) can be represented as

exp
�ÿbH�e�V �G�� � exp

�ÿbH�0�V �G�
�
D�e�V �q� ; �3:6�

where by definition

D�e�V �q� � exp
�ÿbeUV�q�

� �
� 1; for all fq�a�i g 2 fqg�I�,

0; for any fq�a�i g 2 fqg�II� :

(
�3:7�

Indeed, with due account for Eqn (2.12), the quantity (3.7)
with arbitrary e > 0 acts as the operator that `projects' the
entire configuration space fqg onto the internal region fqg�I�
of the box of volumeV, and `cuts off' its external region fqg�II�
(the definitions of these regions were given before Eqn (2.5)).

Performing differentiation of Eqns (3.3) and (3.4) with
respect to V, it is easy to verify that the equalities hold good
(n � 1; 2):

lim
e!�0

qnZ �e�V

qVn
� qnZ �0��V�

qVn
: �3:8�

As demonstrated in Section 7, these equalities actually
contain expressions (3.1) and (3.2) at n � 1; 2, respectively.
Indeed, the left-hand sides of equalities (3.8) under the sign of
integration

�
dG exp ÿbH�0��G�� �

::: contain definitions of the
quantities eP �0�V

�G� and eC �0�V
�G� [the left-hand sides of

relations (3.1) and (3.2)]. The right-hand sides of Eqn (3.8)
lead correspondingly to the right-hand sides of Eqns (3.1) and
(3.2).

The efficient method proposed in Refs [10, 11] for
calculating the right-hand sides in formula (3.8) consists in
the following. The canonical scale transformation is applied
to the variables p and q (momenta and coordinates of the
translational motion of particles) that does not alter the
volume element of the phase space (2.19):

p! p0 � lp ; q! q0 � lÿ1q ; dG 0 � dG ; �3:9a�

with

H�0��p; q� � H�0��p0=l; lq0� : �3:9b�

Here, the parameter lmay assume any nonzero real value. As
a result, the differentiation of Z�0��V� from the integral (3.4)
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with respect to the upper limit V is `switched over' to the
differentiation of H�0��p=l; lq� with respect to the parameter
l (see paragraphs 2, 4 in Section 7).

Observe once again that in the entire treatment of the
quasi-dynamic quantities Ð the pressure and the compressi-
bility Ð the wall potential eUV�q� plays a necessary but
auxiliary role, justifying the prefix `quasi'. As a matter of
fact, after completion of the action as the projection operator
according to Eqn (3.7), and transition to the limit e!�0 in
equalities (3.8), this potential is completely removed from
subsequent calculations 21. As a result, DEOS (3.1) and (3.2)
are fully defined by the form of the Hamiltonian function
H�p; q� of the original (unbounded) macrosystem.

For a nonideal macrosystem of a sufficiently general
form, the Hamiltonian function H�p; q� can be represented
as a sum of two terms: the kinetic energy H�p�, and the
potential energy H�q�. As a rule, H�p� and H�q� are additive
functions:

H�p� �
XN
i�1
H�pi�; H�q� � 1

2

XN
i6�j
H�qi; qj� ; �3:10�

that is, the kinetic energy appears as the sum of one-particle
terms, and the potential energy is the sum of two-particle
interactions.

In many physically essential cases the above two energies
are homogeneous functions of their respective arguments with
the exponents k and l, respectively, so that

H�lÿ1p� � lÿkH�p�; H�lq� � llH�q� : �3:11�
In particular, ifH�p� andH�q� are power functions, then the
homogeneity indices k and l coincide with the corresponding
power exponents 22.

For a highly general case (3.11), DEOS-I and DEOS-II
from (3.1) and (3.2) become

PV�p; q� � 1

fV

�
kH�p� ÿ lH�q�� ; �3:12�

CV�p; q�� 1

V
PV�p; q� � 1

� f V�2
�
k2H�p� � l 2H�q��: �3:13�

A useful observation is that the quantity lH�q� in Eqn
(3.12) has the meaning of the Clausius force virial

ÿlH�q� � qF�q�; F�q� � ÿ qH�q�
qq

:

Averaging Eqn (3.12) over the canonical ensemble, we come
to TDEOS-I, which has the meaning of the classical virial
theorem 23:

P�V;T� � k

fV
H�p� ÿ l

f V
H�q� : �3:14�

Averaging formula (3.13), we correspondingly get
TDEOS-II:

C�V;T�� 1

V
P�V;T� � 1

� f V�2
�
k2H�p� � l 2H�q� �; �3:15�

which gives a constructive solution of the Gibbs problem
formulated in Section 1.2. This means that the nonthermody-
namic quantity C is expressed as a linear combination of the
averages: the mean pressure P (a thermodynamic quantity),
and the mean energies Ð the mean kinetic energy H�p� and
the mean potential energy H�q�, separately. (Recall that it is
only their sum, the total internal energy H�p; q�, which is a
thermodynamic average.)

Differentiating DEOS-I (3.14) with respect to the volume
V (at T � const) and noting that qH�p�=qV � 0, for iso-
thermal compressibility we find

w�P�T � ÿ 1

V
P�V;T� ÿ l

f V

q
qV
H�q� : �3:16�

Substituting Eqns (3.16) and (3.15) into Eqn (2.49) for the
PFs, we finally get

b �DP�2 � ÿ l

f V

q
qV
H�q� � 1

� f V�2
�
k2H�p� � l2H�q� � :

�3:17�

For a comprehensive analysis of Eqn (3.17) one needs to
know the explicit form of the kinetic and potential energies
(or at least their indices of homogeneity), and the mean values
of these energies.

Ideal gas. In the simplest case, when the potential energy
of interaction between the particles is absent, and the
macrosystem is an ideal gas, expressions (3.12) and (3.13)
for DEOS-I and DEOS-II are simplified:

PV�p� � k

fV
H�p�; H�q� � 0; H�p� � H�p; q� ; �3:18�

CV�p� � 1

V
PV�p� �

�
k

fV

�2

H�p� � 1

V

�
1� k

f

�
PV�p� :
�3:19�

Accordingly, expressions (3.14) and (3.15) for TDEOS-I and
TDEOS-II become

P�V;T�� k

fV
H�p�; w�P�T �

qP�V;T�
qV

� ÿP�V;T�
V

; �3:20�

C�V;T� � 1

V

�
1� k

f

�
P�V;T� � k

fV 2

�
1� k

f

�
H�p� :
�3:21�

Expression (3.17) for the PFs in the case of an ideal gas goes
over into

b �DP�2 � kP

fV
� P

2

H�p� ;
�
x2P
�G � �DP�2

P
2
� 1

b
1

H�p� :

�3:22�

The mean values that enter Eqns (3.20) ± (3.22) are calculated
in Section 3.3.

21 To simplify the notation, we further drop the `�' sign and superscript `0'
in the quantities (3.1) and (3.2), and also setH�0��p; q� � H�p; q�.
22 For example, the values k � 1 and k � 2 correspond to a gas of

ultrarelativistic or nonrelativistic particles, whereas l � ÿ1 and l � 2

correspond to such interaction potentials as Coulomb and gravitational

(l � ÿ1) or quasi-elastic (l � 2) ones. We do not discuss here the problem

of convergence of the integral (2.21) for these interactions.
23 This theorem is usually established (see, e.g. Ref. [21]) by averaging the

time-domain equations of motion for the dynamic variables Ð the

momenta and coordinates of the particles in the system.
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Worthy of notice are the essential features important
specifically for the case of an ideal gas. First of all, in this
case the nonthermodynamic average CV�p� becomes a
thermodynamic average, because it is expressed in terms of
the mean pressure PV�p� or the mean kinetic energy H�p�
(which in this event coincides with the total internal energy
H). Secondly, the presentation of DEOS-I in the form (3.18)
gives us another way of calculating PFs, independent of the
way outlined earlier in Eqn (2.49). Indeed, considering within
the framework of the Gibbs approach the quantitiesH and P
as random variables which are linked together, according to
Eqn (3.18), by a linear dependence, we get

�
x2P
�G � �x2H�G � �DH�2H2

: �3:23�

Here we have used the property of relative variances known
from the probability theory (see, for example, Ref. [38]):

x2aX � x2X ; a 6� 0 ; �3:24�

whereX is an arbitrary random quantity, and a is an arbitrary
nonzero constant number (in this case X � H, a � Vÿ1k=f ).
In this way, the calculation of PFs in the particular case of an
ideal gas is reduced to the calculation of energy fluctuations,
which gives an indirect solution of the Gibbs problem and
allows us (in this case only) to avoid its straightforward
solution.

3.2 DEOS in the quantum description.
Generalization of the Hellmann ±Feynman theorem
The procedure for development of DEOS and TDEOS in the
case of the quantum description is generally the same as that
in the classical case, save for the mathematical formalism.
First of all, it would be natural to retain the definitions of the
form (2.15) and (2.16) for the quantum counterparts of the
quantities eP �0�V �G� and eC �0�V �G�Ð that is, the quasi-operators
of pressure and compressibility, respectively:

bP �0�V � lim
e!0

bP �e�V � lim
e!0

�
ÿ q bH�e�V

qV

�
; �3:25�

bC �0�V � lim
e!0

bC �e�V � lim
e!0

�
ÿ q bP �e�V

qV

�
� lim

e!0

q2 bH�e�V

qV 2
; �3:26�

where the Hamiltonian bH�e�V is given by Eqn (2.14).
Obviously, the derivation of quantum DEOS [that is, the

explicit forms of the right-hand sides of Eqns (3.25) and
(3.26)], reduces to the calculation of the derivatives of the
Hamiltonian bH�e�V with respect to the implicit parameter
involved, the volume V. The definition of these quantities
constitutes the generalized Hellmann ±Feynman theorem
proved independently in Refs [12, 13] when analyzing
interactions in the molecules, and later [13] applied to the
derivation of the quantum DEOS-I in the form of Eqn (3.25).
As far as the quantum DEOS-II of the form (3.26) is
concerned, to the best of our knowledge its development
cannot be found in the scientific literature.

The Hellmann ±Feynman theorem in the general form is
formulated as follows (see, for example, Ref. [21]). Let bH, jni,
andEn be theHamiltonian, its eigenfunctions and eigenvalues
(n is the set of quantum numbers), which depend on some
parameter l (whichmay be external or internal with respect to

the system). The stationary SchroÈ dinger equation takes the
form

bH jni � Enjni ; �3:27�

and its total variation is

d bH jni � bH jdni � dEnjni � Enjdni : �3:28�

Multiplying Eqn (3.28) from the left by hnj, and accounting
for the normalization condition hnjni � 1, we find

hnjdbH jni � hnjbH jdni � dEn � Enhnjdni :

Now using the Hermitian property, bH� � bH, according to
which one has

hnjbH� � hnjbH � Enhnj ;
we get the linkage between variations of the Hamiltonian dbH
and variations of eigenvalues dEn:

hnjdbHjni � dEn : �3:29�

If these variations are caused by the change of a certain
parameter l, then Eqn (3.29) becomes a relation between the
first derivatives 24 of bH and En with respect to l:�

n

���� dbHdl
����n� � dEn

dl
; �3:30�

which completes the formulation of the Hellmann ±Feynman
theorem.

As a rule, the Hellmann ±Feynman theorem is applied
`from left to right', which corresponds to the situation when
the parameter l enters bH explicitly. This theorem, however,
can also be used `from right to left', which may be interpreted
as the definition of operator dbH=dl. Such a situation is
encountered when the dependence En�l� arises because of
the appropriate dependence jn�l�i, but through the boundary
conditions or other auxiliary conditions rather than through
the Hamiltonian bH 25.

It is this second situation that takes place in the case of
interest, when l � ÿV, and the initial equation (3.27) with the
Hamiltonian bH�e�V from formula (2.14) becomes

bH�e�V jni � �bH�0� � eUV� jni � bH�0� jniV � En�V� jniV :
�3:31�

Here, the term eUV�q� with any e > 0 acts as the operator of
projection from the entire space of states jni (the eigenfunc-
tions of bH�0� for a free system) onto the subspace of states
jniV, which satisfy the boundary condition of vanishing on the
surface of an f-dimensional box of volume V:

jniV � 0 ; q
�a�
i 2 fqg�II� ; �3:32�

where q
�a�
i is any of the f coordinates of any of N particles.

24 In spite of the intuitive `obviousness' of the result (3.29), it is by no

means trivial, because the variation of the Hamiltonian cH only involves

the eigenvalues En, whereas the eigenstates jni seem to be not involved

(actually, variations of jni are `swallowed' because cH is an Hermitian

operator).
25 Of course, the definition of operator dbH=dl obtained in this way is not

universal and is good only for the particular problem in question.
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Applying the procedure described above to the SchroÈ din-
ger equation (3.31), and using definition (3.25), for the quasi-
operator of pressure (or, to be more precise, its quantum-
mechanical mean value) we find the expression


n
�� bP �0�V

��n�
V
� ÿ qEn�V�

qV
; �3:33�

which acts as the quantumDEOS-I used inRef. [13]. It is clear
that the operator bP �0�V in Eqn (3.33) is only defined on the
subspace of states that satisfy condition (3.32).

To find the quasi-operator of compressibility (3.26), we
need to calculate the second variation of the SchroÈ dinger
equation (3.31). Varying equation (3.28), again using the
normalization condition and the Hermitian property, and
assuming that

dbH jdni � dEn jdni ;

by analogy with Eqn (3.29) we have

hnj d2 bH jni � d2En �3:34�
or, dividing equality (3.34) by �dl�2, obtain�

n

���� d2 bHdl2
����n� � d2En

dl2
: �3:35�

For our case of relation (3.31), we get the quantum
DEOS-II in the from



n
�� bC �0�V

��n�
V
� q2En�V�

qV 2
; �3:36�

which is not found in Refs [12, 13]. Of course, the explicit
forms of quantum DEOS (3.33) and (3.36) can only be found
in the `solvable' cases, when the dependence on the volume V
of the eigenvalues En�V� of the Hamiltonian bH�0� for the
eigenfunctions jniV is known.

Ideal gas. In the case of an ideal gas, the Hamiltonian bH�0�
contains only the term corresponding to the kinetic energy; it
is therefore additive and depends only on the operators of
microparticle momenta p̂

�a�
i � ÿi�h q=qq�a�i , where a � 1; :::; f,

and i � 1; :::;N. For the nonrelativistic case (k � 2, m is the
mass of microparticle) one obtains

bH�0� �XN
i�1
H�0�i ; bH�0�i � 1

2m

Xf
a�1
�p̂ �a�i �2 ; �3:37�

so that the problem of finding jni and En is a one-particle
problem. Then in SchroÈ dinger's q-representation we have

bH�0�i jniiV � Eni�V� jniiV ;

where

jniiV �
�
2

L

�f=2Yf
a�1

sin
2pn�a�i

L
q
�a�
i : �3:38�

Here, the numbers fn�a�i g run independently through all
positive integers, and L � V 1=f is the fixed edge length of an
f-dimensional cubic box of volume V. Obviously, function
(3.38) becomes zero when any of the coordinates q

�a�
i of any

particle i hits the surface of one of the walls of the box along
any of the a axes of the Cartesian coordinate system, when
q
�a�
i ��L=2.

Confining the consideration mainly to the nondegenerate
regime (T4T0), we may disregard the quantum identity of
microparticles 26, and represent the total wave function of the
system as a simple (not symmetrized or antisymmetrized)
product of functions of the type (3.38), and the eigenvalues as
the appropriate sums:

jniV �
YN
i�1
jniiV ; En�V� �

XN
i�1

Eni�V� ;

Eni � E1

Xf
a�1
�n�a�i �2 ; E1 � 1

2m

�
p�h

L

�2

: �3:39�

Here E1 has the meaning of the ground state energy (all
n
�a�
i � 1) in the case of one-dimensionalmotion of any particle
i along any coordinate a.

It is easy to see that, according to Eqn (3.39), the following
relation holds good:

En�V� / E1�V� / Vÿ2=f ; �3:40�

so that

qEn�V�
qV

/ qE1�V�
qV

/
�
ÿ 2

f

�
Vÿ�2=f�1� /

�
ÿ 2

f

�
1

V
Vÿ2=f :

�3:41�
Using Eqn (3.41), from formulas (3.39) we find

ÿ qEn�V�
qV

� 2

f

1

V
En�V�; q2En�V�

qV 2
�
�
2

f
� 1

�
1

V

qEn�V�
qV

:

�3:42�

Using definitions (3.33) and (3.36) and equations (3.42),
we finally get the quantum DEOS-I and DEOS-II:

bP �0�V � 2

fV
bH�0�; bC �0�V �

�
2

f
� 1

�
1

V
bP �0�V : �3:43�

It is easy to see that these equations are exact quantum
analogs (in the spirit of the correspondence principle) of the
classical DEOS (3.18) and (3.19). This means that all relations
for the mean values and fluctuations (3.20) ± (3.23), obtained
in the classical description, remain valid.

Observe that, according to Eqns (3.18) and (3.43), in the
case of an ideal gas there is a simple relationship between the
thermal (for P) and caloric (for H) TDEOS, in both the
classical and quantum descriptions:

P � 2

f

1

V
H : �3:44�

The last linkage retains its form over the entire range of values
of V and T: both well above the temperature T0�V� for which
it was obtained, and around or below this temperature (see,
for example, Refs [7, 21]). It is important that the expressions
for the quantities P and H as such exhibit a dramatic change
(for example, quantum exchange corrections appear in the
form of expansions in powers of T0=T; see Refs [7, 21, 26]).

26 The quantum exchange effects in the lowest order with respect to T0=T
are partially taken into account in Section 5.3.
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3.3 TDEOS and PFs for an ideal gas in the
nondegenerate regime. Solution of the Gibbs problem
Classical description. The derivation of classical TDEOS-I
and TDEOS-II [expressions (3.20) and (3.21), respectively] as
functions of temperature T and volume V obviously requires
knowing the mean values of pressure P or (only in the case of
an ideal gas) the mean energy H�p� � H. For this, it is
sufficient to calculate the statistical integral (2.21) and the
Massieu ± Planck function (2.22): its derivatives, according to
Eqns (2.30), (2.31) and (2.47), will define P,H, and �DH�2. In
the case of an ideal gas this will provide the possibility of
finding PFs by both methods described at the end of Section
3.1.

Confining ourselves to the case of k � 2 (an ideal gas of
nonrelativistic particles), for the Hamiltonian function we
have

H�p� �
XN
i�1

Xf
a�1

1

2m

ÿ
p
�a�
i

�2
: �3:45�

The additivity of H�p� leads to multiplicativity of the
statistical integral 27

ZC�b;V� �
�eZC�b;V�

�fN
: �3:46�

The statistical integral in Eqn (3.46) for each of the f
translational degrees of freedom for one particle may be
represented as a product of two terms:

eZC�b;V� � �2p�h�ÿ1eZp�b� eZq�V� � bÿ1=2V 1=fb ; �3:47�

where b � c=2p�h, and c � �2pm�1=2 are constants. Here we
have used the fact that for any values of i � 1; :::;N and
a � 1; :::; f, and with due account for the domains of
integration (2.5), the terms entering Eqn (3.47) are

eZp�b� �
�1
ÿ1

dp
�a�
i exp

�
ÿ b
�p�a�i �2
2m

�
� bÿ1=2c ;

eZq�V� �
�L=2
ÿL=2

dq
�a�
i � L � V 1=f :

The Massieu ± Planck function, which corresponds to the
classical description of the ideal gas, with due account for
formulas (3.46) and (3.47) (up to the constant N ln b which in
the present case can be considered insignificant) is given by

FC�b;V� � lnZC�b;V� � N

�
ÿ f

2
ln b� lnV

�
: �3:48�

The thermal TDEOS-I in this case constitutes theClapeyron ±
Mendeleev equation

P � 1

b
qF�b;V�

qV
� 1

b
N

V
� NkBT

V
: �3:49�

According to the last relationship, the isothermal compressi-
bility takes the from

w�P�T � qP
qV
� ÿNkBT

V2
� ÿP

V
; �3:50�

and the thermal pressure coefficient is

w�P�V � qP
qT
� NkB

V
� P

T
: �3:51�

Accordingly, for the thermal TDEOS-II we get

C �
�
2

f
� 1

�
P

V
� ÿ

�
2

f
� 1

�
w�P�T : �3:52�

The caloric TDEOS is written in the following way

H � ÿ qF�b;V�
qb

� N
f

2

1

b
� CVT ; �3:53�

where the heat capacity at constant volume is

CV � qH
qT
� N

f

2
kB �3:54�

and defines, according to Eqn (2.47), not only the mean
energy (3.53), but also its variance

�DH�2
G

� q2F�b;V�
qb2

� 1

kBb
2
CV � N

f

2

1

b2
: �3:55�

As far as the quantity �x2P�G is concerned (or PFs according
to Gibbs), it can be found by two independent methods as
shown at the end of Section 3.1:

(a) according to Eqn (3.22)�
x2P
�G � 1

b
1

H �
kB
CV
� 2

f

1

N
; �3:56�

(b) according to Eqn (3.23)

�
x2P
�G � �x2H�G � �DH�2H2

� kB
CV
� 2

f

1

N
: �3:57�

Needless to say that the results of calculation of PFs
according to Gibbs by both methods are the same.

Quantum description. In complete analogy with the
classical description, in this case we have to find the partition
function (statistical sum)

ZQ�b;V� �
X
n

exp
�ÿbEn�V�

�
;

where the energy eigenvalues En�V� are given by formulas
(3.39). Because En�V� is additive with respect to i and a, the
statistical sum ZQ�b;V� [just like ZC�b;V� from Eqn (3.46)]
can be represented multiplicatively in terms of the statistical
sum per degree of freedom:

eZQ�b;V� �
X1
n
�a�
i
�1

exp
�ÿbE1�V��n�a�i �2

�
: �3:58a�

The quantity (3.58a), unlike quantity (3.47), cannot be
represented as a product. In the limit of large values of L,
characteristic of the macrosystem, the spectrum (3.39)
becomes quasi-continuous, and the summation in formula
(3.58a) can be replaced by integration:

eZQ�b;V� �
�1
0

dn
�a�
i exp

�ÿbE1�V��n�a�i �2
�

�
���
p
p
2

�
bE1�V�

�ÿ1=2
;

27 To facilitate comparison with the results of Section 3.2, we drop the

factor 1=N ! which is necessary in the general case, since in the quantum

description the simple product of one-particle wave functions is used

without regard for the symmetry requirements.
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so that we finally get

eZQ�b;V� � bÿ1=2V 1=fb � eZC�b;V�;

FQ�b;V� � FC�b;V� : �3:58b�

Since the Massieu ± Planck function in the quantum descrip-
tion exactly coincides with its classical counterpart (3.48), all
relations (3.49) ± (3.57) characteristic of the classical descrip-
tion also remain valid for the quantumdescription (neglecting
the exchange effects).

To conclude this section, we observe that in the particular
case of an ideal gas the solution of the Gibbs problemÐ that
is, the expression for the nonthermodynamic quantity C
looks especially simple. Using the Mayer relation for this
case, CP � CV �NkB, the factor 2=f� 1 has the meaning of
the Poisson coefficient g � CP=CV, so that expression (3.52)
can be written as follows

C � ÿgw�P�T � ÿw�P�S ; g � CP

CV
� 2

f
� 1 > 1 : �3:59�

According to the initial definition (1.2) [see also Eqn (2.49)],
we have

�DP�2
G

� 1

b

�
w�P�T ÿ w�P�S

� � ÿ 1

b
�gÿ 1�w�P�T : �3:60�

Taking Eqn (1.7) into account we clearly see that

�DP�2
E

ÿ �DP�2
G

� ÿ 1

b
w�P�T > 0 : �3:61�

In this way, Einstein's problem as applied to the ideal gas
acquires a more concrete meaning. Indeed, substituting
relation (3.50) into Eqn (3.61) and taking equation (3.49)
into account, we get�

x2P
�E ÿ �x2P�G � 1

N
> 0 : �3:62�

Observe that the discussion of the physical meaning of
this simple relation is only possible on the basis of
comparison of the Gibbs and Einstein approaches as the
whole (see Section 4). Such a comparison is drawn in
Section 5.2.

4. Main elements of Einstein's approach
and its `genetic' linkage with the Gibbs approach

Let us now proceed to the more precise formulation and
analysis of Einstein's problem for PFs, which, in our opinion,
is deeper and more substantial than the Gibbs problem
considered earlier in Section 3. The analysis of Einstein's
problem paves the way towards a more comprehensive (and
probably more adequate to physical reality) description of
fluctuations of macroparameters that characterize stochastic
macroscopic objects in quasi-equilibrium states. Following
mainly Ref. [11] (see also Refs [20, 36]) we shall discuss the
conceptual basics of the Einstein statistical thermodynamics
[3], and especially its `genetic' linkage with the Gibbs
statistical mechanics [2], in somewhat greater detail than is
needed for solving the concrete problem of pressure fluctua-
tions.

4.1 Mean values and fluctuations of G-variables
in the generalized Gibbs ensemble
The starting point for the construction of Einstein's approach
[3], according to Ref. [11], may be the normalized classical
(not quantum) Gibbs distribution function.

For the generalized Gibbs ensemble, this function can be
written with the help of the so-called F-parametrization (the
particular case with F1 � b, P1�G� � H�G� was considered in
Section 2):

rG
ÿ
G; fFig

� � exp
h
ÿFfFig ÿ

X
k

FkPk�G�
i
: �4:1�

Physically, the generalized Gibbs ensemble corresponds to a
given type of the macrosystem thermodynamic contact with
the environment; the quantities Fk include, for example, the
inverse temperature b, as well as the pressure P and the
chemical potential m (in units of b).

The distribution function (4.1) can be used for calculating
all the mean values of the extensive physical quantities Pk�G�
and correlators Pk�G�Pl�G�, which characterize the Gibbs
approach, as functions of the intensive physical quantities
fFig. According to Gibbs [2] (see also Ref. [11]), it is also
useful to introduce the phase index

ZG
ÿ
G; fFig

� � ÿ ln rG
ÿ
G; fFig

� � FfFig �
X
k

FkPk�G� ;

�4:2�

which, like rG�G; fFig�, presents a quantity of `mixed
nature'.

Similar to the dynamic variables, the quantities rG and
ZG are defined over the phase space G; at the same time, like
the thermodynamic quantities they depend on parameters
fFig. It is important that the mean value of the phase index
coincides (up to a coefficient kB) with the thermodynamic
entropy:

ZG�G; fFig� � 1

kB
SfPi g � FfFig �

X
k

FkPk : �4:3�

The status of quantities Pk�G� and Fk in Eqns (4.1) and
(4.2) is essentially different 28. The quantities Pk�G� are
random dynamic variables defined over the phase space fGg
of the macrosystem under consideration (they usually include
the extensive quantities like energyH, volumeV, and number
of particles N).

By contrast, the quantities Fk are neither dynamic nor
random: they do not depend on the argumentG, and uniquely
characterize the Gibbs ensemble as a whole. The quantities
Fk, like the ensemble averages Pk�G�, are essentially thermo-
dynamic rather than dynamic variables. In the Gibbs
approach, the quantities Fk have strictly defined values (for
given physical conditions) that are the same for the object and
the thermostat.

Simplifying a little, we can say that the main idea of
Einstein's approach consists in `equalizing' the status of
quantities Pk�G� and Fk, which characterize the Gibbs
approach, and giving both of them the meaning of random

28 As will be shown below, fFig are the analog of the quantities fxg, and
fPig are the analog of the quantities fDxg from Section 2.3 (except for the

conjugate volume ± pressure pair, which cannot be introduced in the

isochoric situation in the form (4.1); see Section 2.2).
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thermodynamic variables. To do this, one has to `detach' the
quantities Pk�G� from the phase space fGg, leaving them the
`privilege' to fluctuate about Pk, and also `allowing' the
quantities Fk (which previously had been uniquely related to
Pk) to fluctuate. The realization of this idea is described in
Section 4.2; in this section we consider fluctuations and
correlations within the framework of the Gibbs approach
for an ensemble more general than the canonical one (in
Sections 2.3 and 2.4).

The quantities Fk and Pk are thermodynamically con-
jugated because, as follows from Eqn (4.1), the generating
function for Pk is the Massieu ± Planck function FfFig.
Indeed, one obtains

Pk � ÿ qFfFig
qFk

; Pk �PkfFig ; �4:4�

so that Pk, similarly to Dx from Section 2.3, are thermo-
dynamic averages.

Accordingly, for Fk the generating function is the entropy
SfPig, so that

Fk � 1

kB

qSfPig
qPk

; Fk � FkfPig : �4:5�

Here we have taken into account that, by virtue of definition
(4.3), the quantities SfPig and FfFig are linked through the
Legendre transformation. Relation (4.5) together with (4.3)
allows going over in the Gibbs distribution function from F-
parametrization (4.1) to P-parametrization

rG�G; fPig� � exp

�
ÿ 1

kB
SfPig ÿ

X
k

FkfPigDPG
k �G�

�
:

�4:6�
Function (4.6), like that in Eqn (4.1), remains normalized 29,
but now it is more convenient for the subsequent transition
from theGibbs approach to the Einstein approach. In writing
Eqn (4.6) we have used the definition of linear deviations
(fluctuations) of dynamic quantities Pk�G� from their mean
valuesPk:

DPG
k �G� � Pk�G� ÿPk : �4:7�

Generally speaking, fluctuations (4.7) are nonzero; the
only exception is the Boltzmann case or the microcanonical
ensemble with respect to all variables Pk, when all quantities
Pk�G� (as a rule, the integrals of motion of the system) are
defined exactly rather than on the average:

DPB
k �G� � 0; PB

k �G� � Pk : �4:8�

In this case the Gibbs distribution function (4.6) becomes a
constant and coincides with the Boltzmann distribution
function rBfPig:

rGfPig � rBfPig � exp

�
ÿ 1

kB
SfPig

�
: �4:9�

It is easy to see that the last formula is an alternative
presentation of the known Boltzmann formula

S � kB lnW; W � 1

r
�4:10�

for an isolated macrosystem in the state of thermodynamic
equilibrium, where W is the statistical weight, and r is the
probability of this state.

In the general case, when the fluctuations (4.7) are
nonzero, we have an obvious equality

DPG
k �G� � 0 ; �4:11�

so that the ensemble-average measure of fluctuations of
dynamic quantities Pk�G� is the pair correlation function
(which in the particular case of k � l coincides with the
absolute variance):

DPG
k �G�DPG

l �G� � DPk�G�DPl�G�G � jkl : �4:12�

It is easy to obtain formula (4.12) by differentiating expres-
sion (4.4) for the mean values. Herejkl � jlk is a symmetrical
positive-definite (which follows from the condition of
absolute minimum for FfFig) matrix of generalized suscept-
ibilities:

jkl � ÿ
qPk

qFl
� ÿ qPl

qFk
� q2FfFig

qFl qFk
: �4:13�

Formula (4.12) is a particular case of expression (2.41)
when w 6� 0, c � 0, since the variables fPi�G�g by definition
do not depend on fFig, and fFig themselves by assumption
are independent of one another 30. Obviously, the relations
for Fk similar to formula (4.12) in the Gibbs approach would
have been meaningless from the outset, because by definition

DFG
k � 0 ; �4:14�

and, unlike Pk�G�, the quantities Fk cannot fluctuate 31.
In this connection it is worthwhile to note the following

important circumstance. As follows from relations (4.7) and
(4.12), the concept of a random quantity (and its fluctuation)
in the Gibbs approach is only applicable to the dynamic
quantities Pk�G� that depend on the argument G. The concept
of fluctuation must not be confused with another entity
employed in the Gibbs approach Ð the quasi-static (but not
random!) small change or increment of the mean valuesPk

(and hence Fk) in the course of equilibrium processes. To
avoid confusion 32, we denote these increments as dPk and
dFk. Obviously, by virtue of Eqns (4.4) and (4.5) they are
linked by the linear relations

dP
G

k � ÿ
X
l

jkl dF
G
l ; dFG

k �
X
l

skl dP
G

l : �4:15�

29 It will be useful to note that, from the standpoint of variation properties,

Eqn (4.1) corresponds to the unconditional minimum of function F,
whereas Eqn (4.6) corresponds to the conditional minimum of function S;

the linkage between these functions is given by Eqn (4.3).

30 Violation of this assumption considerably complicates the formalism

presented above (see Section 5).
31 In cases when it is the statistical behavior of Fk that is of interest, one

must go over to the conjugate Gibbs ensemble, `exchanging the roles' of

quantities Fk and Pk.
32 In the scientific literature, as a rule, no distinction is made in the

notation for increments dFk and fluctuations DFk, which may sometimes

lead to misunderstanding.
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The matrix of inverse generalized susceptibilities

skl � qFk

qPl

� qFl

qPk

� 1

kB

q2SfPig
qPl qPk

; �4:16�

like the matrix jkl from Eqn (4.13), is symmetrical: skl � slk;
but, unlike jkl, it is negative-definite (this follows from the
requirement of conditional maximum for SfPig at the state of
thermodynamic equilibrium).

It is easy to check that the matrices �ÿjkl� � ÿĵ and
slk � ŝ are mutually inverse:

�ÿĵ� ŝ � 1 ; ÿŝ � ĵÿ1 : �4:17�

To prove this, we use the obvious condition of `orthogonality'

qPk

qPl

� dkl �4:18�

and take advantage of the fact that the left-hand part of Eqn
(4.18) with due account for Eqns (4.4) and (4.5) can be written
as

qPk

qPl

�
X
m

qPk

qFm

qFm

qPl

�
X
m

�ÿjkm� sml : �4:19�

Comparison of the right-hand sides of Eqns (4.19) and (4.18)
proves relationships (4.17).

4.2 `Stochastization' of thermodynamic parameters:
from Gibbs to Einstein
So we see that the Gibbs approach [2] or statistical mechanics
adequately describes thermodynamically equilibrium states of
macrosystems, characterized by fixed values of thermodyn-
amic quantities fPkg (or, which is the same, fFkg). According
to Eqn (4.7), only the dynamic variables fPk�G�g can
fluctuate in such states, while fluctuations of fPkg and fFkg
in the framework of the Gibbs approach are not possible in
principle.

The description of quasi-equilibrium states of macrosys-
tems, characterized by random deviations or fluctuations of
fPkg and fFkg from their equilibrium values, is realized in
Einstein's approach [3] known as statistical thermodynamics.
As demonstrated by Planck [6], Einstein's approach paves the
way for an extension of the very concept of thermal
equilibrium, and hence a generalization of the zero principle
of thermodynamics. Planck's formulation differs from the
conventional approach in that the intensive parameters of
the macrosystem are allowed to fluctuate, while the same
parameters of the thermostat are fixed 33.

In this way, the random variable in Einstein's approach is
not the dynamic but rather the thermodynamic quantity Pk,
which fluctuates in quasi-equilibrium states. Formally this
corresponds to the removal of the microscopic phase
argument G in definition (4.7) of the fluctuation according
to Gibbs, so that the fluctuation of macroscopic quantities
Pk, or E-variables, according to Einstein is defined as

DPE
k � Pk ÿ Pk : �4:20�

With due account for expressions (4.4) and (4.5) it is
evident that in these states the thermodynamic quantities Fk

conjugated with Pk also fluctuate. Then the `genetic' linkage
with the Gibbs approach is revealed by the fact that
fluctuations of E-variables DFE

k and DPE
k according to

Einstein [3] are linked by the same equilibrium relations
(4.15) that hold for the increments dFG

k and dP
G

k according
to Gibbs:

DFE
k �

X
l

skl DPE
l ; DPE

k � ÿ
X
l

jkl DF
E
l : �4:21�

Moreover, all equilibrium values of Pk and Fk used in
Einstein's approach and the matrices of thermodynamic
derivatives jkl and skl are either `borrowed' from the Gibbs
approach or introduced empirically. Despite the existence of
such `heredity', however, relations (4.20) and (4.21) symbolize
the conceptual break between the Gibbs and Einstein
approaches: one might figuratively say that according to
Einstein the macrosystem is more stochastic than according
to Gibbs (which is more in line with physical reality).

To wit, the Gibbs approach assumes that a macroscopic
measurement performed on a macroscopic system at the state
of thermal equilibrium yields a well-determined result for Pk

(and hence for Fk) Ð that is, fluctuations of these quantities
do not exist. By contrast, Einstein's approach allows for some
spread in the measured values of Pk, and accordingly in the
thermodynamically conjugated values of Fk. This spread, as
will be shown below, is characterized by the correlation
functions (k 6� l) and variances (k � l) [see formulas (4.37)
and (4.38)].

In this way, differently from the Gibbs approach, the
approach of Einstein is mainly concerned not with the mean
(equilibrium) values ofPk and the corresponding values ofFk,
but rather with the quasi-equilibrium fluctuations of these
quantities (4.21). Accordingly, Einstein's approach is called
the quasi-thermodynamic fluctuation theory, and the appro-
priate distribution function rEfDPE

i g can formally be con-
structed from distribution functions rG�G; fPig� and rGfPig
[see Eqns (4.6) and (4.9)] in the following way

rEfDPE
i g �

rG�G; fPig�
rGfPig

����
Pi�G�!Pi

� exp

�
1

kB
DSfDPE

i g ÿ
X
k

FG
k DPE

k

�
: �4:22�

Here we have accounted for definition (4.20) and introduced
the notation

DSfDPE
i g � SfPig ÿ SfPig �4:23�

for the deviation of entropy from its conditional maximum
value SfPig, which characterizes the equilibrium state of the
macrosystem in thermal contact with the thermostat.

By analogy with formula (4.2), it would be useful to
consider the phase index that describes Einstein's quasi-
equilibrium distribution function:

ZEfDPE
i g � ÿ ln rEfDPE

i g �
1

kBT
DRfDPE

i g ; �4:24�

where

R � 1

b

�X
k

FG
k PE

k ÿ
1

kB
S

�
; DR5 0 : �4:25�

33 This issue is discussed in greater detail at the end of this section in

connection with the generalized Boltzmann principle (see also the discuss-

ion in Refs [4, 5]).
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By contrast to Eqn (4.2), the quantity (4.24) is purely
thermodynamic rather than mixed, and has a relatively
straightforward physical meaning.

According to Ref. [7], the quantity DRfDPE
i g is the

smallest positive amount of work (see also Refs [14 ± 17])
that must be done by any external source to change the
macrosystem under consideration from the equilibrium state
with fDPE

i g � 0; DS � 0 to the quasi-equilibrium state
(sometimes referred to as weakly nonequilibrium or the
fluctuative state) with fDPE

i g 6� 0; DS 6� 0. In the course of
this process the parameters of the thermostat are kept
constant (FG

k � const), while the parameters of the macro-
system, generally speaking, fluctuate in accordance with
relations (4.21), so that fDFE

k g 6� 0; FE
k 6� FG

k . As indicated
before, such a `dissimilarity' between the macrosystem and
thermostat [see formulas (4.30) and (4.31)] seems to open the
possibility for a more deep insight into the nature of thermal
equilibrium and the zero principle of thermodynamics.

In the special case when the intensive thermodynamic
parameters of the system and the thermostat are the same
�FE

k � FG
k �, in the right-hand side of Eqn (4.25) we may use

expression (4.3). Then the quantity

R � ÿ 1

b
F ; F � 1

kB
Sÿ

X
k

FkPk ; �4:26�

where F is the Massieu ± Planck function, coincides with the
characteristic function or the thermodynamic potential
corresponding to the given physical situation. For example,
with k � 1, when F1 � b and P1 � H, the quantity
R � Hÿ TS is the free energy, while with k � 1; 2, when
F2 � bP; P2 � V, the quantity R � H� PVÿ TS is the
Gibbs thermodynamic potential, etc. In all these cases the
inequality (4.25) expresses the property of stability of the
thermal equilibrium state.

It is very important that the procedure of transition in
formulas (4.22) from the Gibbs distribution function to the
Einstein distribution function implies a radical change in the
`space of events' (in the sense of probability theory) 34.
According to relations (4.22), we are dealing with the
transition from the dynamic (or phase) space fGg (with the
admissible real values of variables p and q for the given
system) to the space of macroparameters, in which the
thermodynamic fluctuations fDPE

i g are defined that may
take on, generally speaking, any real values. Of course, such
a transition violates the normalization condition for the
initial distribution function (4.1) or (4.6), and the distribu-
tion function (4.22) has to be normalized anew.

Generalized Boltzmann principle. Einstein's original deri-
vation [3] of the fluctuation distribution function for a `small'
(but macroscopic) object weakly interacting with a `large'
thermostat relied on the generalized Boltzmann principle. For
the description of the nonequilibrium state of the complete
system that consists of the object and the thermostat and is
assumed isolated, in consistency with the common practice of
thermodynamics, Einstein [3] (see also Ref. [6]) suggested
starting with the Boltzmann distribution (4.9) for the
equilibrium state of the whole system. In this case the sought
distribution function, which has the meaning of the prob-

ability of the `fluctuative' macroscopic state, becomes

rEwhole � A exp

�
1

kB
DSwhole

�
: �4:27�

It is essential that the quantity DSwhole (by definition, the
change in entropy of the whole system) from the very
beginning shows a purely thermodynamic, macroscopic
sense. Given the presumed additivity of entropy of weakly
interacting subsystems (object and thermostat), we have

DSwhole � DSob � DSth ; �4:28�

with the result from the second law of thermodynamics:

DSwhole 4 0 : �4:29�

The sign of equality in Eqn (4.29) corresponds to the case
when the state in question resides in the equilibrium state.

In the simplest case one may assume that the change in
entropy (4.28) is due to the spatially homogeneous random
variations (fluctuations) of both extensive (Pk) and intensive
(Fk) thermodynamic variables characterizing the object and
the thermostat. For quantities Pk there are exact relations
that follow from the conservation laws for an isolated system:

�Pk�th � �Pk�ob � const ; �DPk�th � ÿ�DPk�ob ; �4:30�

while the approximate (up to the fluctuations of these
quantities that describe the `small' object) relations hold for
the quantities Fk:

�Fk�th � �Fk�ob ; �DFk�th � 0 ;

�DFk�ob 6� 0 ;
�DFk�ob
�Fk�ob

5 1 : �4:31�

The different treatment of fluctuations of variables Fk

for the object and the thermostat is explained by the
different degree of `macroscopicity' of these subsystems:
the thermostat is `very large' compared with the object.
Because of this, there is an additional small parameter
�DFk�th=�DFk�ob � �Nob=Nth�1=2 5 1 that can be used in
the description of the object and the thermostat at thermal
equilibrium. Assuming that all changes in the thermostat
are quasi-static (reversible), we use the first law of
thermodynamics and eliminate fluctuations �DPk�th of the
extensive quantities of the thermostat with the aid of Eqn
(4.30), thus coming to the distribution function rEob in the
form of Eqn (4.22).

Observe that a similar result [for the specially selected
value of R in the form of Eqn (4.26) that determines rEob] can
also be obtained using the generalized Boltzmann principle in
Leontovich's formulation [14]. The latter is based on the
introduction of auxiliary force fields which ensure the
reversibility of the object transition from an equilibrium to a
quasi-equilibrium state.

4.3 Fluctuation distribution function
in Einstein's approach
The simplified expression for the Einstein distribution
function (4.22), commonly used in the scientific literature,
can be obtained having regard to the quasi-equilibrium
condition Ð that is, the condition of smallness of fluctua-
tions DPE

k . Expanding the difference DS with respect to these

34Arguments in favor of such a heuristic procedure can be derived, for

example, from the principle of maximum entropy [37] as well as from the

general methods of mathematical statistics as applied to physical measure-

ments (for more details see Section 6.2).
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quantities up to the first nonvanishing term in the exponent in
Eqn (4.22), we find (in concise notation, dropping out the
superscript `E' and the matrix indices k, l in the intermediate
expressions)

DSfDPg � D1SfDPg � 1

2
D2SfDPg � . . . ; �4:32�

where

D1SfDPg � qSfPg
qP

����
P�P
�DP� �

X
k

FkDPk ; �4:33�

D2SfDPg� q2SfPg
qP2

����
P�P
�DPDP��

X
kl

sklDPkDPl : �4:34�

Obviously, the term linear in DP in Eqn (4.33) is
completely balanced out by the respective term in the
exponent in Eqn (4.22), while the term bilinear in DP in Eqn
(4.34) is negatively defined by virtue of the condition of
maximum (even though not absolute but conditional)
entropy SfPig at the state of equilibrium.

Using relations (4.21), (4.32) ± (4.34), we obtain three
equivalent representations of the Einstein distribution func-
tion in the lowest approximation:

rEfDPig � A exp

�
ÿ 1

2

X
kl

�ÿskl�DPk DPl

�
; �4:35a �

rEfDFi;DPig � B exp

�
1

2

X
k

DFk DPk

�
; �4:35b�

rEfDFig � C exp

�
ÿ 1

2

X
kl

jkl DFk DFl

�
: �4:35c�

Here A, B and C are constants found from the normalization
conditions by integrating the functions (4.35) over the entire
`space of events' (these constants are finite because the
Gaussian exponent is a rapidly decreasing function).

All three forms of the distribution function (4.35) are
normal or Gaussian with respect to the corresponding
variables; the choice of the particular representation is
usually dictated by the conditions of the problem (see Section
5). In particular, from Eqns (4.35a) and (4.35c) it follows that

DFE
k � DPE

k � 0 ; �4:36�

i.e. themean values of fluctuations of both E-variables andG-
variables go to zero. At the same time, the bilinear correlation
functions of fluctuations of extensive and intensive E-
variables are, respectively, as follows

DPE
k DPE

l � DPk DPl
E � �ÿŝÿ1�kl ; �4:37�

DFE
k DFE

l � DFk DFl
E � �ĵÿ1�kl : �4:38�

If required, expressions (4.37) and (4.38) with due account for
relations (4.21) can be used for finding the `mixed' correlation
functions of the form DFE

k DPE
l .

It is important that, with due account for equality (4.17),
the correlation function (4.37) in Einstein's approach coin-
cides with its counterpart (4.12) in the Gibbs approach:

DPk DPl
E � DPk DPl

G
: �4:39�

Strictly speaking, there are no a priori reasons for such a
coincidence, because these quantities have a very different
physical meaning and are defined in different `spaces of
events'. We believe, however, that it is this coincidence that
gives the solid physical sense to the concept of fluctuations in
the Gibbs approach. Otherwise they would have been
unobservable entities, because a macroscopic observer has no
`access' to the phase space where the fluctuations of random
dynamic quantities take place according to the Gibbs
approach.

In this respect Einstein's approach is closer to physical
reality, because according to definition (4.20) the correlation
function (4.37) involves fluctuations of random extensive
thermodynamic quantities. On top of that, Einstein's
approach is also more realistic because it involves a
nonzero correlation function of fluctuations of intensive
thermodynamic quantities (4.38), which is totally absent in
the Gibbs approach. In this way, Einstein's approach `gives
equal rights' to thermodynamic quantities Pk and Fk with
regard to their statistical properties: differently from the
Gibbs approach, they are not tied to the selection of the
`appropriate' ensemble, and may both fluctuate simulta-
neously.

5. Quasi-equilibrium pressure fluctuations
in Einstein's approach

For the calculation of correlations and variances (includ-
ing the pressure fluctuations of concern) in the framework
of Einstein's approach, according to expressions (4.37)
and (4.38), we first of all need to go over from the Gibbs
(random dynamic) G-variables PG

k �G� and fixed thermody-
namic parameters FG

k � const to Einstein's (random thermo-
dynamic) E-variables PE

k and FE
k . It is essential that for the

quantities Pk this procedure, according to Eqn (4.22), is
defined 35 only for the thermodynamically conjugated pairs
of quantities that enter the phase index (4.2) [and, therefore,
the distribution function (4.6)]. As far as the quantities Fk are
concerned, the same procedure for them is expressed by
formula (4.21).

In some cases (in particular, in the analysis of PFs) there is
a need for extending the basic set of G-variables (for example,
in the transition from the isochoric to the isobaric regime).
This, however, runs into a technical difficulty, which prevents
a straightforward application of expressions (4.12), (4.37) and
(4.38). This difficulty is related to the fact that variables fFkg
(contrary to the assumption made in Section 4.2) are not
independent, and so the Massieu ± Planck function FfFig
loses its `generating' property (4.4), whereas the similar
property (4.5) for the entropy SfPig remains in place.

5.1 Fluctuations and correlation functions.
Transition from G-variables to E-variables
Concrete calculations of correlation functions, defined by
expressions (4.12) for G-variables or expressions (4.37) and
(4.38) for E-variables, call for the transition from quantities
fFkg to new, truly independent intensive quantities ffkg
which are defined below. In so doing the formal structure of

35 For example, the attempt to accomplish such a transition by `erasing'

the argument G (and hence actually performing averaging) directly in the

definition of pressure P�G� in Eqn (2.9) leads to the generally incorrect

resultP � ÿqH=qVwhich, in particular, givesP � 0 for an ideal gas when

H does not depend on V.
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the theory then becomes much more complicated than the
theory presented in Sections 4.1 and 4.3. In particular, in
place of twomatrices ĵ and ŝ, defined by equations (4.13) and
(4.16), one has to use six matrices ŝ, ~̂j, l̂, m̂, p̂, and ĉ, of which
only ŝ retains its former definition (4.16).

Matrices l̂ and m̂ (generally nonsymmetrical) define, like
Eqn (4.21), the new linkages between fluctuations of extensive
and intensive E-variables:

DPE
k � ÿ

X
l

lkl DfEl ; DFE
k � ÿ

X
l

mkl Df
E
l : �5:1�

Matrices p̂ and ÿŝ define the correlation functions of
extensive G-variables and E-variables, respectively:

DPk DPl
G � pkl ; DPk DPl

E � �ÿŝÿ1�kl : �5:2�

Both matrices are symmetrical, positive-definite and satisfy
the condition �ÿŝ� p̂ � 1, so that the equality (4.39) still holds
for the correlation functions (5.2).

Correlation functions involving fluctuations of the inten-
sive G-variables are zero by definition:

Dfk DPl
G � D fk D fl

G � 0 ; �5:3�

whereas for the E-variables we have

Dfk Dfl
E � �ĉÿ1�kl : �5:4�

Mixed correlation functions of the form Dfk DPl
E
can be

further obtained by using expressions (5.2) and (5.3) and
linkages (5.1). Finally, the symmetrical and positive-definite
matrix ~̂j is the analogue of the matrix ĵ from Eqn (4.13) [but,
of course, ~̂j 6� ĵ�]:

~jkl � ~jlk � ÿ
q~jk

qfl
; ~jk � ÿ

qFffig
qfk

: �5:5�

This matrix is used in the definitions of matrices l̂; p̂, and ĉ.
The general form of the above matrices can be deduced

from the following considerations. In all Gibbs ensembles
used as the initial ensembles, the `leading' dynamic quantity
P1�G� is the energy H�G�, whence it follows that F1 � b. For
all other quantities Pk�G� with k5 2 Ð for example, the
generalized force Ai (with the exception of pressure P),
volume V, number of particles N, etc. Ð the thermodynami-
cally conjugated parameters Fk have the form Fk � bfk. Here
fk is the generalized coordinate (external field a, pressure P,
chemical potential m, etc.). Obviously, in all these cases the
truly independent quantities are b and ffkg (k5 2), so that
F1 � f1; Fk � f1 fk.

For the sake of simplicity, we confine ourselves to the case
of two variables (without specifying f2 so far):

F1 � f1 � b; F2 � f1 f2 :

Then the Gibbs distribution function, according to Eqn (4.1),
becomes

rG�G; f1; f2� � exp
�ÿF�f1; f2� ÿ f1

�
P1�G� � f2P2�G�

�	
;

�5:6�

while the Massieu ± Planck function F� f1; f2� loses its
`generating' property (4.4) only with respect to the quantity

P1, but not to P2. Indeed,

ÿ qF
qF1
� ~j1 � eP1; eP1�G� � P1�G� � f2P2�G� ;

whereas

ÿ qF
qF2
� ÿ 1

f1
~j2 � P2 ;

so that

P1 � ~j1 ÿ
f2
f1

~j2 :

Differentiating the normalization condition for the func-
tion (5.6) with respect to f1 and f2 (see Sections 2.4 and 4.1), it
is easy to find the first of the expressions (5.1), whose structure
is much more complicated than that of Eqn (4.12):

pkl � plk ; lkl 6� llk ; lkl � ÿ qPk

qfl
;

with

p11 � l11 ÿ f2l21 � f 2
2

f1
l22 ; p22 � 1

f1
l22 ;

p12 � 1

f1
l12; p21 � l21 ÿ f2

f1
l22 :

In turn one has

l11 � ~j11 ÿ
f2
f1
w12 ; l22 � 1

f1
~j22 ; w12 � ~j12 ÿ

1

f1
~j2 ;

l21 � 1

f1
w12 ; l12 � w12 ÿ

f2
f1

~j22 :

Transition from the Gibbs distribution function (5.6) to
the Einstein distribution function occurs in exactly the same
way as presented in Section 4. In so doing the entropy
S�P1;P2� is still defined by Eqn (4.3) and retains its
`generating' properties (4.5) with respect to both variables
F1 and F2, as well as f1 (but not f2):

qS

qP1

� F1 � f1 ;
qS

qP2

� F2 � f1 f2 : �5:7�

In Eqn (5.7) it is assumed that the intensive parameters ffkg
[and thus the Massieu ± Planck function F�f1; f2�] are
expressed as functions of the extensive parameters fPkg, so
that the definitions (4.3) and (4.5) remain in force.

As a result, we again come to the Einstein distribution
function in the form (4.35a), and hence to the expression
(4.37) for the correlation function of fluctuations of
thermodynamic E-variables. One can prove its exact
similarity to the correlation function (5.2) of fluctuations
of dynamic G-variables by again using the `orthogonality
condition' (4.18) and taking into account the nonlinear
structure of the second relation in Eqn (5.5), when
differentiating F2 with respect to P1 and P2. Then, using
the first relation in Eqn (4.21), we come again to the
Einstein distribution function in the form (4.35b).

However, the Einstein distribution function for fluctua-
tions of the intensive E-variables, DfEk , is now different from
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function (4.35c), because in place of relations (4.21) that
describe the linkage of fluctuations DPE

k and DFE
k we now

must use Eqn (5.1). Substituting these expressions into Eqn
(4.35b), defining the matrix ĉ as clm �

P
k mkllkm, and taking

into account that m11 � 1, m12 � 0, m21 � f2, and m22 � f1, we
find

rEfDfig � C exp

�
ÿ 1

2

X
kl

ckl Dfk Dfl

�
: �5:8�

Here, the symmetrical and positive-definite matrix ĉ has a
simple form that almost coincides with the form of matrix ~̂j:

c11 � ~j11 ; c12 � c21 � w12 ; c22 � ~j22 :

From Eqn (5.8) directly follows expression (5.4).
Concrete calculations of correlation functions (5.2) and

(5.4) depend on the selection of the initial independent G-
variables (in this case, the conjugate pair of P2�G� and f2);
appropriate examples are considered in Section 5.2.

5.2 Statistical method for computing PFs.
Solution of the Einstein problem
Let us consider two examples of calculation of G- and E-
variable fluctuations (including PFs) for the classical case of
an ideal gas, when the explicit form of functions Fffig and
SfPig can be found. Such a calculation can aptly be called
statistical, to distinguish it from the commonly used thermo-
dynamic calculation (see Section 5.3); to the best of our
knowledge, such a method is used in the context of Einstein's
approach for the first time ever.

Isothermal ± isochoric situation. In the Gibbs approach,
the isothermal ± isochoric situation is characterized by the
pair of conjugate G-variables:

PG
1 �G� � HV�G� ; FG

1 � f1 � b ; �5:9�

which enter the phase index. Differently from F1, the
parameter V � const is dynamic and implicitly enters
PG
1 �G�. The conjugate dynamic quantity [pressure PV�G�] is

defined by Eqn (2.9), and the conventional transition to E-
variables using this pair of quantities is not possible (see
footnote 35). For this situation, the initial Gibbs distribution
function (5.6) assumes the form (2.17) in the special case
a � 0.

For an ideal gas in the nondegenerate regime in both the
classical and quantum descriptions, the Massieu ± Planck
function F�b;V� is given by Eqn (3.48) and gives rise to
Gibbs' thermodynamics Ð relations (3.49) ± (3.57). Matrices
~̂j and ĉ become one-dimensional (scalar), so that the
fluctuations of E-variables PE

1 � H and FE
1 � b can easily be

found. Indeed, according to Eqn (5.2), we have

�DH�2
E

� �DH�2
G

� ~j11 � N
f

2

1

b2
: �5:10�

Using Eqn (3.53) forH, we arrive at

�x2H�E � �x2H�G �
2

f

1

N
; �5:11�

which naturally coincides with Eqn (3.57).
Similarly, according to relation (5.4), we have

�Db�2
E

� ~jÿ111 �
1

N

2

f
b2 ; �Db�2

G

� 0 :

Using the equality Db � ÿb�DT=T�, one gets

�x2b�E � �x2T�E �
2

f

1

N
: �5:12a�

Observe that the absolute variances of E-variables b and
H are mutually inverse 36:

�Db�2
E

�DH�2
E

� 1 ; �5:12b�

while their relative variances are equal to each other:

�x2b�E � �x2H�E : �5:12c�

It is not possible, however, to calculate the fluctuations of
volume and pressure according to Einstein's approach in the
framework of this isothermal ± isochoric situation. To accom-
plish this, it is necessary to extend the initial set of G-
variables, which currently means going over to the isother-
mal ± isobaric situation.

Isothermal ± isobaric situation. The required extension
of the initial set of variables consists in that the pair of
G-variables (5.9) is supplemented with the pair of G-
variables

PG
2 �G� � V�G� ; FG

2 � bP ; f2 � P ; �5:13�

which permits, according to Eqns (4.22) and (4.21), the
transition to E-variables. Then the initial Gibbs distribution
function (5.6) becomes

rG�G; b;P�� exp
�ÿF�b;P� ÿ b

�H�G��PV�G��	; �5:14�
so that the derivative

ÿ qF
qb
� H� PV � H

defines the mean enthalpy H, while the derivative

ÿ 1

b
qF
qP
� V �5:15�

gives the mean volume. The mean energyH is determined by

H � Hÿ PV � ÿ qF
qb
� P

b
qF
qP

: �5:16�

The statistical integral Z�b;P� for the isothermal ± isobaric
situation is linked with Z�b;V� for the isothermal ± isochoric
situation by the Laplace transformation (see, for example,
Ref. [14]):

Z�b;P� �
�1
0

dV exp�ÿbPV� Z�b;V� : �5:17�

Using expressions (3.46) and (3.47) in Eqn (5.17), for the case
of an ideal gas we have

Z�b;P� � bÿN �f=2�1�PÿN�bN!� :

36 Expression (5.12b) is an example of uncertainty relations in statistical

thermodynamics (see, for instance, Refs [45 ± 47]).
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Hence, up to some immaterial constants, we get the
Massieu ± Planck function in the form

F�b;P� � ÿN
��

f

2
� 1

�
ln b� lnP

�
�5:18�

and then, using definition (4.3), the entropy

S�H;V � � N

�
f

2
lnH� lnV

�
: �5:19�

In going over from Eqn (5.18) to Eqn (5.19) we used the
fact that, according to Eqns (5.15) and (5.16), the thermal and
caloric TDEOS are as follows

V � N

bP
; H � N

f

2

1

b
: �5:20�

Then the intensive thermodynamic parameters entering Eqn
(5.18) can be expressed in terms of the extensive variables as
follows

P � 2

f

H
V
; b � N

f

2

1

H : �5:21�

The matrices ~̂j and ŝ (diagonal in this case) required for
the calculation of the correlation functions (5.2) and (5.4) are
written as

~j12 � ~j21 � 0 ; ~j11 � N

�
f

2
� 1

�
1

b2
; ~j22 � N

1

P 2
;

s12 � s21 � 0 ; s11 � ÿN f

2

1

H 2
; s22 � ÿN 1

V
2
:

According to functions (5.2), the quantities skl suffice for
finding the correlation functions of the extensive E- or G-
variables. In particular, by virtue of the property
s12 � s21 � 0, for the correlation function of fluctuations of
energy and volume we have

DHDV
G � DHDV

E � 0 :

Moreover, given the form of the Einstein distribution
function (4.35a), the quantities HE and VE are not only
noncorrelated but also completely independent statistically,
because of the equality

rEfDH;DVg � rEfDHgrEfDVg ; �5:22�

where

rEfDHg � A1 exp
�
s11�DHE�2�;

rEfDVg � A2 exp
�
s22�DVE�2� :

Observe that the noncorrelated E-variables, by contrast to
G-variables, are not b andP but rather b andV, because, as is
easily proved, the following relations take place:

DPDb
E � ÿ 1

N

2

f
; DPDV

E � ÿ 1

b
; DbDV

E � 0 :

�5:23�

The variances (both absolute and relative) of energy are,
as before, expressed by Eqns (5.10) and (5.11) obtained earlier

for the isothermal ± isochoric situation. The variances of
volume (absolute and relative) are given by

�DV�2
E

� �DV�2
G

� N

b2P2
; �x2V�E � �x2V�G �

1

N
: �5:24�

The situations with variances of the intensive thermodynamic
parameters b and P in the case of G- and E-variables are
entirely different. Indeed, in the Gibbs approach, according
to the definition of the isothermal ± isobaric ensemble (5.13),
these variances are strictly zero:

�Db�2
G

� �DP�2
G

� 0 :

In Einstein's approach, however, for the variances of the
inverse temperature b (which exactly coincides with the
variance of the temperature T itself) and the pressure P, we
get, according to Eqn (5.4), nonzero expressions. The relative
variance of the temperature is given again by Eqn (5.12a),
while the variances (absolute and relative) of pressure are
written as

�DP�2
E

� ĉÿ122 �
1

N

�
2

f
� 1

�
P 2;

�x2P�E �
1

N

�
2

f
� 1

�
: �5:25�

As shown in Section 5.3, formulas (5.25) exactly coincide with
those obtained by Landau and Lifshitz [7] in the framework
of Einstein's approach using the thermodynamic calculating
method.

Comparing (5.25) with (3.26), we again come to the
difference (3.62) between the results of calculations of PFs in
the framework of the Gibbs and Einstein approaches for the
case of an ideal gas in the nondegenerate regime.

Solution of the Einstein problem for PFs. As shown in
Section 4.2, the descriptions of fluctuations in the approaches
of Gibbs and Einstein have, generally speaking, considerably
different physical backgrounds. It is not always easy,
however, to take into account their influence on the
particular calculations, especially in the computations of
variances of the intensive thermodynamic parameters
(including the pressure).

Nevertheless, in the case of an ideal gas it is possible to
identify convincingly the cause of disagreement (3.62), which
is neither a mistake nor an accident. As shown below, this
difference is a consequence of the feasibility of simultaneous
fluctuations of the pair of mutually conjugated thermody-
namic parameters (for example, pressure and volume) in
Einstein's approach, which is not possible in the Gibbs
approach.

To understand the role of volume fluctuations when
calculating PFs according to Einstein, one must interpret the
thermal equation of state (5.21) not as the relation between
the fixed mean values of variables H, V and the fixed
thermodynamic parameter P (as is done in the Gibbs
approach to G-variables), but rather as the linkage between
the random (and therefore fluctuating) quantities (which is a
mark of Einstein's approach to E-variables).

We write the thermal TDEOS for E-variables in the form

P � 2

f
HVÿ1 �5:26�

and note its exact coincidence in form with the corresponding
thermal TDEOS (3.44) for G-variables. The distinction lies in
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the different treatment of the volume V in the two expres-
sions: in Eqn (3.44) it is strictly fixed, while in Eqn (5.26) this
quantity can fluctuate (and is therefore characterized by a
variance). It is this fundamental difference that causes the
deviation (3.62) for PFs, and thus resolves the Einstein
problem (in the narrow sense) 37.

To be convinced of this, let us calculate PFs (or more
precisely, the relative variance x2P) directly from Eqn (5.26),
taking into account that due to equality (5.22) the random
quantities H and V are independent. Then for the relative
variance of the product of these quantities we have (see, for
example, Ref. [38]) the following relationship

x2XY � x2X � x2Y � x2X x2Y : �5:27�

In this instance X � aH, a � 2=f, and Y � Vÿ1; we must also
take into account the condition xVÿ1 � xV and the property
(3.24).

Since the relative variances ofH andV, according to Eqns
(5.11) and (5.24), are proportional to 1=N, then in the lowest
order in 1=N we may drop out the last term on the right-hand
side of relationship (5.27). Then one finds

�x2P�E � �x2H�E � �x2V�E : �5:28�

Taking into account that, according to Eqns (3.57) and (5.11),
the following relation holds for relative variances

�x2P�G � �x2H�G � �x2H�E; �5:29�

and using Eqn (5.24), we finally find

�x2P�E ÿ �x2P�G � �x2V�E �
1

N
: �5:30�

As ought to be expected, expression (5.30) for the difference in
the results for PFs, obtained through the approaches ofGibbs
and Einstein, exactly coincides with expression (3.62) derived
earlier in a different way.

5.3 Thermodynamic method for computing PFs
In most cases the explicit form of the Massieu ± Planck
function Fffig and/or the entropy SfPig is not known (for
example, for arbitrary nonideal macroscopic systems). Then
the calculation of correlations and variances of E-variables is
based on a method which (in spite of the express use of the
Einstein distribution function) may be naturally referred to as
the thermodynamicmethod.

Differently from the statistical method (see Section 5.2),
the thermodynamic method is rather phenomenological: it
does not provide explicit expressions for the required
variances, but only establishes their linkages with other
thermodynamic quantities (as a rule, static susceptibil-
ities 38). The latter in turn are assumed to be known, for
example, from simulations or experiments. To find such
linkages in the case of E-variables, it is expedient to apply
the following procedure. We select the Einstein distribution
function in the form (4.35b), and carry out transformation
(5.1) from variables fFig to f fig in this function. Then, with

due account for the form of matrix m̂, we get

rE
ÿfDfig; fDPig

� � B exp

�
1

2

X
kl

mkl Dfl DPk

�

� B exp

�
1

2

�
D f1�DP1 � f2 DP2� � f1 D f2 DP2

��
: �5:31�

For the case under consideration, when f1 � b, P1 � H,
f2 � P, P2 � V, the main thermodynamic identity gives us

DP1 � f2 DP2 � DH� PDV � DH � TDS :

Here, DH and DS are the fluctuations of enthalpy and
entropy, respectively.

Now going over from b to T � 1=kBb, and noting that
Db � ÿDT=kBT 2, where DT is the temperature fluctuation,
for rE we finally find the expression

rE � B exp

�
ÿ 1

2kBT

ÿ
DTDSÿ DPDV

��
: �5:32�

The distribution function for thermodynamic fluctuations in
the form (5.32) in the framework of the general Einstein
approach was first obtained by Landau and Lifshitz [7] based
on the principle of least work (see also Refs [15 ± 17]).
Expression (5.32) is the starting point for the thermodynamic
method of calculation of any fluctuations, including PFs.

The further procedure of calculation consists in the
selection (generally speaking, arbitrary because of equal
status of all E-variables) of a pair of variables (for example,
P and S,P andV,P andT, etc.) as independent variables, and
the transformation of the function rE from Eqn (5.32) to the
Gaussian form in these variables. Formally this can be
accomplished either using the technique of Jacobians [16, 17,
19] or by straightforward calculations [15 ± 17, 22] embracing
fluctuations of the dependent variables (in the linear approx-
imation) with subsequent substitution into the exponent in
Eqn (5.32). The right choice of truly independent variables
leads to mutual compensation of mixed products with respect
to their fluctuations. Then the distribution function (5.32)
assumes a multiplicative form similar to expression (5.22),
which considerably simplifies the calculations.

The best choice of independent E-variables for our
purposes is the pair involving volume V and temperature T,
which is reasonable in the light of the last relation in Eqn
(5.23). Then one arrives at

DS �
�
qS
qT

�
V

DT�
�
qS
qV

�
T

DV ; �5:33�

DP �
�
qP
qT

�
V

DT�
�
qP
qV

�
T

DV ; �5:34�

and according to the Maxwell relation and the definition of
heat capacity at constant volume CV we have�

qS
qV

�
T

�
�
qP
qT

�
V

;

�
qS
qT

�
V

� 1

T

�
qH
qT

�
V

� CV

T
: �5:35�

It is essential that here and further in the spirit of Einstein's
approach all thermodynamic derivatives are assumed to be
`equilibrium'Ð that is, in their calculations one has to neglect
fluctuations and set

T � T; V � V; P � P : �5:36�

37 A similar situation, related to the distinction between G- and E-

variables, is also encountered with other physical quantities. It may be

called Einstein's problem in the broad sense.
38 Observe that for fluctuations of G-variables such linkages are estab-

lished by Eqns (2.41) ± (2.43).
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Using the linkages (5.35), it is easy to see that the mixed
products of the form DTDV entering the exponent in formula
(5.32) cancel out 39, so that Eqn (5.32) only contains terms
quadratic with respect to DT and DV. Hence it follows that

rE�DT;DV� � rE�DT� rE�DV� ; �5:37a�
where

rE�DT� � AT exp

�
ÿ CV

2kBT 2
�DT�2

�
; �5:37b�

rE�DV� � AV exp

�
1

2kBT

�
qP
qV

�
T

�DV�2
�
; �5:37c�

so that the random variables T,V are not only noncorrelated,
but completely statistically independent. Observe that in this
case the `nondiagonal' correlation function DVDTE

vanishes
not only for the ideal gas, as in relations (5.23), but also for a
more general macrosystem (of course, as long as theGaussian
approximation is valid).

For the `diagonal' correlation functions (absolute var-
iances), according to Eqns (5.37b) and (5.37c), we have

�DT�2
E

� kBT
2

CV
; �DV 2�E � kBTVKT ; �5:38a�

where KT � ÿ�1=V��qV=qP�T is the isothermal compressibil-
ity. It is not difficult to calculate other correlation functions as
well, for example,

DPDV
E �

�
qP
qT

�
V

DTDV
E �

�
qP
qV

�
T

�DV 2�E � ÿkBT ;

which again coincides with the second relation in Eqn (5.23)
for an ideal gas.

Of most interest in the context of this paper is the pressure
fluctuation or the absolute pressure dispersion, for which we
readily find

�DP�2
E

�
�
qP
qT

�2
V

�DT�2
E

�
�
qP
qV

�2
T

�DV�2
E

�
�
qP
qT

�2
V

kBT
2

CV
ÿ
�
qP
qV

�
T

kBT : �5:38b�

Now we take into account the linkage between the thermal
pressure coefficient �qP=qT�V and the isothermal compressi-
bility �qP=qV�T (the Mayer relation):�

qP
qT

�2
V

� ÿCP ÿ CV

T

�
qP
qV

�
T

;

where CP and CV are the heat capacities at constant pressure
and constant volume, respectively. Using the Poisson coeffi-
cient g � CP=CV > 1, we finally come to the result of Landau
and Lifshitz [7] for PFs Ð relations (1.7) and (1.8) which are
different from relations (1.2) ± (1.4), which gives rise to the
Einstein problem for PFs.

Ideal gas: nondegenerate regime, classical description.
Using the values of thermodynamic derivatives (3.50), (3.54)
and (3.49) for the respective quantities in Eqn (5.38) as well as
in Eqns (1.7) and (1.8), it is easy to come to the same
expressions for the relative temperature variances (5.12),
volume variances (5.24) and pressure variances (5.25) that

were obtained in Section 5.2 by the statistical method [in the
latter case we have noted that the value of g for an ideal gas is
given by expression (3.59)].

It should be well to emphasize that the straightforward
and physically transparent expression (5.28) for PFs in the
case of an ideal gas can also be obtainedwithin the framework
of the thermodynamic approach. This does not require
carrying out all the cumbersome calculations that lead first
to the general formula in the form (1.7). It will suffice to set
both the thermodynamic derivatives in the initial equation
(5.34) for the pressure fluctuation DP equal to their values
(3.50) and (3.51) for an ideal gas. Then we get

DP � NkB
V

�
DTÿ T

V
DV
�
: �5:39�

Raising both sides of equality (5.39) to the second power
and averaging, we find

�DP�2�
�
NkB
V

�2�
�DT�2 �

�
T

V

�2

�DV�2 ÿ 2
T

V
DTDV

�
:

Then, using the property (5.37a), one gets

�DP�2 �
�
NkBT

V

�2� �DT�2
T 2

� �DV�
2

V 2

�
;

and accounting for the thermal equation of state (3.49) one
obtains the final result�

x2P
�E � �x2T�E � �x 2

V

�E
; �5:40�

which exactly coincides with expression (5.28) worked out by
the above-considered statistical method; we only need to
allow for the coincidence between the relative variances of
temperature and energy in Einstein's approach, ensured by
Eqns (5.12a) and (5.12c). The physical meaning of Eqn (5.40)
and its linkage with the expression for

�
x2P
�G

were discussed in
Section 5.2.

Ideal gas: nondegenerate regime, inclusion of quantum
exchange corrections. The thermodynamic calculating
method allows for a relatively simple introduction of
corrections to the variances of thermodynamic variables
(including pressure fluctuations) according to Einstein,
which arise when the temperature of gas T is lowered and/or
the volume V is decreased. Then the condition T4T0�V� is
replaced by a less stringent condition T0T0�V�, where
T0�V� � 22=3p��h2=mkB��N=V�2=3 is the quantum degeneracy
temperature of an ideal gas. Obviously, the gas remains in the
nondegenerate regime, but its purely classical description
becomes not quite adequate, and one has to include the
quantum exchange corrections. With this purpose the
thermodynamic quantities can be represented as expansions
in powers of T0�V�=T (see, for example, Refs [7, 17, 21, 26]).

Retaining only the lowest correction, we have the
following expressions for the internal energy, the heat
capacity at constant volume, and the pressure:

EQ�T;V� � EC�T�
�
1� 1

4
e�T;V�

�
; �5:41a�

CQ
V �T;V� � CC

V

�
1� 1

8
e�T;V�

�
; �5:41b�

PQ�T;V��2EQ�T;V�
3V

�PC�T;V�
�
1� 1

4
e�T;V�

�
: �5:41c�39 A similar property is associated with the selection of the pair of

independent variables P and S, but not P and T or P and V.
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The upper sign in these formulas corresponds to a Bose gas,
and the lower sign to a Fermi gas; the indices Q and C mark
quantum and classical quantities, respectively. Then the main
thermodynamic parameters in the classical approximation
are given by the expressions

EC�T� � CC
VT ; CC

V � N
3

2
kB ; PC�T;V� � 2

3V
EC�T� ;

and the quantum corrections are taken into account in the
linear approximation with respect to the small parameter

e�T;V��
�
T0�V�
T

�3=2

5 1 ;
qe
qT
� ÿ 3

2

e
T
;

qe
qV
� ÿ e

V
:

Using the thermal equation of state (5.41c), it is easy to
find (dropping for compactness the arguments T, V) the
quantum exchange corrections to the thermodynamic deriva-
tives:

qPQ

qV
� ÿPQ

V

�
1� 1

4
e
�
;

qPQ

qT
� PQ

T

�
1� 3

8
e
�
: �5:41d�

Further, in accordance with the general expressions (5.38a), it
is not difficult to calculate the quantum exchange corrections
to the variances of temperature and volume:�

x2T
�
Q
� �x2T�C�1� 1

8
e
�
;
�
x2V
�
Q
� �x2V�C�1� 1

2
e
�
:

�5:42a�

Substituting these corrections into Eqn (5.38b) for PFs, and
accounting for Eqns (5.41d), (5.28) as well as (5.12a) and
(5.12c), we finally get�

x2P
�
Q
� �x2P�C � 5

8
e�T;V� �x2T�C;�

x2P
�
C
� �x2T�C � �x2V�C : �5:42b�

Expression (5.42b) indicates that in the range of tempera-
turesT and/or densitiesN=V, when the quantumproperties of
microparticles are brought into play in the dynamic descrip-
tion of the macrosystem, the PFs receive an additional (as
compared with the classical domain) contribution determined
by the temperature fluctuations 40 (positive for Bose particles,
and negative for Fermi particles).

Obviously, it is possible to include corrections of higher
order in e, as well as corrections for nonideality of the gas Ð
for example, when the thermal equation of state is of the van
der Waals type, or of a more general virial type.

6. Conclusions

6.1 The main results
In conclusion, let us draw a summary of our discussion. First
of all we want to emphasize the fact that we have given the
solution of two known problems in the theory of thermo-
dynamic fluctuations: the Gibbs problem and the Einstein
problem for pressure fluctuations (PFs). Comparative analy-
sis of the Gibbs and Einstein approaches to the description of
thermodynamic fluctuations on the whole allowed us to
obtain several important results, which include the following:

� Within the framework of the Gibbs approach, we have
for the first time given (Section 2) a consistent formulation of
pressure and compressibility as quasi-dynamic quantities that
characterize a macrosystem of finite volume. In doing this we
used the analogy with the quasi-mean quantities introduced
by Bogolyubov for describing the degenerate states of
macrosystems in thermal equilibrium. In the case of pressure
and compressibility, the role of the external `source' that
removes spatial degeneration is played by the singular
potential of the `walls' that confine the macrosystem.
� On the basis of these definitions we developed (Section

3) the extension of the Bogolyubov ±Zubarev and Hell-
mann ±Feynman theorems, which connect the general
expression for the pressure with the specific form of the
Hamiltonian function or the Hamiltonian of the macrosys-
tem (with due account for the boundary conditions in the
latter case). The generalization consists in expressing a similar
linkage for compressibility, which logically completes the
approach of Gibbs and gives the solution of the Gibbs
problem Ð a consistent calculation of PFs.
� In the framework of Einstein's approach (Section 5) we

proposed a statistical calculating method for correlation
functions of fluctuations of the extensive and intensive
thermodynamic parameters. For the extensive parameters,
the corresponding expressions coincide with those in the
Gibbs approach, while the expressions for the intensive
parameters are essentially distinctive because of the concep-
tual difference between the two approaches. We showed that
the proposed statistical method is equivalent to the conven-
tional thermodynamic method of Landau and Lifshitz, but is
more convenient in those cases when the explicit form of the
entropy or the Massieu ± Planck function of the macroscopic
system is known.
� Treating all the thermodynamic parameters as random

variables in the space of macroparameters in the framework
of Einstein's approach, we propose (Section 5) a simple
method for establishing the linkage between the variances of
macroparameters in the thermodynamic equation of state.
This method is especially efficient when such parameters are
statistically independent. In particular, it gives a simple
solution of Einstein's problem for PFs of an ideal gas in the
nondegenerate regime in both the classical description and the
description with inclusion of the lowest quantum exchange
corrections. The proposed method allows skipping the
cumbersome intermediate thermodynamic calculations
which are required in the case of an arbitrary macrosystem.

The most important result of our analysis relates to the
establishment (Section 4) of both the conceptual distinction
and the natural affiliation between the two qualitatively
different methods of probabilistic description of one and the
samemacrosystemÐ theGibbs and Einstein approaches as a
whole.

The Gibbs approach or statistical mechanics paves a way
to a `rigid' averaged microscopic description, which does not
allow for simultaneous fluctuations of the two thermodyna-
mically conjugated parameters (for example, internal energy
and temperature, or pressure and volume) in the context of
one and the same equilibrium ensemble.

Einstein's approach or statistical thermodynamics from
the start introduces a probabilistic macroscopic description
and does not rely on any microscopic description (dynamic
`prototypes' which act as some kind of `hidden parameters').
In comparison with the Gibbs approach, the approach of
Einstein is less rigid because it allows for simultaneous

40 Note that the volume fluctuations in the linear approximation in e do
not contribute to PFs.
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fluctuations of both thermodynamically conjugated quanti-
ties in the pair.

Given such considerable conceptual and computing
differences between the approaches of Gibbs and Einstein,
there initially seemed little chance of establishing a `genetic
linkage' between them. However, our results (Section 4)
indicate that the Einstein distribution function can formally
be derived from the Gibbs distribution function by the
following simple heuristic procedure.

The extensive dynamic quantities that determine the
Gibbs distribution function remain random but are
`detached' from the microscopic phase space and are further
considered in the space of thermodynamic macroparameters.
The intensive thermodynamic quantities or macropara-
meters, conjugated with the extensive quantities and strictly
fixed in the Gibbs approach, must now be stochastized, i.e.
also regarded as random variables.

The proposed method of transition `from Gibbs to
Einstein' can be aptly called statistical. It is important that
its result for the Einstein distribution function exactly
coincides with the result obtained by the traditional `thermo-
dynamic' method, based on the Boltzmann principle or the
equivalent principle of least work used by Landau and
Lifshitz.

The consistent treatment of the Gibbs and Einstein
approaches reveals their relationship and, in a certain sense,
applicability limits. In particular, the Gibbs approach is more
efficient for calculating the mean values of physical quantities
characterizing a macrosystem at thermal equilibrium,
whereas Einstein's approach is preferred for describing the
states of macrosystems near thermal equilibrium; moreover,
the Einstein approach can be used for refining the very
concept of thermal equilibrium.

The proposed procedures of `macroscopization' of the
extensive physical quantities and `stochastization' of the
intensive thermodynamic parameters, which play the key
role in the transition `from Gibbs to Einstein', are of
conceptual importance: the description of a real macrosys-
tem at and near thermal equilibrium becomes more universal
and efficient.

First of all, it becomes possible, following the thermo-
dynamic ideas of Planck and Einstein, to extend the
conditions of thermal equilibrium of a macrosystem and
thermostat (the zero principle of thermodynamics) for
including fluctuations of the intensive parameters of the
macrosystem. This generalization involves a tacit assump-
tion, which is not present in the Gibbs approach, that the
macrosystem has much fewer degrees of freedom (Nob) than
the thermostat (Nth), although both objects are certainly
macroscopic: Nob;Nth 4 1. Concerning the calculations, this
implies the existence of the additional small parameter
Nob=Nth 5 1, which provides for the nonzero fluctuations of
the intensive thermodynamic parameters of a macrosystem,
while the same parameters of the thermostat remain fixed.

The `duality' (inherent in the Gibbs approach) is also
removed in the treatment of certain physical quantities (for
example, the pressure), as either dynamic or thermodynamic
parameter depending on what kind of ensemble (isochoric or
isobaric) is used for the description of the realmacrosystem 41.

It is clear, however, that such a description in principle should
not depend on the selection of the Gibbs ensemble, the more
so that none of the thermodynamic parameters of the
macroscopic system can be fixedwith an absolute precision 42.

Owing to the uniform thermodynamic treatment of all the
stochastic physical quantities characterizing the macrosys-
tem, the Einstein approach manages to do without any
analogue of the Gibbs ensemble. Because of this, the
description of the macrosystem, and especially the descrip-
tion of the thermodynamic fluctuations, becomes truly
universal.

As far as the efficiency of the description is concerned,
Einstein's approach does not require any a priori knowledge
of the microscopic structure and properties of the macro-
system. The quantities used in this approach (for example, the
coefficients of expansion of quasi-equilibrium entropy in
fluctuations, of the coefficients linking the fluctuations of
extensive and intensive thermodynamic parameters) may be
regarded as phenomenological parameters and taken, for
example, from experiment. At the same time, in some cases
they can be calculated as purely equilibrium quantities in the
framework of the Gibbs approach, taking advantage of their
proximity to the thermal equilibrium state.

In this way, the macroscopic physical object according to
Einstein is `more stochastic' than that according to Gibbs,
which obviously better corresponds to physical reality. In
addition, Einstein's description is more universal and effi-
cient, because it does not initially separate the thermody-
namic parameters into `independent' and `dependent' Ð
instead, they all have equal status, and the selection of
`independent' parameters is just a matter of convenience in
computations.

6.2 Prospects of development of statistical
thermodynamics
The results obtained are also important in a perspective more
general than the solution of the Gibbs and Einstein problems
for PFs or the comparison of the two approaches to the
description of thermodynamic fluctuations as such. As a
matter of fact, these results allow us to make considerable
progress in our understanding of the unity of the physical
world in the spirit of Planck's momentous ideas. Until
recently the main attention in this respect was paid to the
description of nature on themicroscopic level. In this workwe
demonstrate the feasibility of a unified approach to the
microscopic and macroscopic levels of description, on the
one hand, and, on the other hand, the distinctions between
each of these levels of description.

On the basis of the above analysis we may formulate the
criterion of classification of different versions of the physical
picture of the world, common for microscopic and macro-
scopic levels of description. We believe that such a criterion is
the degree of inclusion of fluctuations in the theories
corresponding to each of the versions of the physical picture
of the world 43. We distinguish three such versions: classical,
quasi-classical, and properly nonclassical. The first includes
the strictly deterministic theories, in which fluctuations are
completely absent; the second includes those theories inwhich
only one physical quantity (the extensive variable) in each

41 In particular, as follows from the results of Section 5.2, the model of the

boundary of the system and thermostat in the form of absolutely rigid and

fixed `walls', used in the calculation of PFs in the isochoric Gibbs

ensemble, is too much idealized.

42 Any such parameter is inevitably subject to fluctuations arising both

from the finiteness of the system under consideration and the uncontrol-

lable effects of the thermostat.
43 In an implicit form such a criterion was utilized in the microscopic

description in Ref. [40].
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pair of canonically or thermodynamically conjugated quan-
tities fluctuates. The third version includes those theories in
which fluctuations are exhibited by both the extensive and the
conjugate intensive quantities.

In this way, in accordance with this criterion, the
consecutive transition from a classical to quasi-classical and
then to a nonclassical description is associated with the
increasing stochasticity of the physical system and with the
greater digression from strict determinism on both the
microscopic and macroscopic levels. Schematically, this
thesis may be represented by the following table that reflects
the conceptual resemblance between different versions of
dynamics and thermodynamics.

Indeed, the classical version of describing the microscopic
and macroscopic objects (the Newton ±Maxwell dynamics
and the Clausius thermodynamics, respectively) is character-
ized by a total absence of fluctuations. The Gibbs approach,
which accounts for fluctuations of only one (extensive)
quantity must then be classified as quasi-classical. In this
sense the Gibbs statistical mechanics is similar to the quasi-
classical dynamics of Bohr and Sommerfeld 44.

The results of this work may serve as a basis for making
another step and attribute the Einstein statistical thermo-
dynamics to the nonclassical domain, because both conjugate
parameters are allowed to fluctuate in this theory. Accord-
ingly, Einstein's statistical thermodynamics is the counterpart
of the Heisenberg ± SchroÈ dinger ±Dirac nonclassical
dynamics.

We have to admit, however, that Einstein's approach [3],
formulated in 1910, is not yet the final version of statistical
thermodynamics, because it relies on certain results from the
Gibbs approach and therefore calls for further improvement.
Important steps in this direction were made by Szilard [42] in
1925, and later byMandelbrot [43], Tisza andQuay [44] in the
1950s and 60s (the current state of this problem is discussed in
Refs [45 ± 47]). These extensions of Einstein's approach are
based on the principles of mathematical statistics and the
theory of measurements on macroparameters of a physical
object 45.

The basic idea underlying the direction of development of
statistical thermodynamics, proposed in these works, consists
in the introduction of a probabilistic description directly on

themacroscopic level or in the space of macroparameters, and
this does not depend on the availability of any kind of a
description of the same object on the microscopic level. An
example of the efficiency of the totally macroscopic approach
is the thermodynamic description of black holes in Ref. [51],
which actually contained the prediction of the Hawking
quantum effect, whose nature is microscopic.

We believe that such a description gives a more adequate
treatment of the integral properties of a macroscopic object,
which are in principle not possessed by the constituent
microobjects (such properties are described, for example, by
the intensive thermodynamic parameters). The above analy-
sis of the problem of calculation of pressure and its
fluctuations clearly indicates that the results of microscopic
and macroscopic descriptions of one and the same physical
object coincide far from always.

By this means, in spite of the conceptual correlation
between the different versions of the physical picture of the
world at the microscopic and macroscopic levels of descrip-
tion, these levels each have their own specific features, and
therefore cannot be reduced to one. The ideology of such an
approach was expressed (with some polemical pathos) by
Mandelbrot [53]: ``Our approach ... realizes a dream of the
19th century `energeticists': to describe matter-in-bulk with-
out reference to atoms. It is a pity that all energeticists have
passed a way long ago...''

Generally, this issue ought to be considered in the broader
context of the standing debate between the advocates of the
`effective' physical theories, which are conceptually different
for every hierarchic level of description of nature, and the
champions of the final unified `theory of everything' 46. In this
connection it would be interesting to note that, in perfect
agreement with our conclusions, the possible discord between
the results of statistical mechanics and statistical thermo-
dynamics was pointed out by H A Lorentz in his famous
lectures [54] at the College de France in Paris in 1912: ``One
may conclude that currently the domains of the two methods
do not coincide completely, although they have an extensive
part in common''.

Later on, the inevitability of such discord was pointed out
by V A Fock and N S Krylov [55]: ``One may assume that
between the macroscopic characteristic and the conventional
microscopic description there is some kind of complementar-
ity, similar to that which, according to quantum mechanics,
arises in the case of the classical description. A too precise
definition of the system position within the phase region
selected by the macroscopic state is not possible without
violating the macroscopic characteristic of the system.''

A similar sentiment was expressed by R B Laughlin in his
Nobel lecture (1998) [1]: ``I myself have came to suspect that
all the important outstanding problems in physics are
emergent in nature, including quantum gravity''. It is quite
possible, as it has been more than once in the history of
physics, that currently the development of science is under-
going the next `spiral' on the way towards the construction of
a comprehensive physical picture of the world. There is good
reason to believe that the priority on this way will belong to
the `effective' physical theories.

We wish to pay homage to the memory of Boris
Valentinovich Medvedev, who played a great role in our life

Version Classical Quasi-classical Nonclassical

Level

Microscopic Classical
dynamics
(Newton,
Maxwell)

Quasi-classical
dynamics (Bohr,
Sommerfeld)

Nonclassical
(quantum)
dynamics
(Heisenberg,
SchroÈ dinger,
Dirac)

Macroscopic Classical
thermodynamics
(Clausius)

Quasi-classical
thermodynamics
(Gibbs)

Nonclassical
(statistical)
thermodynamics
(Einstein)

44 Maslov [41] came to the same conclusion from different assumptions.
45 Unfortunately, these problems have not won the proper attention of the

physical community, compared with the attention enjoyed, for example,

by the role of measurements in the description of microscopic objects (see,

for example, Refs [48 ± 50]).

46Recent arguments in favor of each of these standpoints are discussed, for

example, in Ref. [52].
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and scientific work. Discussions with B V Medvedev about
the role of fluctuations in drawing the boundary between
classical and nonclassical physics much stimulated this
research.

We also thank our colleagues A G Bashkirov, O N Golu-
beva, A SKondrat'ev and SFTimashev for useful discussions
and comments, and L I Gladneva, M G Nechiporenko and
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manuscript.

7. Appendix. Proof of the generalized
Bogolyubov ±Zubarev theorem

1. Let us calculate the left-hand side of equality (3.8) at n � 1.
Differentiating (3.3) with respect to the volume V, and using
the properties (3.6) and (3.7), we get

qZ�e�V
qV
�
�
dG

q
qV

n
exp
�ÿbH�e�V �G��o

� ÿb
�
dG

qH�e�V �G�
qV

exp
�ÿ bH�e�V �G�

�
� ÿb

�
:::V:::

qH�e�V �G�
qV

exp
�ÿ bH�0��G�� : �7:1�

Going to the limit e! � 0 and accounting for definition
(2.15), we find the left-hand side of Eqn (3.8):

lim
e!�0

qZ�e�V
qV
� b

�
:::V:::

dG ~P �0��G� exp �ÿ bH�0��G�� : �7:2�
2. To calculate the right-hand side of equality (3.8), we

take into account the variation of the volume V within the
limits of integration in Eqn (3.4), by introducing the
coefficient l f (where l 6� 0 is a real number):

Z�0��l fV� �
�
:::l fV:::

dG exp
�ÿ bH�0��G�� : �7:3�

Then

qZ�0��l fV�
ql

� qZ�0��l fV�
q�l fV�

q�l fV�
ql

� V

l
qZ�0��l fV�

qV
: �7:4�

Setting in this equality l � 1, we get

qZ�0��V�
qV

� 1

fV

qZ�0��l fV�
ql

����
l�1

: �7:5�

For calculating the derivative in the right-hand side of
Eqn (7.3), it is convenient to eliminate the dependence on l
in the limits of integration in (7.3), and move it into the
integrand. As shown in Refs [9, 10], this is accomplished by
applying the consistent canonical scale transformation
(3.9a) to variables p and q in G, so that
�l fV 0� � l f�V=l f� � V, and

dG0 � dp0 dq 0

N !�2p�h� fN �
dp dq

N !�2p�h� fN � dG : �7:6�

Substituting the transformed Hamiltonian function (3.9b)
into the right-hand side of Eqn (7.3), taking (7.6) into
account, and replacing the variables p 0 ! p, q 0 ! q in the

integrand, we finally get

Z�0��l fV� �
�
:::V:::

dG exp
�ÿ bH�0��p=l; lq�� : �7:7�

Differentiating (7.7) with respect to l, we find

qZ�0��l fV�
ql

�
�
:::V:::

dG
q
ql

exp
�ÿ bH�0��p=l; lq��

� b
�
:::V:::

dG
�
ÿ qH�0��p=l; lq�

ql

�

� exp
�ÿ bH�0��p=l; lq�� : �7:8�

Setting l � 1 in both parts of this equality, and using relation
(7.5), we find the expression for the right-hand side of equality
(3.8) at n � 1:

qZ�0��V�
qV

� b
fV

�
:::V:::

dG
�
ÿ qH�0��p=l; lq�

ql

����
l�1

�
� exp

�ÿ bH�0��p; q�� : �7:9�

Equating, according to (3.8), expressions (7.2) and (7.9), we
come to the sought expression (3.1) for the classical DEOS-I,
which completes the proof of the Bogolyubov ± Zubarev
theorem as such.

3. Proceeding by analogy with paragraphs 1 and 2, we
shall calculate the left-hand side of equality (3.8) at n � 2.
Differentiating (7.1) with respect to the volume V, and using
the properties (3.6) and (3.7), we get

q2Z�e�V
qV 2

� ÿb
�
:::V:::

dG
�
q2H�e�V �G�

qV 2
ÿ b
�
qH�e�V �G�

qV

�2�
� exp

�ÿ bH�0�V �G�
�
:

Going to the limit e! � 0 in this expression, and using
definitions (2.15) and (2.16), we get in the upshot:

lim
e!�0

q2Z�e�V
qV 2

� ÿb
�
:::V:::

dG
n

~C�0�V �G� ÿ b
ÿ

~P
�0�
V �G�

�2o
� exp

�ÿ bH�0�V �G�
� �7:10�

4. Let us calculate the right-hand side of equality (3.8) at
n � 2. Differentiating with respect to l the equations of
linkage (7.4) between the first derivatives of Z�0��l fV� with
respect to l and V, and assuming that the second (mixed)
derivatives with respect to these variables are equal, we find

q2Z�0��l fV�
ql2

� �fÿ 1� f V

l2
qZ�0��l fV�

qV

�
�
f V

l

�2 q2Z�0��l fV�
qV 2

:

Setting l � 1, we get

q2Z�0��V�
qV 2

� 1

� f V�2
q2Z�0��l fV�

ql2

����
l�1
ÿ fÿ 1

f V

qZ�0��V�
qV

:

�7:11�
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Differentiating repeatedly the derivative (7.8) with respect
to l, and then setting l � 1, we arrive at

q2Z�0��l fV�
ql2

����
l�1
� ÿb

�
:::V:::

dG
�
ÿ q2H�0��p=l; lq�

ql2

����
l�1

ÿ b
�
ÿ qH�0��p=l; lq�

ql

�2����
l�1

�
� exp

�ÿ bH�0��G�� :
Substituting this expression into Eqn (7.11) and using Eqn
(7.5) together with definition (3.1), for the right-hand side of
equality (3.8) at n � 2 we get

q2Z�0��V�
qV2

� ÿb
�
:::V:::

dG exp
�ÿ bH�0��G��

�
�

1

� f V�2
q2H�0��p=l; lq�

ql2

����
l�1
ÿ b
ÿ eP�0�V �G�

�2
� 1

V
eP �0�V �G� �

1

� f V�2
qH�0��p=l; lq�

ql

����
l�1

�
: �7:12�

Equating, according to (3.8), expressions (7.10) and (7.12), we
find the sought expression (3.2) for the classical DEOS-II,
which is an extension of the Bogolyubov ±Zubarev theorem.

5. Let us derive expressions (3.12) and (3.13) for the
additive Hamiltonian function

H�p; q� � H�p� � H�q� �7:13�

with the homogeneous functions of the form (3.11); to
simplify the notation we drop out the superscript (0) every-
where.

For the first derivatives we have

qH�p=l�
ql

� ÿ k

l
H�p=l�; qH�lq�

ql
� l

l
H�lq� ; �7:14�

so that

qH�p=l�
ql

����
l�1
� qH�lq�

ql

����
l�1
� ÿkH�p� � lH�q� ; �7:15�

whence follows (3.12) with due account for Eqn (3.1).
For the second derivatives, differentiating (7.14), we find

q2H�p=l�
ql2

� 1

l2
k�1� k�H�p=l� ;

q2H�lq�
ql2

� 1

l2
l�lÿ 1�H�lq� ;

so that

q2H�p=l�
ql2

����
l�1
� q2H�lq�

ql2

����
l�1

� k�1� k�H�p� � l�lÿ 1�H�q� : �7:16�

Evidently, expressions (7.15) and (7.16) contain terms of
the same order that cancel out exactly, and we finally get

q2H�p=l; lq�
ql2

����
l�1
� qH�p=l; lq�

ql

����
l�1
� k2H�p� � l 2H�q� ;

whence follows (3.13) with due account for definition (3.2).
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