
Abstract. A survey is offered for the current knowledge of
nonlocal electrodynamic equations which in some cases (e.g.,
in solving boundary value problems in optics) can replace Max-
well's equations. The nonlocal equations are derived using the
semi-classical or quantum-electrodynamic approaches. The
former involves an expansion of retarded potentials in appro-
priate parameters and a subsequent transition, to terms of order
vvvvvvvvvvvvvvvvvvvvvvvvvvvv2/c2, to quantum mechanical operators in the Lagrangian of a
system of moving charges. The latter approach is to consider
second- and third-order quantum electrodynamic effects for two
hydrogen-like atoms arbitrarily far apart. Various nonlocal

equations are derived for the propagation of photons and elec-
tromagnetic waves in spin systems, dielectrics, and metals,
taking into account a variety of quantum transitions and inter-
mediate states in the spectrum of the interacting atoms. By
combining nonlocal field equations with relevant constitutive
equations, a number of typical boundary-value optical pro-
blems are solved for semi-infinite media, superthin films, and
for objects whose linear dimensions are much smaller than the
light wavelength.

1. Introduction

The Coulomb e2=r law determines the energy of interaction
between two electrons whose separation is less than the
characteristic spatial scale of the problem under study and
whose velocities v are negligible compared to the speed of
light c (i.e., v=c! 0). An example is a system of neutral atoms
(van der Waals interaction) separated by a distance smaller
than the characteristic wavelengths l0 in the spectrum of the
interacting atoms (r5 l0). Depending on the multipolarity of
the quantum transitions between the atomic states, the
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operator of the interatomic interaction is in this case
proportional to 1=r3 (dipole-dipole interaction), or to 1=r4

(dipole-quadrupole interaction), etc. The energy of interac-
tion between two neutral atoms in theirS states is known to be
proportional to 1=r6 [1]. If, however, one of the atoms is in the
ground state and the other in an excited state, the potential
energy of interaction is proportional to 1=r3 [1], whereas the
time for the energy transfer between the atoms is finite [2] and
far exceeds the time tp a photon takes to travel the distance r
(tp � r=c).

For separations r > l0, the Coulomb law is insufficient to
describe the interaction of atoms and, together with the
Coulomb interaction, one must consider the retarded inter-
action, which depends on the speed of light and vanishes for
c!1.

The effect of the retarded interaction on a system of
moving electrical charges was analyzed within the frame-
work of classical electrodynamics by Born and Ewald (see
[3]). In Refs [4, 5], the Lagrangian of a system of moving
interacting charges is obtained to an accuracy v2=c2. The
incorporation of retardation effects into the system of
interacting atoms made it necessary to somewhat revise the
existing theoretical methods. The Lagrangian and Hamilto-
nian for a system of interacting atoms were derived in Refs
[6 ± 8] to an accuracy v2=c2.

In the studies of Refs [9] and [10], methods of quantum
electrodynamics were used to analyze the interaction
between free electrons taking into account the retardation
effect. In the language of quantum electrodynamics, the
retarded interaction is due to the exchange of virtual
transverse photons between the charges, whereas the
Coulomb interaction results from the exchange of long-
itudinal and scalar photons [11]. The case of two interacting
electrons in the helium atom was examined by Breit [11, 12].
The Breit operator has the form

B � e2

r
ÿ e2

2r

�
a1a2 � �a1r��a2r�

r2

�
; �1:1�

where a1 and a2 are the Dirac matrices for the electrons [11].
The first term in Eqn (1.1) is the electron-electron Coulomb
interaction, whereas the second introduces corrections for the
motion of the electrons and for the electron spins. The
application of the Breit operator is limited to not-too-large
electron separations, and this is the reason why the problem
of two electrons belonging to two atoms an arbitrary distance
apart had to be revisited in the early 1970s, whenmulti-atomic
systems subject to radiation fields came under close scrutiny.
A corresponding quantum-mechanical treatment for hydro-
gen-like atoms was first given in Ref. [13] and later in Ref. [7].
In the former, the operator of the dipole-dipole interaction
for the atomic electrons is derived in the electric dipole
approximation taking into account only the electrons'
orbital degrees of freedom. The more general analysis of
Ref. [13] involves second-order quantum electrodynamics
effects, including the virtual exchange of photons of all
polarizations, and leads to the operator

U�2� � e2 exp

�
io0a

c

��
1

r
� a�a2n�

r2
ÿ �a1a2� � �a1n��a2n�

2r

ÿ a2

2

�a1a2� ÿ 3�a1n��a2n�
r3

�
; �1:2�

where a is the interatomic separation, n � r=r, and o0 is an
eigenfrequency in the spectrum of the interaction atoms. The
first term in Eqn (1.2) is the Coulomb interaction between the
two atomic electrons, and the remaining terms correct for the
motion of the bound electrons separated by a distance large
compared to l0 � 2pc=o0. For a! 0, the operators (1.1) and
(1.2) are identical. Below we will give a detailed derivation of
the operator (1.2) and discuss its physical meaning.

The next step in solving the two-electron problem was to
take the field of real photons into account. The specific
examples considered were free electrons [14, 15] and two
electrons in a helium-like atom with an assumed nuclear
field [16]. In Refs [6, 7], first a semiclassical and then a
quantum mechanical approach were applied to the interac-
tion between two electrons belonging to their respective
hydrogen-like atoms arbitrarily far apart; the analysis
involved third-order quantum electrodynamical effects,
described in part by the operator (1.2). The importance of
this work is that it provided formulas which described
polarizing fields in a system of two hydrogen-like atoms
and which made it possible to derive nonlocal equations for
the propagation of photons in various media for various
types of quantum transitions and intermediate states in the
spectrum of the interacting atoms. In the present review,
various nonlocal equations will be presented and their
physical meanings will be discussed in detail. Because of
the complexity of Maxwell's equations, and because of their
locality property, these equations do not always lead to a
proper solution. In this review we consider certain types of
problems amenable to a treatment using nonlocal equations.
It can be said that nonlocal equations have made a
breakthrough in the solution of a number of major
problems in classical, nonlinear, and quantum optics, such
as (1) the derivation of formulas for the refractive index
inside and at the surface of a medium, (2) the derivation of
formulas for optical field amplitudes for various observa-
tion points inside and outside optical media, (3) the choice
of appropriate boundary conditions, (4) the construction of
the theory of the transition layer on the surface of an optical
medium, and (5) the solution of a number of problems in
the optics of small objects less than the light wavelength
across.

The plan of this review is as follows. We start by
considering the third-order quantum electrodynamic effects
needed for describing interactions between two hydrogen-like
atoms arbitrarily far apart. Based on the solution obtained,
we present a method for deriving various nonlocal equations
for various degrees of freedom of atomic electrons. We then
re-derive the nonlocal equations semiclassically and also
derive various nonlocal equations of the electrodynamics of
alternating classical and quantum fields. We conclude by
presenting solutions to certain optical problems to demon-
strate the advantages of the nonlocal equations over
Maxwell's equations.

2. Effective interaction energy matrix for two
hydrogen-like atoms arbitrarily far apart

Feynman diagrams for the interaction of two electrons in an
external field are shown in Fig. 1.

Integrating over the time and over the frequencies and
wave vectors of virtual photons in the S matrix yields the
following effective interaction energy matrix for two atomic
electrons (�h � c � 1):
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U
�3�
i!f � e3

�
dr0 dr00 dr000

�
ÿ 1

jr00 ÿ r000j

�
X
l�

expfijo���n ÿ o���p jjr00 ÿ r000jg
ol�1ÿ i0� � oÿ o���r

C
���
r �r0� bA�r0�Cl�r0�

�Cl�r00�g00mC ���m �r00�C
���
p �r000�g000m C ���n �r000� ÿ

1

jr0 ÿ r000j

�
X
l�

expfijo���n ÿ o���p jjr0 ÿ r000jg
ol�1ÿ i0� ÿ oÿ o���m

�C
���
r �r0�g0mCl�r0�Cl�r00� bA�r00�C ���m �r00�C

���
p �r000�g000m C ���n �r000�

ÿ 1

jr0 ÿ r000j
X
l�

expfijo���r ÿ o���m jjr0 ÿ r000jg
ol�1ÿ i0� � oÿ o���p

�C ���r �r0�g0mC ���m �r0�C
���
p �r00� bA�r00�Cl�r00�Cl�r000�g000m C ���n �r000�

ÿ 1

jr0 ÿ r00j
X
l�

expfijo���r ÿ o���m jjr0 ÿ r00jg
ol�1ÿ i0� ÿ oÿ o���n

C
���
r �r0�g0m

�C ���m �r0�Cp�r00�g00mCl�r00�Cl�r000� bA�r000�C ���n �r000�

� 1

jr00 ÿ r000j
X
l�

expfijo���r ÿ o���n jjr00 ÿ r000jg
ol�1� i0� � oÿ o���p

C
���
p �r0� bA�r0�

�Cl �r0�Cl�r00�g00mC ���m �r00�C
���
r �r000�g000m C ���n �r000�

� 1

jr0 ÿ r000j
X
l�

expfijo���n ÿ o���r jjr0 ÿ r000jg
ol�1ÿ i0� ÿ oÿ o���m

C
���
p �r0�g0mCl�r0�

�Cl�r00� bA�r00�C ���m �r00�C
���
r �r000�g000m C ���n �r000�

� 1

jr0 ÿ r000j
X
l�

expfijo���p ÿ o���m jjr0 ÿ r000jg
ol�1ÿ i0� � oÿ o���r

C
���
p �r0�g0m

where o���n , o���m (o���p , o���r ) are the frequencies of the initial
(final) electron states, C ���m�n� are the solutions of the Dirac
equation for a positive-frequency electron, C

���
p�r� � C ���

�

p�r� g4,
C ����

p�r� is the conjugate wave function, g4 � b, gj � ÿibaj
( j � 1, 2, 3), and

a � 0 r
r 0

� �
; b � 1 0

0 1

� �
;

where r is the Pauli matrix. Primes on the radius vector r and
the c matrices indicate various wave functions of the
interacting particles (note that differently primed c matrices
commute with each other). The summation in Eqn (2.1) runs
over the complete set of positive- and negative-frequency
intermediate states. We will regard negative-frequency elec-
tron states as positron states without explicitly changing to a
positron wave function involving a charge conjugate trans-
formation, the reason being that a superposition of states with
opposite charges cannot produce the general solution of the
Dirac equation [11]. The solution we will employ in this paper
is

C �
X
r

arc
���
r �

X
r

b�r c
�ÿ�
r ;

C �
X
r

a�r c
���
r �

X
r

brC
�ÿ�
r ; �2:1a�

where ar, a
�
r , br , b

�
r are the second quantized operators of

the electron-positron field. A transition from S
�3�
i!f to the

effective interaction energy (2.1) was performed using the
equation

S
�3�
i!f � ÿ2piU �3�i!f d

ÿ
o���r ÿ o���m ÿ o� o���p ÿ o���n

�
; �2:2�

where the sign of the optical photon frequency o indicates
that in the vector potential operator bA�Pm gmAm we have
separated out the negative-frequency part proportional to the
destruction operator for photon of a given mode.

Consider the first term in Eqn (2.1) and separate out in it
the factor accounting for the electron-electron exchange of
virtual photons. First, we write the distance between the
electrons as

jr00 ÿ r000j � a

�
1� aDn

a2
�M1

a

�
; �2:3�

where a � ja00 ÿ a000j is the atomic separation, Dn � n00 ÿ n000,
with n00, n000 denoting the distances of the electrons from their
respective nuclei, andM1 �M1�a;Dn � includes higher-order
correction terms in Dx=a. We change to a system of units in
which c 6� 1 and assume that

1

c

��o���n ÿ o���p

�� Dx
a

5 1 : �2:4�

m
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Figure 1. Feynman diagrams for the eÿeÿ interaction of two atoms with

the emission or absorption of a photon.
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Assuming that the internuclear separations lie in the wide
range jDxj4 a41 we then obtain

1

jr00 ÿ r000j exp
�

i

c

��o���n ÿ o���p

��jr00 ÿ r000j
�

� 1

a
exp

�
i

c

��o���n ÿ o���p

��a� 1

1� �aDn �=a2 �M1=a

�
�
1� i

c

��o���n ÿ o���p

��� aDn
a
�M1

�
ÿ 1

2c2
ÿ
o���n ÿ o���p

�2� aDn
a
�M1

�2�
: �2:3a�

If we now eliminate the frequencies from Eqn (2.3a) by using
the equations H000c���n �r000� � o���n c���n �r000�, we see that the
following transformation takes place:

1

jr00 ÿ r000j exp
�

i

c

��o���n ÿ o���p

��jr00 ÿ r000j
�

) 1

a
exp

�
i

c

��o���n ÿ o���p

��a���1� aDn
a2
�M1

a

�ÿ1
� i

c
� f1;H 000� � 1

2c2
�
H 00; �H 000; f2�

�o���n ÿ o���p

ol ÿ o���m

�
; �2:5�

where

f1 � aÿ a2

jr00 ÿ r000j ; f2 � ajr00 ÿ r000j � a3

jr00 ÿ r000j ÿ 2a2 :

�2:6�

As can be seen from Eqn (2.3a), our analysis, along with the
expansion in powers of 1=c, also involves an expansion in the
small parameter Dx=a. Whereas in the former expansion we
retain terms up to quadratic, the latter is carried out to an
arbitrarily high order because the functionM1 contains all the
necessary higher correction terms Ð this is easily seen by
substituting the expansion (2.3) into Eqn (2.6) and comparing
Eqns (2.5) and (2.3a). Thus, the interaction of two atomic
electrons of arbitrary multipolarities will be accounted for
throughout the entire discussion.

The Hamiltonians for the individual atoms with their
nuclei at rest are

H00 � ca 00p00 � g004mc2 ÿ Z1e
2

x00
;

H000 � ca 000p000 � g0004 mc2 ÿ Z2e
2

x000
; �2:7�

where p00, p000 are the momentum operators of the electron and
Z1,Z2 are the charges of the point-like nuclei. Next we obtain
the commutation relations for Eqn (2.5) assuming the atomic
nuclei to be at rest. For �h 6� 1 we have

� f1;H 000� � ÿi�hca 2 �a 00n�
jr00 ÿ r000j2 ;�

H 00; �H 000; f2�
� � ac2

�
a 00p00; �a 000p000; jr00 ÿ r000j��

� a3c2
�
a 00p00;

�
a 000p000;

1

jr00 ÿ r000j
��
: �2:8�

Thus, the operator accounting for the exchange of virtual
photons in the matrix (2.1) takes the form

B1l�r00; r000� � e2 exp

�
i

c

��o���n ÿ o���p

��a�� 1ÿ �a 00a 000�
jr00 ÿ r000j

� a
�a 00n�
jr00 ÿ r000j2 �

1

2
R1l

� �a 00a 000� ÿ �a 00n��a 000n�
jr00 ÿ r000j

ÿ a2
�a 00a 000� ÿ 3�a 00n��a 000n�

jr00 ÿ r000j3
��

; �2:9�

where

R1l � o���n ÿ o���p

ol ÿ o���m

; n � r00 ÿ r000

jr00 ÿ r000j :

In the special case of resonant photon exchange R1l � 1, and
the operator (2.8) goes over into the corresponding operator
of Ref. [4]. For a! 0 andR1l � 1, Eqn (2.9) is identical to the
Breit operator [11]. To understand the physical meaning of
the expansion (2.5), note that in obtaining a Lagrangian
accurate to �v=c�2 for a system of charges with a continuous
energy spectrum [4] one employs a unified time scaleR=c, with
R being the charge separation. This is the interaction transfer
time between the charges, and the retarded potentials can be
expanded in powers of R=c only if the charge distribution
does not change appreciably in the timeR=c. This is of course
a very stringent condition if extended systems are considered.
In the derivation of the Breit operator for a system of two
electrons with a discrete energy spectrum (see [11]), the
expansion parameter was taken to be the quantity
o0r=c5 1, where o0 is the characteristic frequency in the
spectrum of the interacting electrons, and r is the distance
between the electrons. Thus, along with the interaction
transfer time Te � r=c, the characteristic time Ta � 2p=o0

was introduced. In this case, 2pTe 5Ta, i.e., the electron
density in the system of two interacting, moving electrons
changes substantially during the transfer of the interaction. It
is clear that this condition is satisfied when electron-electron
separations are not too large Ð in helium-like atoms, for
example. Because the expansion parameter is taken to be the
quantity (2.4), the expansion (2.5) is valid for two atomic
electrons arbitrarily far apart. The interaction transfer time
Te � a=c in this case is much longer than the characteristic
intra-atomic time scale Ta. This leads to an additional
retardation in the interaction of the electrons, which is
precisely the effect described by the additional terms in the
operator (2.9).

It is known that the characteristic frequencies of atomic
electrons are in the range from a few megahertz to
109 megahertz if the optical transitions and the fine and
superfine splits of the atomic levels are taken into account.
A question arises in this connection as to how to choose a
characteristic intra-atomic time scale Ta. For the retarda-
tion effects to be fully incorporated into the electron
interaction, it is clear that the highest Ð i.e., optical Ð
frequencies must be taken as characteristic frequencies in
the spectrum of the interacting electrons. As is shown
below, the operator (2.9) accounts for various types of
interaction between two electrons, and the presence of a
unified time scale Ta explains the fact that, for example, the
spin-spin interaction of the electrons has additional retarda-
tion terms beyond those in Ref. [11] Ð even though spin
transitions are radio-frequency ones.

We turn now to those matrix elements in Eqn (2.1)
which correspond to the remaining Feynman diagrams of
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Fig. 1. The repetition of the procedure already used to pass
from frequencies to operators yields operators Bsl (s � 2, 3,
. . ., 8), analogous to the operator B1l. These contain
coefficients that determine the differences between the
initial, intermediate, and final frequencies, and also
involve various retardation factors according to the
location of the wave functions in Eqn (2.1). Noting that
the third-order effects in Fig. 1 obey the conservation law
(2.2) and that for the emission of a real photon the sign of
the frequency o in Eqn (2.2) should be reversed, we obtain
the following equation for the energies of the interacting
electrons:

E ���r ÿ E ���m � E ���p ÿ E ���n � �ho � 0 : �2:10�

Based on this conservation law, the following quantum
transition schemes can be recognized (we separate two
states, e. g., p and n, in the spectrum of the interacting
atoms and assume that the initial atomic states n and m are
the same):

A. As a result of the exchange of virtual photons of
frequency o00 � o���n ÿ o���p , one Ð say, the first Ð atom
makes a transition to an intermediate state ol and then
returns to the initial state E

���
m , i.e., E

���
r � E

���
m . The second

atom changes its quantum state, E
���
n ! E

���
p , with the

consequence that one photon is emitted or absorbed by the
two-atom system. The retardation factor for this particular
interaction type is expf�i=c�jo���n ÿ o���p jag. The emission
(absorption) of a real photon may not spatially coincide
with the location of the atom undergoing the quantum
transition E

���
n ! E

���
p . This scheme corresponds to dia-

grams 1, 2 and 7, 8 in Fig. 1.
B. Diagrams 1 ± 8 represent transitions involving the

emission or absorption of a double energy photon. Both
atoms change their states, i.e., E

���
r 6� E

���
m and E

���
p 6� E

���
n

in this case.
C. For E

���
r � E

���
m , when only one of the atoms changes

its state by emitting or absorbing a real photon with energy
�ho � jE ���p ÿ E

���
n j, an interaction with a unity retardation

factor is possible. This is allowed by diagrams 3 ± 6.
The nature of the quantum transitions in schemes A, B,

andC is determined by the properties of the operators Bsl andbA, by the properties of the wave functions, and also by the
energy level schemes of the atomic electrons.

3. Transformation into two-component
wave functions

We can pass to two-component wave functions by using the
following transformations [11]:

C���n �
j���n

rp

2mc
j���n

0B@
1CA ; j���n �

�
1ÿ p2

8m2c2

�
F���n : �3:1�

Let us apply these transformations to calculating the matrix
element


C�l �r00�C���
�

p �r000�jB1ljC���m �r00�C���n �r000�
� �3:2�

in the first term of the matrix (2.1). We first consider the
matrix element of the operator 1=jr00 ÿ r000j in Eqn (2.9).
Taking the positive-energy states in Eqn (3.2) as intermediate

states and using Eqn (3.1) we obtain

e2 exp

�
i

c

��o���n ÿ o���p

��a�
�
� �

F���
�

l �r00�F����p �r000�F���m �r00�F���n �r000�

ÿ 1

8m2c2
F���

�

l �r00�F����p �r000�F���m �r00�
�
p
0002F���n �r000�

�
ÿ 1

8m2c2
F���

�

l �r00�F����p �r000�F���n �r00�
�
p
002F���m �r00�

�
� 1

8m2c2
F���

�

l �r00��p0002F���p �r000�
��F���m �r00�F���n �r000�

� 1

8m2c2
�
p
002F���n �r00�

��F���p �r000�F���m �r00�F���n �r000�
�

� dr00 dr000

jr00 ÿ r000j ; �3:3�

ignoring the third- and the higher-order terms in 1=c. We now
have to transform Eqn (3.3) into�

F���
�

l �r00�F����p �r000�V ���1 F���m �r00�F���n �r000� � �V ���1 �lp;mn ;

�3:4�

and, in doing so, to find the explicit form of the operatorV
���
1 .

To transform Eqn (3.3) into Eqn (3.4), it is necessary to
integrate by parts. For this, we choose the origin of the
coordinate system to be the point a00 and refer the coordi-
nates r0 and r00 to the first and r000 to the second atom.We take
into account, further, that the atomic wave functions do not
overlap and that they vanish at infinity. This means that,
unlike the case ofRef. [11], the powers of 1=jr00 ÿ r000j do not go
to infinity for r00 and r000 within the spatial limits of the
interacting atoms. With these considerations in mind we
obtain the following operator:

V
���
1 � e2 exp

�
i

c

��o���n ÿ o���p

��a� 1

r
; r � jr00ÿ r000j : �3:5�

This operator is an analogue of Ð and in the limit a! 0 is
identical toÐ the usual Coulomb interaction of two electrons
arbitrarily far apart. We consider next the matrix elements of
the remaining terms of the operator B1l using the two-
component wave functions F���n . Substituting wave func-
tions (3.1) into the matrix (2.1) and taking the matrix product
in the integrand we find that it suffices to replace j byF in all
the resulting terms because they already contain the factor
1=c2. Repeating now the transformation already used in
deriving the operator (3.5) and separating out the operators
containing various powers of 1=r we find that the operator
proportional 1=r3 has the form [17]

V
���
2l � exp

�
i

c

��o���n ÿ o���p

��a� e2�h2

4m2c2

�
1

r3
��r 00r 000�

ÿ 3�r 00n��r 000n��� R1l
a2

r5
�
15�r 00n��r 000n� ÿ 9�r 00r 000��

�
:

�3:6�
Operator (3.6) goes over to the spin-spin interaction operator
for two electrons as a! 0 [11]. For electrons arbitrarily far
apart, in accord with the condition (2.4), there arises an
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additional retardation determined by the retardation factor
exp

��i=c�jo���n ÿ o���p ja
	
and also by the additional terms in

Eqn (3.6). In the special case of two electrons resonantly
interacting without either emitting or absorbing a photon, we
have R1l � 1. After some manipulation, the operator propor-
tional to 1=r takes the form [17]

V
���
3l � exp

�
i

c

��o���n ÿ o���p

��a� e2

m2c2

��
1

2
R1l ÿ 1

�
� 1

r
�p00p000� ÿ 1

2
R1l

1

r
n�np00�p000

ÿ 1

2
R1l

a2

r3
��p00p000� ÿ 3n�np00�p000��

� exp

�
i

c

��o���n ÿ o���p

��a� e2a

mc

1

r2
�np00� :

�3:7�

Since in the limit a! 0 and R1l � 1 this goes over to the
corresponding retarded interaction operator for two elec-
trons in a helium-like atom [11], we will refer to operator (3.7)
as to the retarded interaction operator for two electrons
arbitrarily far apart. For R1l � 1 (resonant interaction of
two electrons), operator (3.7) can be obtained from the
classical Hamiltonian function for a system of atoms by
replacing the electron momenta with the corresponding
momentum operators [6]. In the matrix elements of the
operator B1l, the terms proportional to 1=r2 have the form
[17]

V
���
4l � exp

�
i

c

��o���n ÿ o���p

��a� e2�h

4m2c2

��
1

2
R1l ÿ 1

�
� 1

r2
ÿ
2r 00�np000� ÿ 2r 000�np00��� 1

2
R1l

1

r2

� ÿ2r 00�np00� � 2r 000�np000� ÿ 2r 000�np00� ÿ 2r 000�np000��
� 3R1l

a2

r4
r 00�np00�

�
: �3:8�

In the limit a! 0 and R1l � 1 this goes over to the
corresponding spin-orbit interaction operator for two elec-
trons in the Breit operator [11], and we therefore refer to
operator (3.8) as to the spin-orbit retarded interaction operator
for two atomic electrons arbitrarily far apart.

We next consider the interaction of two electrons by
means of the field of virtual photons, taking into account
only the orbital degrees of freedom. The operator for this
portion of the interaction is V

���
1l � V

���
3l . As mentioned

earlier, the derivation of the interaction operator of two
atoms takes into account transitions of arbitrary multi-
polarity in atomic spectra. Retaining only terms linear in n 00

and n 000 in the expansion of the functions 1=r and 1=r2 we
obtain the operator [17]

V
���
1l � V

���
3l � exp

�
i

c

��o���n ÿ o���p

��a�
�
� �d00d000� ÿ 3�nd00��nd000�

a3
� e

mc

�d000p00� ÿ 3�nd000��np00�
a2

� e2

m2c2

��
1

2
R1l ÿ 1

� �p00p000�
a
ÿ 1

2
R1l
�np00��np000�

a

ÿ 1

2
R1l
�p00p000� ÿ 3�np00��np000�

a

��
; �3:9�

where n � a=a and d00 � en00, d000 � en000 are the electric dipole
operators of individual atoms. The operator (3.9) describes
the electric dipole-dipole interaction of two arbitrarily spaced
neutral atoms, one of which makes a transition to a certain
intermediate state Ð when the interaction (3.9) is part of the
process of emission (or absorption) of a real photon. In the
special case of two atoms interacting without emitting or
absorbing a real photon, operator (3.9) corresponds to the
second-order quantum electrodynamics effect, for which the
energy conservation equationE

���
r ÿ E

���
m � E

���
p ÿ E

���
n � 0

is satisfied. In this case we must set R1l � 1 in the operator
(3.9), thus converting it into the corresponding operator of
Ref. [11].

4. Role of an external field in the interaction
of two atomic electrons

Let us use the transformation (3.1) to go over from the wave
function C to the two-component wave functions F in the
matrix elements of the type


C
���
r �r 0�

��e bA 0�r 0���Cl�r 0�
�
; �4:1�

in the matrix (2.1). The matrix elements (4.1) of the vector
potential of the external field determine the interaction of two
atomic electrons with the field of real photons. Consider first
matrix elements (4.1) for the cases in which atomic electrons
make their transitions via positive-energy intermediate states.
Performing some necessary manipulations on the matrix
element (4.1) for the atomic transition from the state
F���l �r 0� to F���r �r 0�, we separate out the following transition
operator:

R�1 � eA04�r 0� : �4:2�
The terms proportional to 1=c have the form

R�2 � ÿ
ie

2mc
�p0A0� ÿ ie

2mc
�A0p0� ÿ i�he

2mc
�r 0H0� ; �4:3�

where A0�r 0� is the vector potential operator for the external
field at the electron position described by the radius vector r 0,
and H0�r 0� is the corresponding magnetic field strength
operator (�H0A0� � H0). The operator R�3 containing the
second power of 1=c is

R�3 � ÿ
e�h2

8m2c2
�D0A04� ÿ

i�he

4m2c2
�H0A04�p0

� e

4m2c2
�r 0p0�A04�r 0p0� : �4:4�

The terms of order 1=c3 in the transition operator are of the
form

R�4 �
e

16m3c3

�
i�r 0A0��r 0p0�p0 2 ÿ ip0 2�r 0A0��r 0p0�

� �h
X
a

s0a

�
r 0

qA0

qx 0a

�
p0 2 � ir 0�r 0A0�p03

ÿ �h
X
a

s 0ap
0 2
�
r 0

qA0

qx 0a

�
ÿ ir 0p0 2�r 0A0�p0

�
; �4:5�

where a � x; y; z. Each of the transition operators obtained
can cause an atomic electron to make a quantum transition
from a certain intermediate state F���l to a final state F���r

provided the electron has come to this intermediate state
through its exchange of virtual photons with an electron in the
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other atom. Note that the potential A04 of the quantized
external radiation field is zero in this case. For a static
external field, the term (4.2) differs from zero, and the
interaction between electrons belonging to two different
atoms then occurs via the field of virtual photons, in which
process the conservation law

E ���r ÿ E ���m � E ���p ÿ E ���n � 0 :

is obeyed.

4.1 Inclusion of negative-energy intermediate states
The effective interaction energy matrix (2.1) involves a
summation over the negative-energy intermediate states of
the interacting electrons, implying that some of the interac-
tion energy is due to the influence of positronic states in the
spectrum of the electrons. This influence enters indirectly
through the electrons' intermediate virtual states, both the
initial and final states being positive-energy electronic ones.
The positronic intermediate states can be included by going
over to a two-component wave function in Eqn (2.1), with the
use of wave functions of the form

C �ÿ�l �
ÿ�rp�

2mc
w�ÿ�l

w�ÿ�l

0B@
1CA ; w�ÿ�l �

�
1ÿ p2

8m2c2

�
F�ÿ�l :

�4:6�
Note that there is no need, in this procedure, to go over to the
positronic wave function (which contains the charge con-
jugate transformation [11]). Instead, we proceed as follows to
account for the intermediate positronic states.

We note, first, that the photon energy �ho is much lower
than the energy of the electron field and that the electron
energies differ little from their rest values. Accordingly in
(2.1), we set

�h
�
ol�1ÿ i0� � oÿ o���r

� � ÿ2mc2 �4:7�
etc.

Second, we introduce the projection operators

L0ÿ �
mc2 ÿH 0

2mc2
; L00ÿ �

mc2 ÿH 00

2mc2
; �4:8�

which have the properties that

L0ÿCl�r 0� � C �ÿ�l �r 0� ; L00ÿCl�r 00� � C �ÿ�l �r 00� : �4:9�
Then, applying the transformation of Section 2, we can isolate
the following operator from the first and second terms in the
matrix (2.1):

P�1l �
e

2mc2
�g04g0dA0dL0ÿB1l � B2lL00ÿg

00
4g
00
dA
00
d� ; �4:10�

where d � 1; 2; 3; 4 and A0d is the four-vector potential
operator for the external field at the position of the electron
described by the radius vector r 0.

The remaining terms in the matrix (2.1) can be combined
pairwise in a similar way. We now transform operator (4.10)
using the wave functions (3.1) for the initial and final
electronic states. The quantities R1l and R2l already contain
the factor 1=�2mc2�, and the operators B1l and B2l are
therefore of reduced form. We next perform the matrix
multiplication of the operators in Eqn (4.10) and multiply
out the wave functions of the interacting electrons. Keeping
terms of order 1=c and integrating by parts where necessary,

the operator (4.10) becomes

P�1 �
e3

2mc2
exp

�
i

c

��o���n ÿ o���p

��a��ÿ i�h

2mc

a

r2
�r 00n�

�
X
a

s0a
qA04
qx0a
ÿ 1

2mc
�r 0p0��r 00n� a

r2
A04 �

i�h

4m2c2

� �r 0A0��r 00p00� 1
r
�r 0A0�r 00

X
a

s000a r
000
�
1

r

qA0004
qx000a
� na

r2

�
ÿ i�r 0A0��r 00n� a

r2
� i

2mc
�r 0A0��r 00r 000��r 000p000� 1

r

� i

2mc
�r 0A0��r 0p0� 1

r
� 1

2mc
�r 0n��r 00p00� a

r2
A004

ÿ 1

2mc

a

r2
�r 0n��r 00p00�A004 �

�h

2mc

X
a

�r 00A00�s0a
na
r2

� i

2mc

1

r
�r 00p00��r 00A00� � i

2mc

1

r
r 0�r 00A00�r 000�r 000p000�

ÿ i
a

r2
�r 0n��r 00A00�

�
; �4:11�

where r 0, r 00 operate on the spin wave functions of the
electron in the first atom and r 000 on those of the electron in
the second one. We now use the identities

r 000�r 000p000� � ÿ�r 000p000�r 000 � p000 ;

�r 000p000� 1
r
� 1

r
�r 000p000� ÿ i�h

�nr 000�
r2

;

�r 00A00��r 00r 000��r 000p000� � �A00p000� � ir 000�A00p000�

ÿ ip000�A00r 00� �
X
a 6�b

s00as
000
a A
00
b p
000
b ÿ

X
a 6�b

s00a p
000
a A
00
bs
000
b : �4:12�

and assume that the two atomic electrons interact in an
alternating external field and that the vector potential
operator A satisfies the Lorentz condition qAm=qxm � 0,
m � 1, 2, 3, 4. In this case we can set

A04 � 0 ;
qA04
qx
� 0 : �4:13�

and the operator (4.11) then assumes the form

P�1 �
e3

2mc2
exp

�
i

c

��o���n ÿ o���p

��a��ÿ 2i�A00n00� a
r2

� 2r 00�A00n� a
r2
� �h

mc
�A00n� 1

r2
� i�h

mc
r 00�A00n� 1

r2

� i

2mc

1

r
�p00A00� ÿ 1

2mc

1

r
r 00�p00A00� � i

mc

1

r
�A00p000�

ÿ i

2mc

1

r

�X
a6�b

s00ap
000
a A
00
bp
000
b ÿ

X
a 6�b

s00ap
000
a A
00
bs
000
b

��
: �4:14�

In an analogous fashion we transform the remaining
terms in the matrix (2.1) and the corresponding operators
for the negative-energy intermediate states. The meaning of
these operators (which we denote by P�2 , P

�
3 and P�4 ) will be

discussed later.

4.2 Positive-energy intermediate states
Consider now the sum over the positive-energy intermediate
states (i.e., electron states l�) in the effective interaction
energy matrix. If we transform the matrix elements by using
the approximate wave functions (3.1) in the same way as in
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Sections 3 and 4, then the first two terms in the matrix (2.1)Ð
those which correspond to diagrams 1 and 2 in Fig. 1 and
which have identical retardation factors expf�i=c�jo���n ÿ
o���p jagÐ take the form

A
�3�
i!f �

X
s; s 0

X
l�

�

F���r jR�s jF���l

�

F���l F���p jV ���s 0 l1 jF���m F���n

�
�h
�
ol�1ÿ i0� � oÿ o���r

�
�


F���r F���p jV ���s 0l 2jF���l F���n

�

F���l jR�s jF���m

�
�h
�
ol�1ÿ i0� ÿ oÿ o���m

� ; �4:15�

where the operators V
���
s 0l1 and V

���
s 0l2 are obtained from the

operators B1l and B2 l, respectively. Terms of order higher
than third in 1=c will be dropped in the products of various
matrix elements in Eqn (4.15). The remaining terms in Eqn
(2.1) will be of similar form. Let us denote them by B

�3�
i!f ,

C
�3�
i!f, and D

�3�
i!f . All the terms we have separated out in the

matrix (2.1) have different meanings, as will be shown
below.

5. Polarizing fields in a system of hydrogen-like
atoms emitting or absorbing photons

Contained as factors in the operators (4.3), (4.4), and (4.5) for
the first-order effects are atomic and field operators which
cause quantum transitions to occur between the atoms and
photonic states at one and the same point of observation. For
two arbitrarily separated interacting atoms, with operators of
the form (4.14) and matrix elements (4.15), the situation is
different. In various terms of Eqn (4.14) one can separate out
(a) an operator which acts at a point of observation and (b) an
operator which acts at the position of the other atom, the one
forming the polarizing field. The polarizing field in this case is
that of virtual rather than real photons. Similarly, matrix
elements of the type (4.15) contain the dependence on the
coordinates of the two atoms, one of which is at the point of
observation.

Consider now the polarizing fields that form according to
scheme C of Section 2.1 Ð a scheme in which, due to the
exchange of virtual photons and the emission (or absorption)
of one real photon, only one of the atoms changes its state.
Assume that the position of the first atom is described by the
radius vector r1 (coordinates r

0 and r00), and the position of the
second atom, by r2 (coordinates r000). The initial state of the
first atom is labeled by the indexmwith energy E

���
m , and that

of the second, by n with energy E
���
n . As a result of virtual

photon exchange, the first atom finds itself in an intermediate
state E

���
l or E

�ÿ�
l and then returns to its initial state, i.e.,

E
���
r � E

���
m . Whereas at the location of the first atom one

real photon is absorbed, the second atom changes its
quantum state and makes a transition to a level
E
���
p > E

���
n . Such a transition scheme corresponds to the

first term in the matrix (2.1) and to diagram 1 (see Fig. 1). A
similar situation exists with regard to the second term in Eqn
(2.1) Ð that for the Feynman diagram 2 in Fig. 1 Ð when a
photon is absorbed not at the position of the atom that makes
the transition E

���
n ! E

���
p but rather at the location of the

other atom, which forms the polarizing field. The remaining
elements of the matrix (2.1) (whose diagrams are 3 ± 8) do not
participate in the formation of the polarizing field in this
scheme. Indeed, for r � m each of these terms contains zero
matrix elements of the type hC���r jg0mjC���m i.

We proceed to write the vector potentials of the polarizing
fields explicitly, using Eqns (4.14) and (4.15). For this it is
necessary to distinguish a particular type of transition
between the states of the interacting atoms Ð orbital
transitions, for example. Then, in accord with Eqn (4.3), the
following Hamiltonian operator is obtained for first-order
effects for either of the atoms:

H0001 � ÿ
e

mc
p000A000 ; �5:1�

where A000 is the operator for the vector potential of the
external field at the position of the second atom. With the
help of the operator (4.14) we can write the Hamiltonian
operator in the form

H 0002 � ÿ
e

mc
p000A�p� ;

A�p� � ÿ e2

2mc2
1

r
exp

�
i

c
o0a

�
A00 ; �5:2�

where o0 � o���p ÿ o���n is the frequency of the p! n
transition. We shall refer to the polarizing field A�p� as to the
positronic polarizing field. The polarizing field (5.2) is due to
the process in which a photon disappears at the location of the
second atom and is absorbed at the location of the first one.
The remaining terms in Eqn (4.14) describe the orbital
quantum transitions and differ from the operator (5.2) in
their physics. The p00A00 term, in particular, corresponds to the
positronic polarizing field, but with a photon disappearing
and being absorbed at one and the same point. Thus, the
inclusion of positronic intermediate states in the interaction
of two atomic electrons gives rise to an additional Hamilto-
nian, responsible for the interaction of atomic electrons with
an external field. As a result, one should add a positronic
polarizing fieldA�p� to the external fieldA000 when considering
the interaction of a system of atomic electrons with an
external field.

We next consider the role of the interaction (4.15) via
positive-energy intermediates states, taking only orbital
quantum transitions into account. Inserting the operators
(4.3) and (3.9) into Eqn (4.15) yields the following interaction
Hamiltonian [17]:

H 0003 � ÿ
e

mc
p000A�e� ; �5:3�

where A�e�, the vector potential of the electronic polarizing
field, is given by

A�e� � exp

�
i

c
o0a

�X
l�

� �p0rl A0�
�h
�
ol�1ÿ i0� � oÿ o���r

�
�
�

e

imo0

d00lm ÿ 3�d00lm n�n
a3

� e2

im2co0

p00lm ÿ 3�p00lm n�n
a2

� e2

m2c2

��
1

2
R1l ÿ 1

�
1

a
p00lm ÿ

1

2
R1l
�np00m�n

a

ÿ 1

2
R1l

p00lm ÿ 3�np00lm�n
a

��
� 1

�h
�
ol�1ÿ i0� ÿ oÿ o���m

�
�
�

e

imo0

d0rl ÿ 3�d0rl n�n
a3

� e2

im2co0

p0rl ÿ 3�p0rl n�n
a2

� e2

m2c2

��
1

2
R2l ÿ 1

�
1

a
p0rl ÿ

1

2
R2 l
�np0rl�n

a
ÿ 1

2
R2 l

� p0rl ÿ 3�np0rl�n
a

��
�p00rlA00�

�
; �5:4�
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with

R1l � o���n ÿ o���p

ol ÿ o���m

; R2l � o���n ÿ o���p

ol ÿ o���r

:

The electronic polarizing field (5.4) is written in the electrical
dipole approximation using operator (3.9) to account for the
virtual photon exchange.Note that the operatorsA0 andA00 in
Eqn (5.4) were taken out of the matrix element sign in this
approximation. The electronic polarizing field (5.4) is formed
by two atoms, one of which finds itself in its initial quantum
state as a result of the sequence of quantum transitions under
study. This means that in Eqn (5.4) we can separate out the
average value of the electric dipole moment of this atom in a
certain state r � m. First-order perturbation theory approx-
imates the averaged dipole moment d 0m as [2]

d0m �
e

mc�h
exp�ÿiot�

X
l�

�
d0ml�p0lm A00�

olm ÿ o� �i=2��Gl � Gm�

� �p0mlA
0
0� d0lm

olm � oÿ �i=2��Gl � Gm�
�
; �5:5�

where olm is the transition frequency, Gÿ1l�m� is the lifetime of
the state l�m�, and A0 � A00 exp�ÿiot�. Note that in Eqn (5.5)
we only left the negative-frequency term, responsible for the
photon absorption process leading to the polarizing field
(5.4). Using Eqn (5.5) and suppressing the indexm, Eqn (5.4)
becomes

A�e� � c

io0

�d0� ÿ 3
ÿ�d0�n�n
a3

� e

imo0

�p0� ÿ 3
ÿ�p0�n�n
a2

ÿ io0

c

ÿ�d0�n�n
a

ÿ e

mc

�p0�
a
; �5:6�

where the notation [. . .] indicates an average taken at the time
t 0 � tÿ �a=c��o0=o�. Here we have made use of the isotropy
property of the atoms, which implies that the quantities
�p0rl A0� d0lm and p0rl�d0lm A0� are equal. We next transform from
the vector potentials (5.2) and (5.3) of the polarizing fields to
the corresponding electric and magnetic field strengths using
the Lorentz condition [11]

qAm

qxm
� 0

For a radiation field proportional to exp�ÿiot� we have

E�e� � io
c

A�e�; E�p� � io
c

A�p� ; �5:7�

where the vector potentials A�e� and A�p� are proportional to
cvkl, the creation operator for a photon of wave vector k and
polarization index l � 1; 2 at the position of the atom
producing the polarizing field (the atom-polarizer) in the
process when the quantum transition p! n takes place at the
position of the other atom (the atom-observer), arbitrarily
separated from the atom-polarizer.

Let us now consider the case in which the frequency o of
the external radiation field is close to one of the frequencies
olm > 0. Then the mean momentum is

�p0� � im

e
o0�d0� ;

and the operator for the strength of the electronic polarizing
field is, from Eqn (5.6),

E�e� � rot rot
�d�
a
; �5:8�

where the differentiation is carried out with respect to the
coordinates of the observation point a000. The magnetic field
strengths H�e� andH�p� are determined in a similar way using
the standard vector potential ± strength relation for the
magnetic field (see Ref. [11]).

5.1 Integral equations for photon propagation
in an electric dipole optical medium
Let us introduce the dipole (ad) and momentum (ap) atomic
polarizabilities by means of the relations

d0 � adA0 ; p0 � apA0 ; �5:9�
where d0 and p0 are the average, second-order perturbation
theory values of the dipole moment and momentum in the
state m. From Eqn (5.5) one can determine the dipole
polarizability of an isotropic atom. To find the momentum
polarizability ap, thematrix elements d0lm and Eqn (5.5) should
be replaced by the matrix elements p0lm of the momentum
operator. Then the vector potential of the electronic polariz-
ing field assumes the form

A�e� �
�
ad

c

io0

eÿ 3�en�n
a3

� ap
e

imo0

eÿ 3�en�n
a2

ÿ ad
io0

c

�en�n
a
ÿ e

mc
ap

e

a

�
�A 0� � Ke�a 0; a 000��A 0� ;

�5:10�
where e is the unit vector along the field A0.

A transformation to anN-atom system can be carried out
by summing the vector potentials, Eqns (5.2) and (5.10), of
the polarizing fields created byNÿ 1 atoms at the position of
the atom with a radius vector a00. To assess the role of the
electronic and positronic polarizing fields in such a system,
terms in Eqn (5.10) proportional to 1=a must be compared
with the vector potential (5.2). In doing this, it should be
taken into account that, whereas the electronic field contains
the polarizabilities ad and ap, which depend on the random
distribution of eigenfrequencies o0 due to non-uniform
broadening, the positronic field is independent of this broad-
ening Ð the reason for why, provided certain conditions in
the N-atom system, the electronic and positronic polarizing
fields may become comparable in magnitude.

We turn our discussion to the optical medium.We assume
the medium to be continuous and therefore introduce the
concentrationN=V to describe the distribution of atoms in it.
Furthermore, we assume that the polarizing fields (5.10) and
(5.2) are proportional not to the external field but rather to
the field inside the medium. This allows us to write the
following integral equation for the electrical field strength
operator [17]:

E�r; t� � EI�r; t� �
�
N

V
Ke�r; r 0�E

�
r 0; tÿ R

c

�
dV 0

�
�
N

V
Kp�R�E

�
r 0; tÿ R

c

�
dV 0 ; �5:11�

where r is the radius vector of the observation point; r0 is the
radius vector of a point within the medium or on its surface;
EI�r; t� is the external electric field strength operator,
represented as a superposition of plane waves with coordi-
nate-independent amplitudes cvkl [11]; R � jrÿ r0j; and

Kp�R� � ÿ e2

2mc2
1

R
: �5:12�
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An integral equation for the magnetic field strength operator
can be obtained in a similar way by applying the rot operator
to the vector potentials (5.10) and (5.2).

If the point of observation is outside the medium, then the
integral in Eqn (5.11) is performed over the whole of the
medium. If the point of observation is within themedium, it is
necessary first to exclude a small sphere of radius L0 with the
atom inside. In the special case in which there is no positronic
polarization in the medium and only one eigenfunction in the
atomic spectrum is singled out, Eqn (5.11) is identical to the
integro-differential equation of classical optics [18] if one
transforms from operators to the corresponding classical
fields in Eqn (5.10).

5.2 Integral equation for photon propagation
in a system of electron spins
Let us consider one more example of an integral equation
obtainable with the proposed method. Unlike the preceding
case, we will consider only the spin degrees of freedom of the
electrons in two one-electron atoms positioned arbitrarily far
apart. This is relevant, for example, to magnetooptics,
inversionless lasers, laser cooling of atoms, etc. We will
assume spin transitions to take place between atomic states
separated by the optical frequency o0. Such transitions may
occur independently of the electric dipole transitions of
Section 5.1.

We will apply operators (3.6) andÿ
R
���
2

�
s � ÿ

i�he

2mc
�r 0H0� �5:13�

to describe polarizing fields in a system of electron spins and
will consider the same quantum transition scheme as that
employed in Section 5.1.

Substituting operators (3.6) and (5.13) into the matrix
(4.15) we obtain the following interaction operator:

H0003 � ÿ
�he

2mc
�r 000H�e�� ; �5:14�

where the magnetic field strength is

H�e� � exp

�
i

c
o0a

�
e2�h2

4m2c2

X
l�

� �r rl H
0�

�h
�
ol�1ÿ i0� � oÿ o���r

�
�
�
r 00lm ÿ 3�r 00lm n�n

r3
� 15

a2

r5
R1l�r 00lm n�nÿ 9

a2

r5
R1l r

00
lm

�

� 1

�h
�
ol�1ÿ i0� ÿ oÿ o���m

�� r 0rl ÿ 3�r 0rl n�n
r3

� 15
a2

r5
R2l�r 0rl n�nÿ 9

a2

r5
R2l r

0
rl

��
: �5:15�

This field is the electronic polarizing field, i.e., it is due to the
electronic intermediate states only. As can be seen from Eqn
(4.14), a positronic polarizing field does not exist for the
transition scheme adopted.

We proceed by separating out in Eqn (5.15) the average
values of the spin magnetic moments of the atom-polarizer,
using a formula analogous to the first-order perturbation
theory result (5.5). For the average values of the spin variables
in the state m we introduce the notation

r 0m � �as�m H0 ; q0m � �aq�m H0 ; �5:16�

where �as�m is the spin polarizability in the state m; q0m is the
average value, for the state m, of the operator q0 with matrix
elements q0lm � r 0lm=olm; and �aq�m is the corresponding
polarizability. The polarizing field (5.15) then takes the form

H�e� � mB

�
as

hÿ 3�hn�n
r3

ÿ 15o0aq
a2

r5
�hn�

� 9o0aq
a2

r5
h

�
�H 0� � Ks�a0; a000��H 0� ; �5:17�

where mB is the Bohr magneton and h, the unit vector along
the magnetic field strength H0. A transition to the integral
equation for photon propagation in a continuous optical
medium is performed in the same way as in Section 5.1., i.e.,
by replacing the external field in Eqn (5.17) by the field inside
the medium. The magnetic field strength operator for spin
transitions then takes the following form for an external or
internal point of observation r at the time t [7]:

H�r; t� � HI�r; t� �
�
N

V
Ks�r; r0�H

�
r0; tÿ R

c

�
dV 0 ;

�5:18�

whereHI�r; t� is the external magnetic field strength operator.
The results of the preceding analysis can be divided into

two main categories, namely, (a) those related to the solution
of the major quantum electrodynamics problem of two
interacting electrons and (b) those concerning the applica-
tion of this solution to the derivation of integral field
equations for problems in optics.

The interaction of two electrons belonging to two
respective, arbitrarily separated atoms at rest is treated as a
third-order quantum electrodynamics effect, part of it being
virtual photon exchange involving various positive- and
negative-energy intermediate states. With this approach, it
proves possible to classify various transitions schemes that
lead to the emission or absorption of a photon in a system of
two interacting hydrogen-like atoms. The scheme we have
discussed above in detail is that in which one of the atoms is
an atom-polarizer and the other, an atom-emitter (atom-
absorber).

Let us discuss here the advisability of transforming to
integral field equations from the corresponding differential
equations. Although the integral equations describing the
electric and magnetic field strengths in classical optics [18] are
in effect equivalent to Maxwell's equations, they enable a
rigorous derivation of the Lorentz ±Lorentz formula and
make it possible to solve a number of important optical
problems. However, this powerful method has had very few
applications thus far. A possible reason is that the well-known
integral equations of classical optics have a sense only for
isotropic, non-magnetic dielectric media. It is therefore of
great interest to derive the corresponding integral equations
for a wider class of problems Ð and this is precisely what the
present paper is concerned with. The problem we addressed
first was that of two electrons in the framework of quantum
electrodynamics. The study of the interaction of two electrons
in a radiation field reveals various types of quantum
transition. In particular, as pointed out above, we can
separate out the positronic polarizing field, which in some
cases cannot be neglected compared with its electronic
counterpart. In view of the correspondence between Eqn
(5.11) and the classical integral equation, it can be argued
that the positronic polarizing field can be interpreted as an
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additional current inMaxwell's equations [19]. The electronic
polarizing field in the electric dipole approximation is well
known in optics: this is a field of dipoles which is entirely due
to electronic states in the spectrum of interacting atoms. The
positronic polarizing field, on the other hand, arises when
positronic states are taken into account Ð not the real but
virtual ones, whose existence does not require that the energy
conservation law be obeyed. We thus see that the study of the
two-electron problem in the framework of quantum electro-
dynamics not only contributes to the development of the
method of integral equations but also reveals new mechan-
isms for the emission and absorption of real photons in a
system of interacting atoms.

Two types of interaction between an atom and a radiation
field are discernable. In one of these, real photons pass from
excited atoms to unexcited ones, the radiation transfer time
being determined by the distance between the atoms. This
type of interaction can be taken as the basis for deriving
integral equations for radiation transport, which are used, for
example, in the optics of turbulent media [20]. The second
type of interaction involves the concept of the polarizing field,
a field considered in this review as a third-order quantum
electrodynamics effect. As indicated above, a photon dis-
appears at the location of one of the interacting atoms and is
absorbed at the location of the other. A similar situation
exists of course if one considers the emission of a photon in a
system of two interacting atoms. An important point about
this type of interaction is that a photon disappears and
becomes absorbed at the same instant of time, implying that
the polarizing field forms instantaneously due to the con-
tinuous exchange of virtual photons between the atomic
electrons [otherwise, the conservation law (2.10) would be
violated]. Note that the retardation factor exp��i=c�o0a� in the
various elements of matrix (2.1) only indicates that the
effective interaction energy is a periodic function of the
interatomic separation.

6. Semiclassical derivation of nonlocal equations

The quantum electrodynamical derivation of nonlocal equa-
tions in Section 5 is based on isolating themean of the induced
multipole moment of an atom from a polarizing field. For
electric dipole transitions, the electronic polarizing field
produced at a certain point of observation is proportional to
the mean of the induced dipole moment of the atom-polarizer
(this moment is aE, where a is the electronic polarizability of
the atom-polarizer, and E is the electric field strength at the
location of this atom). Taking this into account, one can
employ a quasiclassical method to derive nonlocal equations
of electrodynamics. Then, if one uses the electric dipole
approximation, it is necessary that in the expression for the
electric dipole field [18],

E1 � rot rot
�d2�
R12

;

the dipole moment d2 be written as aE2, where E1 and E2 are
the electric field strengths at the locations of the atom-
observer and the atom-polarizer, respectively, R12 is the
distance between the point dipoles, and [. . .] indicates that
the quantity in question is taken at the time tÿ R12=c. The
essential point to be noted here is that the semiclassical
method should be considered to be complementary to the
quantum electrodynamical method because only this latter

yields a correct scheme of the transitions that produce
polarizing fields. From this point of view, the electric dipole
field of classical optics [18] appears as a field of virtual, rather
than real, photons.

In what follows, a number of nonlocal equations derived
semiclassically for classical alternating fields will be consid-
ered.

6.1 Integral equations for the propagation
of electromagnetic waves in dielectrics
Eqn (5.11) for a classical fieldE�r; t� can be derived as follows.
Write down the Hamiltonian function for a system of N
atoms at rest using retardation potentials to account for the
interatomic interaction [4]. Expand the retardation potentials
in powers of the small parameter (2.4), retain only the terms of
the order of v2=c2, and assume the induced dipole moments of
the atoms to be proportional to the electric field strength E,
the coefficient being the atomic polarizability a. Then, if only
electronic polarizing fields are considered, we obtain [18]

E�r; t� � EI�r; t� �
�
rot rot

P�r 0; tÿ R=c�
R

dV 0 ; �6:1�

whereP � �N=V�aE is the polarization vector of the medium,
R � jrÿ r 0j, r is the point of observation, r0 is a point inside
the medium or on its surface, and EI is the electric field of the
external wave at the point of observation at the time t.

Eqn (6.1) has been formulated for a continuous dielectric
consisting of identical atoms. Following the same line of
argument, Eqn (6.1) can bemodified to describe, for example,
activated, discrete-continuous, or nonlinear dielectrics if a
more general phenomenological law is used to describe the
polarization vector as a function of field E inside the medium.
For activated dielectrics with a continuous distribution of
resonant and nonresonant atoms with respective polarizali-
bilities aR and aNR, we have the integral equation [21]

E�r; t� � EI�r; t� �
�
rot rot

1

R

�
NR

V

�
aR E

�
r 0; tÿ R

c

�
dV 0

�
�
rot rot

1

R

�
NNR

V

�
aNRE

�
r 0; tÿ R

c

�
dV 0 ; �6:2�

where �NR=V� and �NNR=V� are the corresponding concen-
trations of resonant and non-resonant atoms.

In a discrete-continuous dielectric, we take into account a
small region around the observation point, embraced by the
so-called Lorentz sphere with the property that the atoms are
distributed discretely inside it and continuously outside it. As
will be shown below, the structure factor gives rise to the
nearfield effect, which is taken into account by writing the
nonlocal equation in the form [22]

E�r; t� � EI�r; t� �
�
V1

rot rot
a
R

�
N

V

�
E

�
r0; tÿ R

c

�
dV 0

�
X
a

rot rot
�da�
Ra

; �6:3�

where V1 is the volume of the dielectric occupied by the
continuously distributed atoms; the summation runs over all
discretely distributed atoms within the Lorentz sphere, with
the induced dipole moments da depending on the retardation
time tÿ Ra=c; Ra is the distance of atom a from the point of
observation at the center of the Lorentz sphere.
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The discrete-continuous properties of a dielectric close to
its surface are conveniently studied by dividing the near-
surface layer into separate sublayers.Wewill treat a superthin
dielectric film as a system of N monolayers separated by a
distance a0, where a0 is the lattice constant. Let us enclose the
observation point r � x; y; z, which can be either inside or
outside the film, by a cylinder with the base radius e4 a0. The
axis of the cylinder is taken to pass through the point of
observation parallel to the z axis. The atoms within the
cylinder are treated as discretely distributed dipoles, and
those outside form a set of continuously distributed layers.
A change in the position of the observation point relative to
the film's framing surfaces in the x 0, y 0 plane leads to a
displacement of the cylinder as a whole in the same plane.
Then the nonlocal equation for the electric field strength
E�r; t� � E�r� exp�ÿiot� of frequency o is written as the
following system of N equations [23]:

El�x; y� � EI l�x; y�

� a
a20

XN
j�1

�G1
s

�
rot rotEj�x 0; y 0�G�Rj�

���
z�zl ds

0

� a
XN
j�1

X
a

�
rot rotEj�xa; ya�G�Raj�

���
z�zl ;

l � 1; 2; . . . ;N ; �6:4�
where the external field within the lth monolayer is given by

EI l�x; y� � AI�x; y; z� ; El�x; y� � E�x; y; zl� ;
EI�r; t� � AI�r� exp�ÿiot� ; �6:5�

a is the linear polarizability of the atoms of the medium,
G�R� � exp�ik0R�=R, k0 � o=c, and

Rj � ��xÿ x 0j�2 � �yÿ y 0j�2 � �zÿ z 0j�2�1=2 ;

Raj � ��xÿ x 0a�2 � �yÿ y 0a�2 � �zÿ z 0j�2�1=2 :
The integral in Eqn (6.4) is over the x 0, y 0 plane except for the
sphere s of radius e centered at the point �x; y; zl�, and the
differentiation is carried out with respect to the coordinates of
the observation point �x; y; zl�.

Now consider a plane wave incident on the film under
study at an angle yI. Then

AI�r� � E0I exp�ik0sIr�; sI � �ÿ sin yI; 0;ÿ cos yI� : �6:6�
Further, because of the uniformity of the film surface, the
solution of Eqn (6.4) can be written as

El�x; y� � El exp�ÿik0 sin yI x� : �6:7�
Upon making some manipulations and noting that

zl � ÿa0�lÿ 1�, Eqn (6.4) becomes

El � EI l ÿ i2pC
k0a0
cos yI

Xlÿ1
j�1

�
sI � �sI � Ej�

�
� exp

�
ik0a0 cos yI �lÿ j��ÿ i2pC

k0a0
cos yI

�
XN
j�l�1

�
sR � �sR � Ej�

�
exp

�
ik0a0 cos yI� jÿ l��

� C
XN
j�1
bPÿa0� jÿ l��Ej ; �6:8�

where C � a=a30, the tensor bP is defined in the appendix (part
A), and

sR � �ÿ sin yI; 0; cos yI� : �6:9�
To transform from Eqn (6.8) for a discretely-continuous

dielectric medium into the corresponding wave propagation
equation for a continuous medium, it is necessary to take the
limit a0 ! 0, thus obtaining

El�z� � EI l ÿ i2pC
k0a0
cos yI

Xlÿ1
j�1

�
sI � �sI � Ej�

�
� exp

�
ik0a0 cos yI �lÿ j��ÿ i2pC

k0a0
cos yI

�
XN
j�l�1

�
sR � �sR � Ej�

�
exp

�
ik0a0 cos yI �jÿ l��

� pC
a0
e

1 0 0
0 1 0
0 0 ÿ2

 !
El : �6:10�

Upon converting the sum to an integral by replacing Ej by
E�z�, this becomes

1ÿ pC
a0
e

1 0 0
0 1 0
0 0 ÿ2

 !" #
E�z� � AI�z�

ÿ i
2pk0
cos yI

�z
ÿh

�
sR � �sR � P�z0���

� exp
�
ik0 cos yI �zÿ z 0�� dz 0 ÿ i

2pk0
cos yI

�
�0
z

�
sI � �sI � P�z 0��� exp �ik0 cos yI �z 0 ÿ z�� dz 0 ;

�6:11�
where P�z� � CE�z� is the polarization vector of the medium
at a depth z.

Now we turn to the case of an s-polarized wave in a
medium. Eqn (6.11) takes the form�

1ÿ pC
a0
e

�
Ey�z� � A

y
I �z� � i

2pk0
cos yI

�0
ÿh

Py�z 0�

� exp
�
ik0 cos yI jzÿ z 0j� dz 0 : �6:12�

Noting that e � �3=4�a0 and applying the Lorentz ±Lorentz
formula

n2 � 1� �8p=3�C
1ÿ �4p=3�C �6:13�

for the refractive index n of the medium, we find that

1ÿ pC
a0
e
� 3

n2 � 2
; �6:14�

showing that the right-hand side of Eqn (6.12) contains the y-
component of the macroscopic field in the medium. For an
external wave incident normal to the boundary, Eqn (6.12)
yields�

1ÿ 4p
3

C

�
Ey�z� � A

y
I �z�

� i2pk0

�0
ÿh

Py�z0� exp �ik0jzÿ z 0j� dz 0 : �6:15�
This equation, combined with the Bloch equations [24] that
include the local field effect [25, 26], is used to describeDicke's
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optical super-radiation in superthin films of resonant atoms
[27] and is also useful in solving a number of boundary value
problems of nonlinear resonance optics for semi-infinite
dielectric media [28 ± 30]

6.2 Equations for the propagation of electromagnetic
fields in quadrupole and magnetodipole media
In order to include higher-order multipole moments of the
atoms making up the medium, higher powers of electronic
displacements relative to atomic nuclei must be retained when
expanding the retarded potentials that determine the Lagran-
gian of a system of moving interacting charges [8]. Here we
shall follow Refs [31 ± 33] when writing down nonlocal
equations for microscopic fields with allowance for the
quadrupole and magnetodipole contributions to the optical
properties of the medium. Let E0 andH0 denote the strengths
of the microscopic electrical andmagnetic fields, respectively,
at a certain point of observation rl and let m�rj� and bq�rj� be
the magnetic dipole moment and the quadrupole moment
tensor, respectively, of the jth atom. Then the equations for
the fields take the form

E0�rl� � EI�rl� �
X
j6�l

�
H� H� d�rj�G�Rjl�

ÿ H� H� Hq̂�rj�G�Rjl� � ik0H�m�rj�G�Rjl�
�
; �6:16�

H0�rl� � HI�rl� �
X
j 6�l

�
H� H�m�rj�G�Rjl�

� ik0H� H� Hq̂�rj�G�Rjl�ÿ ik0H� d�rj�G�Rjl�
�
; �6:17�

where

G�Rjl� � exp�ik0Rjl�
Rjl

; �6:18�

Rjl � jrj ÿ rlj, and EI�r� and HI�rl� are the electric and
magnetic field strengths of the external wave at the observa-
tion point, respectively.

A transition to the corresponding integral equations for
the propagation of electromagnetic waves is performed [33]
using the quantities

bQ � N

V
q̂; M � N

V
m ; �6:19�

where N=V is the concentration of atoms in the optical
medium.

6.3 Equations for the propagation of electromagnetic
waves in a conducting medium
We will treat a conducting medium as a system of moving
interacting charges, carrying out calculations to order v2=c2,
where v is the velocity of the charge and c is the speed of light
in vacuum. (In this approximation one can write down the
Lagrangian function for an individual charge at a certain
point of observation r at the time t [4, 8]). The scalar (jc) and
vector (Ac) potentials of the field produced by the moving
charges then take the respective forms

jc�r; t� �
XN
j�1

e

jrÿ rjj ;

Ac�r; t� �
XN
j�1

e

2c

1

jrÿ rjj
�
vj � �vj nj� nj

�
; �6:20�

where nj � �rÿ rj�=jrÿ rjj, rj is the radius vector of the jth
electron in the medium, e is the electron charge, vj is the
velocity of the jth electron, andN is the number of electrons in
the medium. Eqns (6.20) are obtained by expanding the
retardation potentials in terms of jrÿ rjj=c under the
assumption that the electron density varies slowly on the
time scale of the problem [4].

The field created by atomic cores at the point of
observation r will be described using the vectors
rab � aa � n ab, where aa are the radius vectors of the nuclei
of the cores and n ab are the radius vectors of the electrons
relative to their nuclei. Then the scalar (jv) and vector (Av)
potentials of the atomic cores take the respective forms [8]

jv�r; t� �
Xna
b�1

XNA

a�1

eb
jrÿ rabj ; �6:21�

Av�r; t� �
Xna
b�1

XNA

a�1

eb
2c

1

jrÿ rabj
�
vab � nab�nabvab�

�
�
Xna
b�1

XNA

a�1

eb
2c

jrÿ aaj2
jrÿ rabj2

�
vab ÿ 3nab�nabvab�

�
ÿ
Xna
b�1

XNA

a�1

ebjrÿ aaj
jrÿ rabj2

nab ;

where na is the number of electrons in the ath atomic core,NA

is the number of atomic cores, and nab is the unit vector
directed from the point of observation r to the electron, whose
position is described by the radius vector rab (the bth electron
in the ath atomic core). Eqns (6.21) are also derived from the
retarded potentials, but this time they were expanded in terms
of �aa=aa��nab=c� taking into account that the motion of
atomic electrons is faster than the motion of those electrons
between the atomic cores.

Substituting Eqns (6.20) and (6.21) into the Lagrangian
for an individual charge and calculating it to order v2=c2

yields the Lagrangian for the entire system of charges, valid
for an arbitrary multipolarity of the field of the atomic cores.
Let us adopt the electric dipole approximation for the field of
atomic cores by expanding the functions jrÿ rabj and
jrÿ rabjÿ1 into power series, retaining only the terms linear
in n ab and noting that xab 5 jrÿ aaj, i.e., that points of
observation are far away from the atomic cores. After some
manipulation, the scalar potential of the ath atom is found to
be

jva�r; t� �
1

jrÿ aajNajej � rÿ aa

jrÿ aaj3
da ; �6:22�

where Na is the number of electrons given away by the ath
atom, and da �

P
ebn ab is the electric dipole of the ath atom.

We proceed by transforming the vector potential Ava in
the electric dipole approximation. After some manipulation
we arrive at

Ava � 1

c

da
jrÿ aaj ÿ

1

c

�rÿ aa�
ÿ�rÿ aa� _da

�
jrÿ aaj3

ÿ rÿ aa

jrÿ aaj2
Najej ÿ

2�rÿ aa�
ÿ�rÿ aa� da

�
jrÿ aaj4

� da

jrÿ aaj2
:

�6:23�
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Let us now invoke the condition of charge neutrality in the
form

XNA

a�1

Najej
jrÿ aaj ÿ

XN
j�1

jej
jrÿ rjj � 0 : �6:23a�

Then, using Eqs (6.22) and (6.23), differentiating (6.22) with
respect to the coordinates of the observation point and taking
the vectors aa to be time-independent, we find the strength of
the electric field of the ath atomic core to be

Eva � rot rot
�da�
Ra

; �6:24�

where Ra � jrÿ aaj and the notation [ . . . ] indicates that the
variable is taken at the retardation time tÿ Ra=c.

In a similar way, the strength of the magnetic field of the
ath atomic core is given by

Hva � rotAva �
�

1

cR3
a
� _da� � 1

c2R2
a
��da�
�
�ua � Ra� ; �6:25�

where ua is the unit vector along the electric dipolemoment da.
We next apply formulas (6.20) to calculating the electric

field Ec�r; t� and magnetic field Hc�r; t� produced by the
conduction electrons at the point of observation r at the
time t. With the use of the system's electrical neutrality
property (6.23a), we obtain

Ecj�r; t� � ÿ 1

c
_Acj � ÿ e

2c2
�
vj � �vj nj�

� q
qt

�
1

jrÿ rjj
�

ÿ e

2c2
1

jrÿ rjj
�
_vj � �_vj nj�nj � �vj _nj�nj � �vj nj� _nj

�
:

�6:26�
Let us calculate the time derivatives

q
qt

1

jrÿ rjj � ÿ
1

R2
j

_Rj ; _nj �
_Rj

Rj
ÿ Rj

_Rj

R2
j

;

where Rj � jrÿ rjj. The derivative _Rj at a given observation
point is the velocity vj of the jth charge. The derivative _Rj is
obtained by differentiating the identity R2

j � R2
j . Eqn (6.26)

then becomes

Ecj � ÿ3 e

2c2
1

R2
j

nj�nj vj�2 ÿ e

2c2
1

Rj

_vj

ÿ e

2c2
1

Rj
�_vj nj�nj � e

2c2
v2j

R2
j

nj : �6:27�

The magnetic field strength at the observation point r is
now found from Eqn (6.20) to be

Hcj � rotAcj � e

c

1

R2
j

�vj � nj� : �6:28�

To transform Eqns (6.25), (6.24), (6.27), (6.28) into the
integral equations for the propagation of electromagnetic
waves in a conducting medium, wemake use of the continuity
and self-consistency of the internal fields. This yields the
following equation for the electric field strength in an optical

medium [34]:

E�r; t� � EI�r; t� �
�
rot rot

PA�r 0; tÿ R=c�
R

dV 0

�
�
LE

�
r 0; tÿ R

c

�
dV 0 ; �6:29�

in which EI�r; t� is the strength of the electrical field of the
external wave, and

LE � N

V

�
ÿ 3e

2c2
1

R2
�vn�2nÿ e

2c2
1

R
_v

ÿ e

2c2
1

R
� _vn�n� e

2c2
1

R2
v2n

�
; �6:29a�

where n � R=R is the unit vector directed from the point of
observation r to a certain point r0 in the medium.

The integral equation for the magnetic field strength is
obtained in a similar fashion to be [34]

H�r; t� � HI�r; t� � 1

c

�
rot

PA�r 0; tÿ R=c�
R

dV 0

� e

c

N

V

�
1

R2
�v� n� dV 0 ; �6:30�

where HI is the strength of the magnetic field of the external
wave.

If the point of observation r is outside the optical medium,
the integration in Eqns (6.29) and (6.30) is performed over the
entire medium. If the point of observation is within the
medium, it is first necessary to exclude a small region
bounded by a sphere s0 of small radius a in order to eliminate
the divergence that arises as R! 0.

Equations (6.29) and (6.30) are integro-differential equa-
tions for microscopic fields. By solving them it is possible to
determine the microscopic field at various observation points
within and outside the medium, using the appropriate
constitutive equations to specify the field dependences of the
vectors PA and v.

In Ref. [34], Eqn (6.29) was employed to explain the
significant discrepancies between the theoretical and experi-
mental behavior of the optical constants of silver over a wide
range of wavelengths [18]. The vectors PA and v in Eqn (6.29)
were assumed to be linear in E, and the nonlinear terms in
function (6.29a) were dropped. Also, the atomic cores were
treated as two-level quantum mechanical systems with
oscillator strength f and lifetime Gÿ1, and the conduction
electrons were considered to be classical particles with
polarizability ac and damping coefficient b. The results of
Ref. [34] included a formula for the complex refractive index
of a metal, a proof of the generalized Ewald ±Oseen's
extinction theorem for metals, a formula for the amplitudes
of the reflected and refracted waves, and also values of f, Gÿ1

and b, the latter being calculated from the formula
b � 4po2

pr, with op the plasma frequency and r the electrical
resistivity. Figures 2 and 3 show both the theoretical and
experimental results as presented in Ref. [18] and the results
obtained using the theory of Ref. [34].

Thus, by using the quantum electrodynamical and
semiclassical methods, the quantized field Eqns (5.11) and
(5.18) (allowing for the spin and orbital degrees of freedom of
interacting atoms) and the classical field Eqns (6.1) ± (6.4),
(6.15), (6.19), (6.18), (6.29), and (6.30) have been derived.
These equations are nonlocal in both space and time due to
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the fact that the field at a certain point of observation is
coupled to the behavior of charges at other points in the
medium. Below we will present solutions to a number of
typical problems of classical and nonlinear optics, in which
the nonlocality property of the equations of electrodynamics
plays a crucial role.

7. Spontaneous radiation of an atom close
to a vacuum-dielectric interface.
The near-field effect

Let us consider the spontaneous radiation from a two-level
atom as observed in the near-field at a distance L5 l0
(l0 � 2pc=o, o the frequency of the emitted photons) from

the surface S of a dielectric with polarizability a, concentra-
tion �N=V� and refractive index n0. The solution of this
boundary value problem of quantum optics was considered
in Refs [35 ± 42]. Let us have a look at the basic results of these
papers. Ref. [35] presents the following expression for the
amplitude of a quantum transition of an atom:

b�t� � exp
�ÿK0

�
1� R exp�2ik0L�

�
t
	
; �7:1�

where K0 � pdo=��hAc�; A is the effective area of the surface;
k0 � o=c; and R � ÿ�n0 ÿ 1�=�n0 � 1� is the reflection
coefficient as given by the Fresnel formula for normally
incident light.

From Eqn (7.1), one calculates the lifetime of the excited
state of an atom

fK0�1� R cos�2k0L��gÿ1 ;

as well as the frequency shift of an atom

K0R sin�2k0L� :

One further contribution of Ref. [35] is the derivation of the
quantum analogue of the Ewald ±Oseen extinction theorem
well known in the classical optics of dielectrics [18]. Note that
a dielectric was treated as a continuous optical medium in this
derivation.

In solving the boundary value problem stated above we
will take into account the discrete-continuous nature of the
dielectric. We will assume that the point of observation r0
(Fig. 4) is embraced by a Lorentz sphere of radius L0 and that
the atoms of the dielectric are distributed in a discrete fashion
within the sphere. Outside the sphere, it will be assumed that
the atoms are distributed continuously, with the number of
discretely distributed atoms varying with the location of the
point of observation. As will be shown below, the presence of
two spatial scales l0 and L0 in the description of the
spontaneous decay of an atom leads to the near-field effect.
Within the closed Lorentz sphere, the field produced at the
center of the sphere by the discrete distribution of atoms is
zero whatever the symmetry of the distribution, as long as we
consider only the Coulomb field Ð which varies as Rÿ3a ,
where Ra is the distance from the ath atom inside the Lorentz
sphere to its center. It can be shown by directly calculating the
polarizing fields inside the Lorentz sphere that the retardation
field proportional to 1=Ra is always nonzero at the center of
the sphere, independently of the precise symmetry of the
discretely distributed atoms. However, the near-field effect
should be strongest when the Lorentz sphere is truncated,
which occurs when the point of observation approaches the
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Figure 2. Measured (symbols) and predicted wavelength dependences of

(a) the refractive index and (b) the absorption coefficient of metallic silver.
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Figure 3. Measured (symbols) and predicted wavelength dependences of

the reflection power of the vacuum-silver interface: 1, present theory; 2,

theory of Ref. [18]; f � 0:05, G � 1015 sÿ1, o0 � 7:95� 1015 sÿ1,
b � 4:17� 1015 sÿ1, �NA=V� � 5:86� 1022 cmÿ3, N=V � 0:4�NA=V�
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Figure 4. Vector scheme for the boundary value problem: S, the surface
z � 0; r0, the position vector of the two-level atom; sI, unit vector along

the direction in which a photon is emitted; L0, radius of the Lorentz

sphere; m 0, outer normal to the surface S.
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surface S of the optical medium. It was this fact that was
taken into account in the solution of Ref. [42].

We now apply the electronic polarizing field operatorA�e�

(5.10) and write the interaction operator for a two-level atom
near the surface in the form

H1 � 2
o0

c

X
kl

d eff
klAkl r2 � h:c: �7:2�

Here o0 is the resonant frequency of the atom at position r0;
the index kl is for the photon mode with wave vector k and
polarization l � 1; 2; r2 is the effective spin operator for a
two-level atom, ri � �1=2�si (i � 1, 2, 3), si being the Pauli
matrix; Akl is the vector potential operator for the photon
field at the location of the atom; and d eff

kl is the effective dipole
moment of the atom which is given by [42]

d eff
kl � d0ud

� �N=V�a
�n20 ÿ 1�k20

rot rot ekl�IS ÿ IS0
� ISa�

� S� ekl exp�ikr0�
�
; �7:3�

where ud is the unit vector along the atom's dipole moment,
d0 is the transition dipole moment of a resonant atom, ekl is
the unit polarization vector of a spontaneous photon of
mode kl,

IS � ÿ2p exp�ik0sRr� sin�yI ÿ yT�
sin yT cos yT

; �7:4�

yI is the angle of incidence of a spontaneous photon at the
surface S,

sR � �ÿ sin yI; 0; cos yI� �7:5�

is the unit vector, and yT is the refraction angle of
spontaneous photons (n0 sin yT � sin yI because of the uni-
formity of the surface S). The quantity IS0

is the surface
integral over the circle formed by the intersection of the
Lorentz sphere and the surface S; the quantity ISd

is the
surface integral over that portion of the Lorentz sphere which
is inside the medium;

S�a
X
a

�
i�kra � k0Ra�

��
ekl

�
ik0
R2

a

� k20
Ra

�
ÿ k20 na

�eklna�
Ra

ÿ 3ik0na
�ekl na�
R2

a

� 3na�ekl na� ÿ ekl
R3

a

�
; �7:6�

Ra � r0 ÿ ra, na � Ra=Ra, and ra is the radius vector of the
ath atom inside the Lorentz sphere relative to the origin of
coordinates (see Fig. 4).

Numerical estimates show that the dominant contribution
to the effective dipole moment (7.3) comes from the discrete
distribution portion of the quantity S, i.e., from the last term
in Eqn (7.6), which varies as 1=R3

a and accounts for the
Coulomb interaction of resonant atoms.

If the Hamiltonian (7.2) is used, the Heisenberg equations
of motion for photon operators are [42]

ckl�r0; t� � cvkl�r0; t� ÿ
i

�h
2
o0

c
�d eff

kl��gkl

�
�
r2�t 0; r0�Gkl�tÿ t0� dt 0 ; �7:7�

where gkl � �2p�hc2=�VR ok��1=2; VR is the quantization
volume of the field; ok is the frequency of a photon of mode
kl;

Gkl�tÿ t 0� � 0; t < t 0;
lim
e!0

exp fÿi�ok ÿ ei��tÿ t 0�g ; t > t 0 ;

(
�7:8�

is the retardation Green function [24]; and the photon
operator

cvkl�r0; t� � ckl�0� exp fi�kr0 ÿ okt�g �7:9�

corresponds to the free (vacuum) photon field.
Eqn (7.7) must be supplemented by the following

equations for the atomic operators [24]:

_r1 � ÿo0r2 � 2
o0

�hc
d effAr3 ;

_r2 � o0r1 ;

_r3 � ÿ2o0

�hc
d effAr1 ; �7:10�

where

d effA �
X
kl

d eff
klAkl ; �7:10a�

and the quantity d eff
kl depends on the position of the atom

relative to the surface S, according to Eqn (7.3).
Using Eqns (7.10) and (7.7) within the framework of the

adiabatic approximation [24] and applying the normal
ordering of vacuum-averaged operators, we obtain the
following expression for the lifetime t of the excited state of
an atom near the surface [42]:

1

t
� 2p

�
o0

�hc

�2X
kl

jd eff
kl j2g2kl�d�ok ÿ o0� ÿ d�ok � o0�

�
;

�7:11�
where d�x� is the Dirac delta function.

The energy shift of an atom near the surface is given by
[42]

d �
�
o0

�hc

�X
kl

� P
ok � o0

ÿ P
ok ÿ o0

�
g2kljd eff

kl j2 ; �7:12�

with P=x denoting principal-value integration.
In thewave zonewith respect to the surfaceS (L4 l0), the

effective dipole moment takes the form

d eff
kl � d0ud

�
3

2�n20 � 2�
sin�yT ÿ yI�
sin yT cos yI

�
ekl ÿ sR�sR ekl�

�
� exp�ik0sRr0� � ekl exp�ik0r0�

�
: �7:13�

instead of Eqn (7.3).
Using this relation, we can show that also in the case of

normal incidence (yI � 0) the expression for the lifetime of an
excited atom agrees with the corresponding results of Ref.
[35]. Numerical analysis shows that, due to the near-field
effect, i.e., due to taking into account the structural factor of
the dielectric near its surface, the near-field lifetime of an
atom shows variations within 30% of its free space value.
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Application of the nonlocal equation (5.11) together with
equations (7.10) to the solution of the boundary-value
problem of the spontaneous emission from an atom near a
discrete-continuous dielectric makes it possible to describe
the field of spontaneous photons not only at point r0 but also
at any other observation point. This can be achieved [19, 42]
by applying the quantum analogue of the Ewald ±Oseen
extinction theorem, which Ð unlike in Ref. [35] Ð enables
one to solve the three-dimensional boundary value problem.
The numerical analysis of the solution so obtained involves
calculating certain surface integrals which also arise in
boundary value problems for classical fields. Below we will
consider some problems of classical and nonlinear optics,
perform a detailed numerical analysis of their solutions, and
apply the generalized Ewald ±Oseen procedure.

8. Relation between the microscopic
and macroscopic fields inside and at the surface
of a discrete-continuous dielectric

The Fresnel formulas of the classical optics of dielectrics [18]
can be derived with the help of the integral equation (6.1)
using the Ewalds ±Oseen procedure. The advantages of this
approach compared to the traditional use of Maxwell's
boundary conditions [18] are the rigorous derivation of the
Lorentz ±Lorentz formula and the proof of the extinction
theorem, according to which the reflection and refraction of
light occur at the infinitely thinÐmathematical Ð boundary
of the dielectric. Eqn (6.1) assumes that the dielectric is a
continuous optical medium with a uniform concentration
N=V of atoms of one species, all having the electron
polarizability a. The concept of a continuous dielectric is
based on the assumption that the field produced by discretely
distributed dipoles within the Lorentz sphere [43] is zero for
any type of symmetry including a chaotic distribution [18, 44].
An exception are dielectrics which consist of atoms of
different species and have a mixed-type symmetry Ð as, for
example, perovskite crystals [43].

Consider a dielectric made up of atoms of one species
which have a certain type of symmetry in their distribution
within the dielectric and on its surface. Assume that the point
of observation is inside the dielectric and that the respective
Lorentz sphere is closed (Fig. 5a). A direct calculation shows
that the field created by the dipoles situated within the
Lorentz sphere is zero at the center of the sphere for any
type of symmetry Ð including a chaotic one Ð if, together
with the Coulomb field of the dipoles, its retardation part,
proportional to 1=Ra, is also taken into account. The size of
the Lorentz sphere is, however, much less than the light
wavelength l, i.e., L0 5 l; therefore, the retardation part of
the dipole field plays only a minor role. For example, as will
be shown below, in the expression for the refractive index at
observation points far away from the surface, the structural
factor due to the retardation of the dipole field contributes
about 1% of the refractive index value obtained within the
conventional continuous dielectric concept. This is in stark
contrast to the situation where the point of observation is in
the near-field with respect to the surface of the dielectric (Fig.
5b, c). In such cases, the Lorentz sphere is truncated, the field
produced by the dipoles at its center is zero whatever the
symmetry of the dielectric, and the dipole field is dominated
by its Coulomb part, proportional to 1=R3

a. Thus we see that
in the optics of dielectrics the more general concept of a
discrete-continuous dielectric should be employed.

Let us consider the nonlocal equation [22]

E�r; t� � EI�r; t� �
�S
s
rot rot

NaE�r; tÿ R=c�
R

dV 0

�
X
a

rot rot
aE�ra; tÿ R=c�

Ra
: �8:1�

It will be assumed that the dielectric is made up of atoms
(molecules) of one species, with an electron polarizability a
and concentration N. The symmetry of the dielectric is
determined by the lattice sum over the dipoles within the
Lorentz sphere. In Eqn (8.1), EI is the external light wave;
E�r; t� is the microscopic field at the point of observation r,
which may lie inside or outside the dielectric, either in the
wave zone or in the near zone with respect to its surface; and s
is the surface around the point of observation. The field E, as
will be shown below, differs from the macroscopic field E0 at
various observation points inside the dielectric and on its
surface.

The macroscopic field obeys the Maxwell equations, in
which the microscopic field is assumed to have been averaged
in a certain way [18]. Let us establish the relation between

z
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Figure 5.On the concept of a discrete-continuous dielectric: (a) the point of

observation situated inside the dielectric in the wave zone with respect to

the surface S of the dielectric; (b) near-field discrete-continuous dipole

distribution for the refracted wave; (c) near-field discrete-continuous

dipole distribution for the reflected wave. Regions II and I correspond to

the near-field and wave zones of the dielectric, L0 is the radius of the

Lorentz sphere, s0 is the area of the circle formed by the intersection of the

Lorentz sphere and the surface S, and m 0 is the normal to the surface S.
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these two fields using Eqn (8.1) for the microscopic field
E�r; t�. Within the framework of the continuous dielectric
model this relation has the familiar form [18]

E � E0 � 4p
3

P : �8:2�

Consider now the relation between the field E and E0 within
the discrete-continuous model at observation points inside or
at the surface of a semi-infinite dielectric (see Fig. 5).
Following the method of Ref. [43], we start by writing

E � E0 � Ed � EL ; �8:3�
for optical fields. Here Ed is the field produced by the dipoles
inside the Lorentz sphere and EL is the field at the surface of
this sphere. Furthermore,

E d � E0 � E1 � E2 ;

E0 � 1

N

X
a

3na�naPa� ÿ Pa

R3
a

;

E1 � 1

N

X
a

3na�na _Pa� ÿ _Pa

R2
ac

;

E2 � 1

N

X
a

3na�na�Pa� ÿ �Pa

Rac2
; �8:4�

where na�Ra=Ra, Ra�rÿ ra, Pa�NaEa,
Ea�E�ra; tÿ Ra=c�. Since the radius of the Lorentz sphere
is small, i.e., k0Ra 5 1, k0 � o=c, where o is the frequency of
the optical field, we will assume that

Ea � E�ra; t� � E�r; t� �8:5�

at the observation point r at the center of the Lorentz sphere.
Then the index a of the polarization vector may be omitted in
Eqn (8.4). Assuming the polarization vector to vary with time
as

P�r; t� � P�r� exp�ÿiot� ; �8:6�

we have for the closed Lorentz sphere

E0 � bb0P ; E1 � bb1P ; E2 � bb2P ; �8:7�

where the diagonal tensors bb0, bb1 and bb2 have the form
�bb0�ij � dij

1

N

X
a

3n2ai ÿ 1

R3
a

; �8:8a�

�bb1�ij � ÿidij k0N X
a

3n2ai ÿ 1

R2
a

; �8:8b�

�bb2�ij � ÿdij k20N X
a

n2ai ÿ 1

Ra
; �8:8c�

i; j � x; y; z:

By applying numerical analysis, the contributions from
the fields E0, E1 and E2 to the dipole fields inside the Lorentz
sphere can be examined for various types of symmetry,
including chaotic. It turns out that the fields E0 and E1 are
negligibly small. For a closed Lorentz sphere we have

EL � 4p
3

P �8:9�

using the approximation (8.5), so that in this case we obtain

E � E0 �
�
4p
3
� b2

�
P ; �8:10�

where the scalar quantity b2 corresponds to the diagonal
components of the tensor (8.8c) and is the structural factor of
the dielectric. Clearly, the role of this structural factor
increases for observation points inside the dielectric as the
factor k20=N increases Ð in rarefied optical media, for
example.

Now consider the case of a truncated Lorentz sphere for
observation points near the surface of the dielectric
(Fig. 5b, c). In this case the Lorentz field takes the form

EL � 2p
3

�
1ÿ

�
z

L0

�3 �
P ; �8:11�

and the components (8.7) of the dipole field inside the Lorentz
sphere all differ from zero, the dominant role being played by
the fieldE0, i.e., E0 4E1;E2. Then, using Eqn (8.11), we have
[22]

E � E0 �
�
2p
3

�
1ÿ

�
z

L0

�3 �
� bb0 � bb1 � bb2�P : �8:12�

The role of the structural factor bb0 for observation points near
the surface of a semi-infinite dielectric may be significant for
condensed media.

Using relation (8.12) and two electric induction defini-
tions known inmacroscopic electrodynamics [18] it is possible
to obtain a formula for the dielectric constant of the near-
surface layer of a dielectric as a function of the depth at which
the point of observation is located. In Ref. [22], the refractive
index for the near-surface layer was obtained using Eqn (8.1)
within the context of the microscopic theory. In the present
review, all boundary-value problems are solved using the
corresponding microscopic nonlocal equations for discrete-
continuous dielectrics. Note that, as in the molecular theory
of light reflection [44], this solution ignores the interatomic
(intermolecular) interaction which affects the energy spec-
trum of the dielectric. The Lorentz sphere radius playing the
role of the nonlocality parameter is determined either
numerically or analytically [23]. In this review we will
attribute any deviation from the Fresnel laws which is
produced by a nonzero dipole field inside the Lorentz sphere
to the near-field effect.

9. Microscopic theory of the transition layer
on the ideal surface of a semi-infinite dielectric
medium. The near-field effect

We consider here the boundary-value problem of the classical
optics of dielectrics, with the polarization vector of the
dielectric medium being a linear function of the field. Within
the framework of the continuous dielectric model, the
solution of this problem leads to the Fresnel laws [18]. Let us
consider this problem within the discrete-continuous model
(see Section 8).

It is a well known fact [45 ± 51] that the Fresnel laws show
anomalies for light reflection from a mirror surface of a real
body. These anomalies manifest themselves most clearly in
the vicinity of the complete polarization angle: here the p-
component of the reflected wave is never completely extin-
guished and the light reflected from the surface is elliptically
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polarized. These effects are observed experimentally for both
clean and contaminated surfaces as well as for those subject to
elastic deformations. Drude [52 ± 54] explained these anoma-
lies by assuming that at the interface between two media with
refractive indices n1 and n2 there is a very thin transition layer,
in which the refractive index changes smoothly from n1 to n2.
According to Drude's phenomenological theory [53, 54], the
effect of such a layer can be determined by revisingMaxwell's
boundary conditions, which were obtained on the assumption
of a sharp interface. An important contribution of Drude's
theory is that, from the intensity and phase of the p-
component of the reflected wave for Brewster's angle, it
proves to be possible to estimate the thickness of the
transition layer. According to Drude, this thickness can be
most conveniently estimated by measuring the ellipticity of
the light reflected at Brewster's angle provided a wave linearly
polarized at an angle of 45� to the incidence surface is incident
on the reflecting surface. In this case we have the following
formula for the reflective indices [54]:

rpp

rss
� ik0h

2

���������������
n21 � n22

q
n21 ÿ n22

Z ; �9:1�

where k0 � o=c is the wave number in vacuum; h is the
transition layer thickness;

Z � ~n2 � n21n
2
2

�
1

~n2

�
ÿ n21 ÿ n22 ;

where a tilde above a symbol indicates an integral average for
the quantity in question; and n, a function of the depth z, is the
refractive index of the transition layer material.

The phenomenological theory ofDrude involves averaged
values of the dielectric constant of the medium in a very thin
transition layer, but the concept of permittivity has little or no
meaning if the layer thickness is comparable with the size of
the particles it is made of. Consequently, amicroscopic theory
of the transition layer has been developed [55 ± 57], which is
based on the Ewald ±Oseen's extinction theorem [18] and
takes into account explicitly the non-uniform components of
the wave field inside a cubic lattice as well as the fact that the
distance for which lower-lying layers cease to contribute to
the near-surface field is finite. In these papers it was shown, in
particular, that if one takes into account the discrete nature of
the medium then even in the absence of transition layers the
reflection of light occurs as if the lattice were a continuous
medium and as if there were a continuous transition layer on
its surface.

Amicroscopic theory of the transition layer on the surface
of a semi-infinite absorbing or non-absorbing dielectric is
given in Ref. [58], which, unlike the papers mentioned above,
makes no assumptions concerning the thickness of the
transition layer but instead performs a self-consistent calcula-
tion of the field operating near the surface and in the bulk of
the semi-infinite medium. Also, both the Coulomb and the
retardation part of the dipole field were taken into account in
the calculation of microscopic fields. All this made it possible
to describemore accurately the transition layer properties due
to the near-field effect [22].

9.1 Transition layer on the surface
of a discrete-continuous dielectric
Consider a semi-infinite isotropic dielectric made up of atoms
(molecules) of one species, with a coordinate-independent
concentration N and a polarizability a. If the point of

observation is near the surface, which is the case we address
first, then the Lorentz sphere is truncated and the area of its
surface changes as the point of observation moves deep into
the mediumÐwith the result that a transition layer forms on
the surface. To describe the layer, the same method as in Ref.
[23] will be applied. We divide the near-surface region into a
system of layers, all of which are parallel to the surface and in
each of which the field can be considered independent of the
coordinate z (Fig. 6). The microscopic field at an arbitrary
observation point at time t can be determined bymeans of the
following integral equation [which is a modification of Eqn
(6.3)]:

E�r; t��EI�r; t� �
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j�1

�
Vj

rot rot
1

R
NaEj

�
r0; tÿ R

c

�
dV 0

�
�
V

rot rot
1

R
NaEv

�
r0; tÿ R

c

�
dV 0

�
X
a

rot rot
1

Ra
aE
�
ra; tÿ Ra

c

�
; �9:2�

where EI�r; t� is the electrical field strength of the external
wave; Ej�r; t� is the field strength in the jth layer; Ev�r; t� is the
field strength in the bulk; R � jrÿ r0j, Ra � jrÿ raj; ra is the
radius vector of the ath dipole inside the Lorentz sphere; and
L is the number of layers near the surface. The differentiation
in Eqn (9.2) is carried out with respect to the coordinates of
the observation point, and the integration goes over the
volume of the jth layer or over the inner part V of the semi-
infinite dielectric (minus the sphere s). The polarization
vector P will be considered linear in E, i.e., P � NaE, with a
certain prescribed polarizability awhich is generally complex.

Assume that the incident wave is a monochromatic plane
wave of frequency o and wave vector kI, i.e.,

EI�r; t� � E0I exp�ÿiot� exp�ikI r� : �9:3�

Assume further that the plane of incidence coincides with the
xz plane, i.e., kI has only x and z components:

kI � �kIx; 0; kIz� ; kIx � k0 sin yI ; kIz � ÿk0 cos yI ;

where yI is the angle of incidence. Then the field in each of the
L layers can be written in the form

Ej�r� � Ej exp�ÿiot� exp�ikIxx� : �9:4�

The integrals over the monolayers in Eqn (9.2) are calculated
by the method described in detail in Ref. [23], giving

z

xS

m 0

sI

ra

r0

L00

Figure 6.Transition layer on the boundary of a semi-infinite dielectric. The

point of observation is in the Lth layer.
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(
�9:5�

where kR is the wave vector of the reflected wave:
kR � �k0 sin yI; 0; k0 cos yI�. The form of the tensor bP is
given in part B of the appendix.

From Eqn (9.2) it follows that, in order to determine the
field at an arbitrary point near the surface, it is necessary to
know the behavior of the field in the bulk of the medium.
Assume that the polarization wave in the bulk can be written
in the form

P � NaEv�r� exp�ÿiot� ; �9:6�
in which the field strength in the bulk Ev�r� satisfies the
equations

H2Ev�r� � k20n
2Ev�r� � 0; divEv � 0 ; �9:7�

where n is the refractive index of the medium. The refractive
index determines the dispersion relation, i.e., the frequency
dependence of the wave vector of the polarization wave, and
is generally a complex quantity in our analysis. Applying the
Gauss theorem and passing from the volume integral to a
surface integral we obtain�
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�9:8�

Here G�R� � exp�ik0R�=R, q=qn0 denotes differentiation
along the outer normal to the surface SL (see Fig. 6); the
operator rot rot is taken out of the integral because the point
of observation does not belong to the integration region; and
b̂ is the structural factor:

b̂ � b̂0 � b̂1 � b̂2 ;

�b̂0�ij �
��

dV 0 ÿ 1

N

X�
3ninj ÿ dij
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exp�ik0R� exp�ikR� ;

�b̂1�ij�ÿik0
��
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X�
3ni nj ÿ dij
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exp�ik0R� exp�ikR�;

�b̂2�ij � ÿk20
��

dV 0 ÿ 1

N

X�
ni nj ÿ dij

R
exp�ik0R� exp�ikR�;

�9:9�

where i, j � x, y, z, n � R=R, and k is the wave vector in the
bulk of the medium,

k � �kIx; 0; kz�; kz � ÿk0
�����������������������
n2 ÿ sin2 yI

q
:

With using Eqns (9.5) and (9.8), Eqn (9.2) for the field
strength in an arbitrary layer near the surface can be written
as [58]

El � EI l � i2p
Na
kIz

Xlÿ1
j�1

�
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�
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� �kR�kRE0v�
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where l � 1;L,

EI l � E0I exp

�
ikIz�zlÿ1 � zl�

2

�
;

and E0v is the amplitude of the field in the bulk.
Thus we see that, in order to determine the strength of the

electromagnetic field at an arbitrary point of observation in
the region near the surface, the field amplitude and the bulk
refractive index of the medium are needed.

9.2 Refractive index of a discrete-continuous dielectric far
from the boundary
Let us proceed to dividing the medium into layers deeper and
deeper into the bulk until the Lorentz sphere around an
arbitrary point in the bulk ceases to embrace the perturbed
region near the surface. The field in the bulk of the medium
satisfies Eqns (9.6) and (9.7). Upon applying the mathema-
tical lemma proved in Ref. [23] and calculating integrals over
the layers, Eqn (9.2) becomes

Ev�r� � EI�r� ÿ 2p
aN
k2Iz

exp�ikIr�
XL
j�1

ÿ
exp�ÿikIzzjÿ1�

ÿ exp�ÿikIzzj�
��
kI�kIEj�

�� 4p
3

n2 � 2

n2 ÿ 1
Ev�r�

�Na rot rot
�
SL

�
Ev

qG
qn0
ÿ G

qEv
qn0

�
dS 0

�Nab̂Ev�r� : �9:11�
The tensor b̂ here is given by Eqns (9.9), where the integrals
are calculated over a closed sphere. Numerical calculations
for various symmetry types of dipole distributions show that
the components of the tensor b̂ are generally nonvanishing,
implying that our concept of a discrete-continuous medium
opens new possibilities in using optical radiation to study
atomic systems.

The terms in Eqn (9.11) can be divided into two groups.
One of them forms a local equation whichmakes it possible to
determine the refractive index for the points in the interior of
the medium. If the tensor b̂ can be presented as a scalar, one
can separate out the following formula from this group [22]:

n2 � 1� �8p=3�NaÿNab
1ÿ �4p=3�NaÿNab

; �9:12�

which differs from the Lorentz ±Lorentz formula only by the
presence of the structure factor b [18].
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The remaining terms in Eqn (9.11) form the nonlocal
equation

E0I ÿ 2p
Na
k2Iz

XL
j�1

�
exp�ÿikIzzjÿ1� ÿ exp�ÿikIzzj�

��
kI�kIEj�

�
ÿ 2pNa
kIz�kIz ÿ kz� exp

�
i�kIz ÿ kz�zL

��
kI�kIE0v�

�� 0: �9:13�

While this equation is analogous to Ewald ±Oseen's extinc-
tion theorem [18], it is different in that, first, the meaning of
the refractive indexÐgiven by Eqn (9.12) in our treatmentÐ
is different and, second, that the transition layer is taken into
account. Eqns (9.7), (9.10), and (9.13) form a closed system
which describes the behavior of the field near the surface and
the amplitude of the field within the medium.

Figure 7 represents the solution of the system (9.7), (9.10),
(9.13) for the case of an external wave incident normal to a
semi-infinitemedium. For not-too-large values of the product
of the polarizability a by the concentration N (aN < 0;15),
calculations show that the transition layer thickness is
determined mainly by the size of the Lorentz sphere and
equals 1 ± 2 lattice constants (Fig. 7a) Ð thus justifying, for
this particular case, the assumption, made in Ref. [55], that
the field in the medium is well established within one atomic
layer. For aN > 0:17, however, the interaction between
neighboring atomic layers becomes stronger, with the con-
sequence that the layer thickness strongly depends on the
parameter aN and rapidly increases as this parameter tends to
3=�4p� (Fig. 7b). Refractive indices n > 3 correspond to these
values of aN. Such large values can be reached near

resonances where, however, absorption becomes an impor-
tant factor.

9.3 Reflected wave field in the wave zone
Ref. [22] calculated the field of the reflected wave in the near
zone relative to the surface of a discrete-continuous dielectric.
It was shown that the reflected wave differs significantly from
its the Fresnel counterpart, i.e., from the wave described by
the continuous-mediumFresnel formula. This deviation from
the Fresnel law was considered by the authors of Ref. [22]
(one of whom is the present author) as a manifestation of the
near-field effect. We now consider the field of a reflected wave
far from the surface, taking into account the transition layer
properties due to the near-field effect (see the discussion
above). According to Eqn (9.2), at observation points out-
side the medium the reflected wave field ER is given by
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c

�
dV 0 : �9:14�

The operator rot rot is taken out of the integral sign because
the point of observation does not belong to the integration
region. By calculating the volume integrals for each surface
layer and for the bulk of the medium, we obtain

ER � 2p
Na
k2Iz

exp�ikRr�
XL
j�1

ÿ
exp�ikIzzjÿ1�

ÿ exp�ikIzzj�
��
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�� 2pNa
kIz�kIz � kz� exp�ikRr�

� exp
�
i�kIz � kz�zL

��
kR�kRE0v�

�
: �9:15�

Because of the non-exponential behavior of the field near the
surface, Eqn (9.15) yields results somewhat different from
those inferred from the usual Fresnel formulas. The behavior
of the amplitude of the p-polarized wave field in the
neighborhood of the Brewster angle is shown in Fig. 8,
where the calculations based on the Fresnel formulas and on
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Figure 7. Amplitude jEj of the microscopic field in a semi-infinite

dielectric, for normal incidence. Parameters used in the calculations:

k0a � 0:005, where a is the lattice constant; Na � 0:07 (a), Na � 0:2 (b).
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Figure 8. Behavior of the amplitude of the reflected p-polarized wave near

the Brewster angle. The calculations were done using Eqn (9.15) (curve 1)

and the formulas of Ref. [55] (curve 2) forNa � 0:15 and k0a � 0:005, with
a the lattice constant.\
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the formulas of Ref. [55] are also given for comparison.
Although formula (9.15) gives a nonzero value for the
amplitude of the reflected wave field, this value is an order
of magnitude smaller than that obtained from the formulas of
Ref. [55] and two orders of magnitude smaller than observed
in experiment [44]. The discrepancy between the results of
Ref. [55] and the theory of Ref. [58] is explained by the fact
that the theory of Ref. [55] is actually somewhat inconsistent
because it ignores the mutual influence of atoms in neighbor-
ing layers.

Based on the results obtained, it can be said that for
materials with a refractive index n < 2:5, the near-field effect
still contributes much less to the formation of the transition
layer than other mechanisms do [44].

10. Optical probing of the electromagnetic field
near the surface of a dielectric medium

In recent years there has been considerable interest in optic
phenomena near the surface of various media at distances
much less than the radiation wavelength (in the near-field).
From a purely fundamental physics point of view, the near-
field is of interest because it is in this region where the gradual
formation of the reflected and transmitted waves takes place
and where these waves show a behavior quite different from
that in the far field.

On the other hand, a new area of applied research Ð the
so-called scanning near-field optical microscopy Ð has
received considerable attention in recent years [59 ± 64].
Although various designs of optical near-field microscopes
have been and are being developed, all of them are similar in
that the optical response of the medium to an external
influence is measured in the near-field. Therefore, the
behavior of an electromagnetic field near a surface is of both
fundamental and applied interest.

At present, the best resolution that can be achieved with a
near-field optical microscope is of the order of a few
nanometers, and the distance at which the surface under
study is scanned is also of this order. We will demonstrate
here that, with the knowledge of the behavior of an
electromagnetic field near the surface of a dielectric, surface
studies even with atomic-scale resolutions may become a
reality.

The mathematical formalism we apply in this paper
involves the use of integro-differential equations for the
strength of the microscopic field [see Eqn (6.3)] and takes
into account the discrete structure of the dielectric medium. It
has been shown above that the optical properties of the
surface, even in the absence of structural changes, may differ
considerably from the bulk optical properties of the dielectric.
However, many interesting aspects of the near-field behavior
of an electromagnetic field have not been adequately studied.
Belowwe solve the boundary value problem of linear classical
optics relating to the interaction of an electromagnetic wave
with a superthin dielectric film. It will be shown that all
conclusions about the behavior of the field near the surface of
a superthin film also remain valid for dielectric media of
arbitrary thickness.

Let us consider a monochromatic wave with frequency o
and electric field strength vector EI�r; t� � AI�r� exp�ÿiot�
incident onto a dielectric film of thickness h. Above the film is
a probe, which measures the electromagnetic field at some
point in space (Fig. 9) and which is considered a single dipole
with linear polarizability ap. Such an experimental scheme,

with a single atom as a probe, can be realized in practice by,
for example, using an atom in a magneto-optical trap [65].
Our concern here is to calculate the intensity of the
electromagnetic field at the probe as this probe scans the
film surface moving along the surface at a certain prescribed
distance z above it.

In order to account for the discrete nature of the film, let
us consider the followingmodel. Let us treat the dielectric film
as a system ofNmonolayers the distance a0 apart, a0 being the
lattice constant (see Fig. 9). Consider a situation in which
atoms in the film form a perfect crystal structure with a cubic
symmetry (our analysis can easily be extended to include
other types of symmetry). Enclose the observation point Ð
which may be at the position of the probe as well as at the
position of any of the atoms in the film Ð by a cylinder of
radius e > a0, with the axis passing through the observation
point parallel to the z axis of the coordinate system. The
atoms inside the cylinder will be considered discretely
distributed dipoles, and those outside the cylinder, a system
of parallel, continuous atomic monolayers. As the point of
observationmoves in the (x, y) plane, the cylinder is displaced
as a whole.With this model, in the stationary case the integro-
differential equation for the strength of the local electric field
E0�r; t� � E�r� exp�ÿiot� at the probe can be written in the
form (6.4) (see Ref. [66])

E�r��AI�r� � a
a20

XN
j�1

�G1
s

Hr � Hr � Ej�x 0; y 0�G�Rj� dS 0

� a
XN
j�1

X
aj

Hr � Hr � Ej�xa; ya�G�Raj� ; �10:1�

where r � �x; y; z� is the position vector of the probe; a is the
microscopic polarizability of the film atoms, assumed to be
field-independent;G�R� � exp�ik0R�=R is theGreen function
of the Helmholtz equation; k0 � o=c; Rj � jrÿ r 0j j;
r 0j � �x 0; y 0; zj�; Raj � � jrÿ raj j, and raj � �xaj ; yaj ; zj�.

The integrals in Eqn (10.1) are taken over the (x 0; y 0)
planeÐ except for the circle swith the point of observation at
the center. The last term in Eqn (10.1) accounts for the atoms
inside the cylinder. We have also introduced the notation

Ej�x; y� � E�x; y; zj�; j � 1;N: �10:2�
Let ra l

� �xal
; ya l

; zl� be the radius vector of a certain
atom in the film's lth monolayer. Then for the local field at

z

j � 1

j � 2

j � 3

y
p

x

Figure 9. Model taking into account the discrete structure of a dielectric

film. The point of observation r, at the position of the atom acting as a

measuring probe (p), is surrounded by a cylinder of radius e, with its axis

normal to the film surface. Atoms inside the cylinder are treated as

discretely distributed dipoles; the film outside, as a set of continuous

monolayers. The case N � 3 is given as an illustration.
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this atom we have

El�xal
; ya l
� � EI l�xal

; yal
� � apHra l

� Hra l
� E�r�G�Ral

�

� a
a20

XN
j�1

�G1
s

Hral
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� Ej�x 0; y 0�G�Ral j� dS 0
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�10:3�

where EI l�xal
; yal� � AI�ral�, Ral � jral ÿ rj, Ral j � jral ÿ r 0j j,

and Ralaj � jral ÿ raj j. The problem is now that of finding a
self-consistent solution to the system of equations (10.1),
(10.3).

10.1 Field at the probe scanning the film surface
In order to achieve a reasonable accuracy in the calculation of
the lattice sums in Eqns (10.1), (10.3), the region of
discreteness must be large. We assume that, if the probe is
situated at a distance of the lattice constant or higher above
the surface, it does not significantly affect the electromagnetic
field distribution in the film, even for fairly large polariz-
abilities ap. The second term on the left of Eqn (10.3) can then
be dropped, which considerably simplifies the solution of the
system (10.1), (10.3) [23].

Let the external wave be plane,

AI�r� � E0I exp�ik0sIr�;
sI � �sin yI cosFI; sin yI sinFI;ÿ cos yI�; �10:4�

where yI is the angle of incidence, and the azimuthal angle FI

determines the plane-of-incidence orientation relative to the
basis vector a0y. Ref. [23] considered the special case FI � p.
Below we obtain the solution for arbitraryFI. With the use of
the uniformity property of the film surfaces, the solution for
the local field in the medium can be written in the form

El�x; y� � El exp
�
ik0 sin yI�cosFI x� sinFI y�

�
: �10:5�

Substituting (10.4) and (10.5) into (10.3) and using a
technique similar to that described in Ref. [23] yields the
following system of equations for observation points located
at the atomic positions in the film:

El � EIl ÿ i2pC
k0a0
cos yI

Xlÿ1
j�1

�
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�
� exp

�
ik0a0 cos yI �zj ÿ zl�
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cos yI

�
XN
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�
exp

�
ik0a0 cos yI �zl ÿ zj�

�
� C

XN
j�1
bP�zl ÿ zj�Ej ; l � 1;N ; �10:6�

where

EI l � E0I exp�ÿik0 cos yI zl� ; l � 1;N ; �10:7�

C � a=a30, sI is given by Eqn (10.4), and the vector sR has the
form

sR � �sin yI cosFI; sin yI sinFI; cos yI� : �10:8�

The explicit form of the tensor bP is not reproduced here
because of its cumbersome nature and is given in part A of the
Appendix instead.

Once the system (10.6) has been solved, the field at the
probe can be calculated using Eqn (10.1), which we rewrite in
the form

E�r� � AI�r� � E0R�r� exp�ik0 sR r� ; z > 0 ; �10:9�
where the reflected wave amplitude calculated with due
account for the discrete nature of the medium is given by the
expression [23]

E0R�r� � ÿi2pC k0a0
cos yI

XN
j�1

�
sR � �sR � Ej�

�
� exp�ÿik0a0 cos yI zj

�� C exp�ÿik0a0 cos yI z�

�
XN
j�1
bP�x; y; zÿ zj�Ej; �10:10�

in which the quantitiesEj, j � 1;N are solutions of the system
(10.6).

In Ref. [23], the field of the reflected (transmitted) wave
was calculated for the point of observation located precisely
above (below) some of the atoms in the film. Here we consider
the more general case in which the point of observation takes
an arbitrary position in the (x; y) plane.

As can be seen fromEqn (10.10), the reflected amplitude is
generally a function of the coordinate r of the point of
observation. The form of this function is determined by
those terms in Eqn (10.10) that contain the tensor bP.

The dependence of the quantity I � jEj2, which is
proportional to the intensity of the electromagnetic field at
the probe, on the coordinates x; y is shown in Fig. 10 for the
case of an s-polarized incident wave, in which

E0I � �sinFI ;ÿ cosFI ; 0�E0I : �10:11�

The distance from the film surface z is taken to be one lattice
constant. The number of monolayers isN � 11. The plots are
presented for the case of normal incidence of the external
wave (yI � 0). In the case of oblique incidence, the field
exhibits some particularities of its behavior inside and
outside the film, which are due to the discrete distribution of
atoms near the observation point and for which a separate
analysis is needed.

As can be seen from Fig. 10, the intensity of the
electromagnetic field is a periodic function of the coordinates
x, y with a period of a0, the lattice constant. Thus, the
reflected wave at small distances from the surface is not a
plane one.

The intensity minima correspond to atomic positions in
the surface monolayer. The difference between the maximum
and minimum intensity values is strongly dependent on the
distance from the surface of the film, increasing as the
distance decreases, and vice versa. Beyond 2a0, the intensity
distribution in the (x; y) plane becomes all but uniform, i.e.,
the reflected wave becomes planeÐ a consequence of the fact
that the terms in Eqn (10.10) containing the tensor bP cease to
contribute at such distances. Fig. 10a also shows that the
image contrast in the direction normal to the polarization
vector is much weaker. This agrees with the results of Ref.
[62]. However, by rotating the polarization plane FI, the
image contrast can be significantly improved (Fig. 10c). It
should be noted that, independently of the rotation angle FI,
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the field intensity above atoms and above the center of the
unit cell remains unchanged.

One further aspect of the near-surface behavior of the
electromagnetic field is that the reflected wave field always
contains three spatial components, ERx, ERy, and ERz, even if
the external wave is one-component. This is illustrated in
Fig. 11, where the intensities of the x and z components of the
electromagnetic field (Ix � jExj2, Iy � jEyj2) at the probe are
shown as functions of the coordinates x for a y-polarized
external wave. Note that, whereas the total field intensity near
the film surface oscillates with a period equal to the lattice
constant, each of the components Ix, Iz is modulated with half
that period; the y- component of the field near the surface is
not shown because its behavior is virtually the same as that for
the total intensity (see Fig. 10).

For the probe on the other side of the film (z < ÿh), the
field is determined by the field of the transmitted wave, and all
the near-field and the wave zone results for the reflected wave
also remain valid in the case of the transmitted wave.

Thus we see that near the surface of the film the fields of
the reflected and transmitted waves are not plane waves. One
can also argue that the formation of the reflected and
transmitted waves takes place at distances of the order of
the lattice constant from the surface of the medium.

Thus, we have solved the boundary-value problem of
linear classical optics, concerning the behavior of an electro-
magnetic field near the surface of a discretely structured
dielectric medium [66]. It is shown that, at distances less
than 2a0 from the surface (a0 being the lattice constant), the
behavior of the reflected and transmitted waves is fundamen-
tally different from that in the far field.

In the literature, nobody usually goes beyond making the
very general statement, not supported by any numerical
estimates, that the formation of the reflected and transmitted
waves takes place in a region less than the radiation
wavelength in size (see, e.g., [44]). Our calculations show
that this process actually occurs at a distance of about 2a0
from the surface.

Although the above discussion of the near-surface field
behavior concerned a thin film of a dielectric, the same results
hold for the case of extended media. In fact, since the surface
effects we have discussed are observed at distances of nomore
than 2a0, they are clearly due to the near-surface layers only.
The bulk layers can only give a constant contribution, of no
consequence in the present context.

11. Optics of small objects and the near-field
effect

The term small object will refer to a small group of atoms or
molecules occupying a volume of linear dimensions less the
light wavelength. Examples are atoms deposited on a
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Figure 10. Electromagnetic field intensity at the probe as a function of the

coordinates x, y. Calculations were done for N � 11, k0a0 � 0:005,
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substrate, individual complexes in solid solutions, or recently
observed aggregates [67]. The theory of linear molecular
aggregates interacting with the field of a quasi-resonant light
wave was discussed in Ref. [67] under the assumption that the
fields at individual molecules are identical. Refs [68, 69]
considered the interaction of a two-atom small object with
the field of quasi-resonant radiation. Based on a combined
system of equations for the field and atomic variables, it was
shown that at near-resonant frequencies, the fields at
individual atoms may differ considerably and that the wave-
zone field due to the small object is strongly dependent on the
interatomic separation and on how the axis of the small object
is oriented relative to the propagation direction of the
external light wave. In the approach of Refs [68, 69], it is the
near-field effect which causes the field to behave in this
manner inside and outside the small object.

11.1 Two atoms in the field of a weak quasi-resonant
plane wave
The microscopic field of the light wave E�r; t� at the point of
observation r at the time t is determined by the following
equation:

E�r; t� � EI�r; t� �
X2
j�1

rot rot
pj�tÿ Rj=c�

Rj
; �11:1�

where EI�r; t� is the electric field strength in the external light
wave which travels at the velocity of light c and pj is the
induced dipole moment of the jth atom, which we take to be a
linear function of the fieldE�rj; tÿ Rj=c� at the position of the
jth atom. The distance Rj is jrÿ rjj, where rj is the radius
vector of the jth atom relative to the origin positioned at the
center of one of the atoms Ð say, the first atom. The
differentiation in Eqn (11.1) is carried out with respect to the
coordinates of the observation point. In the special case in
which the observation point coincides with the position of one
of the atoms, Eqn (11.1) reduces to a system of two equations
for the unknowns E�r1; t� and E�r2; t�. Once these are found,
the field at other points of observation can also be found from
Eqns (11.1).

To proceed further, it is necessary to supplement Eqn
(11.1) with equations for the atomic variables. Let us treat
atoms as Lorentz oscillators [24]. In this case the vector of the
induced dipole moment pj takes the form

pj � e�uj ÿ ivj� exp�ÿiot� � c:c: ; j � 1; 2 ; �11:2�

where e is the electron charge, and o is the frequency of the
oscillator. The quantities uj and vj depend on the position of
the atom and also vary with time Ð because the atomic
eigenfrequencieso1 ando2 differ from the frequencyo of the
field of the external light wave. This variation, however, is
slow if the differences oÿ o1 and oÿ o2 are small. In this
case, the following inequalities hold:

j _ujj5ojujj; j�ujj5o2jujj; j_vjj5ojvjj; j�vjj5o2jvjj :
�11:3�

In view of the above conditions, the equation of motion of the
jth dipole

�pj �
2

t0
_pj � o2

j pj �
e2

m
E�rj; t� �11:4�

(m is the electron mass, 1=t0 the fractional energy damping
rate of an isolated dipole) becomes

q
qt
�uj ÿ ivj� �

�
ÿ iDj ÿ 1

T

�
�uj ÿ ivj� � iK0E0j ; �11:5�

where K0 � e=�mo�; the quantity E0j follows from the
expression for the field

E�rj; t� � E0�rj� exp�ÿiot� � c:c: �11:6�

asE0j � E0�rj�; 1=T is the total oscillator damping rate, which
may differ from that of an isolated oscillator; andDj � oj ÿ o
is the detuning from the resonance.

Eqns (11.5) and (11.1) form a closed system of equations
in which the mutual influence of the field and the atoms is
included in a self-consistent manner. Note that [1]

rot rot
�pj�
Rj
� 3��pj�nj�nj ÿ �pj�

R3
j

� 3�� _pj�nj�nj ÿ � _pj�
cR2

j

� ���pj�nj�nj ÿ ��pj�
c2Rj

; �11:7�

where the symbol [. . .] indicates that the quantity is taken at
time tÿ R=c, nj � Rj=Rj. In the special case in which the point
of observation coincides with the position of an atom, Rj is
equal to the interatomic separation R. The first term in Eqn
(11.7) corresponds to the dipole's Coulomb field, and the
remaining terms describe the retarded dipole field at the point
of observation j. The field (11.7) is the polarizing field of the
jth dipole and has a meaning different from that of the
scattered field [17]. Below we examine the spatial distribution
of the Coulomb and retarded polarizing fields at various
observation points, assuming that the two dipoles interact
self-consistently and using a stationary solution of Eqn (11.5).
Consider first the electric field of the light wave inside a small
object.

If we take the origin to be at point r1, then we have
r1�0; 0; 0� and r2�0;R; 0�. With this choice of the coordinate
system, we obtain the following system of equations for the
unknown fields E�r1; t� and E�r2; t� at the position of each of
the atoms for i 6� j:

E�ri; t� � EI�ri; t� �
3�py

j �y0 ÿ �pj�
R3

� 3� _py
j �y0 ÿ � _pj�
cR2

� ��p
y
j �y0 ÿ ��pj�
c2R

; �11:8�

where y0 is the unity vector along the y axis.
Suppose the external field to have the form

EI�ri; t� � E0I exp
�
i�k0ri ÿ ot��� c:c:; �11:9�

where E0I is a constant amplitude, and k0 is the wave vector
whose magnitude is k0 � o=c. The induced dipole moments
and the field at points r1 and r2 are given by Eqns (11.2) and
(11.6), where p0j � e�uj ÿ ivj� and E0j are complex quantities.

Substituting Eqns (11.9), (11.2), and (11.6) into Eqn (11.1)
and separating out equally oscillating factors, we obtain for a
stationary solution of Eqn (11.5) the equality

p0j � ajE0j ; �11:10�
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where

aj � e2

m

1

o2
j ÿ o2 ÿ 2io=T

�11:11�

is the polarizability of the jth atom [24].
Substituting Eqn (11.10) into the system (11.8), after some

algebra, we obtain the following system of coupled equations:

p
y
01 � a1

�
E

y
0I � 2Gp

y
02 exp�ik0R�

	
;

p
y
02 � a2

�
E

y
0I exp�ik0R� � 2Gp

y
01 exp�ik0R�

	
; �11:12�

p b
01 � a1

�
Eb
0I ÿ Fp b

02 exp�ik0R�
	
;

p b
02 � a2

�
Eb
0I exp�ik0R� ÿ Fp b

01 exp�ik0R�g ; �11:13�
b � x; z ;

where

G � 1

R3
ÿ i

k0
R2

; F � Gÿ k20
R
: �11:14�

The systems of algebraic equations, (11.12), (11.13), are
linear and can therefore be solved by any standard method,
giving the following expressions for the unknowns [69]:

p
y
01 � a1

1� 2a2G exp�i�k0R� k0R��
1ÿ 4a1a2G 2 exp�i2k0R� E

y
0I ;

p b
01 � a1

1ÿ a2F exp�i�k0R� k0R��
1ÿ a1a2F 2 exp�i2k0R� Eb

0I ;

�11:15�

p
y
02 � a2

exp�ik0R� � 2a1G exp�ik0R�
1ÿ 4a1a2G 2 exp�i2k0R� E

y
0I ;

p b
02 � a2

exp�ik0R� ÿ a1F exp�ik0R�
1ÿ a1a2F 2 exp�i2k0R� E b

0I :

The corresponding expressions for the field strengths can
readily be obtained using Eqn (11.10).

Thus, we have obtained the solution of the self-consistent
problem for the case in which the external field is produced by
a plane wave of frequency o.

Before we write down formulas for the field at each atom,
let us make one further simplification.

Let the eigenfrequencies of the atoms be all identical,
o1 � o2 � o0. Then a1 � a2 � a, and from Eqn (11.15) we
obtain the following expressions for the complex amplitude of
the field at each of the atoms:

E
y
01 �

1� 2aG exp�i�k0R� k0R��
1ÿ 4a2G2 exp�i2k0R� E

y
0I ;

E b
01 �

1ÿ aF exp�i�k0R� k0R��
1ÿ a2F 2 exp�i2k0R� Eb

0I ;

�11:16�

E
y
02 �

exp�ik0R� � 2aG exp�ik0R�
1ÿ 4a 2G 2 exp�i2k0R� E

y
0I ;

E b
02 �

exp�ik0R� ÿ aF exp�ik0R�
1ÿ a2F 2 exp�i2k0R� Eb

0I :

Thus, it can be seen from formulas (11.16) that the field at the
position of an atom is generally different from the external
field. The situation is determined by the values of the factors
aF and aG, which depend on the frequency of the external
field and the interatomic separation. The fields (11.16) are
equal to the external field only if each of these factors is much
less than unity, and this condition can be fulfilled when either
the interatomic separation is sufficiently large or the
frequency of the external field differs considerably from the
resonant frequency.

The complex amplitudes of the fields at each atom can be
related to each other by writing

E02 � �Ex
01x0 � Ez

01z0� exp�ikrR� � E
y
01 exp�iklR�y0 ;

�11:17�

where x0, y0, z0 are the unit vectors of the coordinate system,
and

kr � k0R

R
ÿ i

R
ln

1ÿ aF exp�i�k0Rÿ k0R��
1ÿ aF exp�i�k0R� k0R�� ;

kl � k0R

R
ÿ i

R
ln

1� 2aG exp�i�k0Rÿ k0R��
1� 2aG exp�i�k0R� k0R�� : �11:18�

The expression (11.17), together with Eqn (11.6), imply
that the field in the system is a superposition of two waves, a
transverse wave with the wave vector kr, and a longitudinal
wave with the wave vector kl, either vector being directed
along the y axis.

We are now, finally, in a position to determine the light
wave field outside the small object by inserting Eqn (11.6) into
Eqn (11.1). In this case the Green function exp�ik0Rj�=Rj

links the jth dipole and the observation point r outside the
small object. Below, the wave zone field due to a small object
is examined numerically.

11.2 Two atoms in the field of an intense quasi-resonant
plane wave
We apply the field equation (11.1) to describing the optical
properties of a small object made up of two resonance atoms,
in an intense light wave field

EI�r; t� � eIE0I exp
ÿÿ i�k0rÿ ot��� c:c: ;

where eI is the real unit polarization vector, E0I is the wave
amplitude, ando and k0 are the frequency and wave vector of
the plane wave, respectively �k0 � o=c�. Then the dipole
moment of the jth atom can be written as

pj �
1

2
d�uj � ivj� exp�iot� � c:c: ; �11:19�

where d is the matrix element of the dipole moment for the
transition between two chosen states. The quantities uj and vj
in Eqn (11.9) satisfy the following equations [24]:

_uj � ÿ�o0 ÿ o�vj ÿ 2

�h
�dej�E 000 j wj ÿ uj

T 02
;

_vj � �o0 ÿ o�uj � 2

�h
�dej�E 00 jwj ÿ vj

T 02
; �11:20�

_wj � 2

�h
�dej��E 000j uj ÿ E 00 jvj� ÿ

�wj ÿ w0�
T1

;
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whereo0 is the frequency of the resonant transition chosen in
the spectrum of the atom, wj is the inversion of the
corresponding quantum states on the jth atom, w0 is the
initial value of the inversion, andT1 andT

0
2 are the relaxation

times [24]. The quantities E 00j and E 000j are the real and
imaginary parts of the electric field amplitude at the jth atom:

E�rj; t� � ej�E 00j � iE 000j� exp�iot� � c:c: ; �11:21�

ej being the real polarization vector of the field at the jth atom.
Thus, we have established a self-consistent system of

equations for the field and atomic variables.
In what follows we consider only steady processes, i.e., we

assume the time that elapsed since the external field is on to be
t4T1;T

0
2, so that _uj � _vj � _wj � 0. With this restriction and

using Eqns (11.20), the atomic variables can be expressed in
terms of the field variables as follows:

uj � ÿ
w0KjT 02

ÿ
E 00j�oÿ o0�T 02 � E 000j

�
Dj

;

vj �
w0KjT 02

ÿ
E 00j ÿ E 000j�o0 ÿ o�T 02

�
Dj

; �11:22�

wj �
w0

ÿ
1� �o0 ÿ o�2�T 02�2

�
Dj

;

where Dj �1� �o0 ÿ o�2�T 02�2 � T1T
0
2K

2
j ��E 00j�2 � �E 000j�2�,

Kj � 2dej=�h.
We choose the origin of the coordinate system to be at

point r1, so that we have r1�0; 0; 0� and r2�0;R; 0�. We also
take the wave vector k0 of the external wave to be along r2 and
the vectors eI and ej, to be parallel to the vector d. This yields
the following equations for the fields at the positions of the
atoms:

E 00j � iE 000j � E0I exp�ÿik0rj� � Ad�uj � ivj� exp�ÿik0R� ;

�11:23�
where

A � k20
R
� i

k0
R2
ÿ 1

R3
;

with d being the magnitude of the dipole moment for the
transition.

Thus, because the quantities uj and vj can be expressed in
terms of field variables, we have a system of two complex,
nonlinear algebraic equations to work with.

For weak fields satisfying the inequality

T1T
0
2K

2
j jE0Ij2 5 1 ; �11:24�

the system (11.23) reduces to a linear algebraic system. The
solutions of this system have been examined by us in detail in
Ref. [69]. For strong fields, the inequality (11.24) is reversed,
and the corresponding system has only one solutionÐwhich,
however, is of no interest here.

Suppose now the fields to be such that

T1T
0
2K

2jE0Ij2 � 1 :

Also assume that the resonance frequency is

o0 � 2:9� 1015 sÿ1 ;

and the relaxation times are

T1 � 10ÿ3 s; T 02 � 10ÿ8 s; d � 1:3� 10ÿ18 CGSE :

The numerical solution of the system (11.23) yields the
complex amplitude of the electric field at each atom as a
function of the wave vector k0 for both the external field
amplitude and the interatomic atomic separation held fixed.
For certain values of E0I and R, this function is multi-valued,
i.e., several amplitudes of the electric field at atoms, or several
field states, correspond to a given value of k0. This phenom-
enon is known as optical multistability. Precisely how the
system makes the transition to a particular state depends on
which states the system has passed through before the
transition Ð i.e., the phenomenon of hysteresis takes place.
Let R � 1; then the numerical analysis of the solutions of the
system shows that multistability occurs for external fields
satisfying the inequality

10ÿ2 < jE0Ij < 1 CGSE :

Dispersion laws for waves excited in a two-atom small
object are shown in Fig. 12a.

11.3 Optical recording of quantum information
in a two-qubit quantum computer
It has been proven that only two elements (gates), one-qubit
and two-qubit, are needed to construct a quantum computer
[70]. The qubit Ð the unit of quantum information Ð is
known to be a superposition of the quantum states of a
certain system jci � aj0i � bj1i, where j0i, j1i are the wave
functions of two states of the system, and a, b are quantum
numbers, jaj2 � jbj2 � 1 [71]. Gadomski|̄ [68] proposed a
method by which quantum information can be recorded
optically in a system of two atoms situated a short distance
apart (R5 l, l the light wavelength,R the atomic separation)
using the inversionsw1 andw2 of the first and second atoms of

99990 99996 k0, 10ÿ7 nmÿ1

2 k 0, nmÿ1

0

ÿ2

a

b

99990 99996 k0, 10ÿ7 nmÿ1

4 k 00, nmÿ1

0

ÿ4

Figure 12.Dispersion of (a) the real and (b) the imaginary part of the wave

vector k. The atomic separation is R � 1:6 nm and the external field

strength is E0I � 0:5 CGSE.
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the system to measure quantum information. The system was
described using Eqns (11.22) and (11.1) for the atoms
interacting in a steady-state manner with the field of an
intense quasi-resonant radiation.

This problem was solved [68] numerically for various
small-object excitation conditions. It was shown that for
equal atomic frequencies o01 � o02 the atomic inversions w1

and w2 were also equal for different angles j between the
vector k0 and the axis y passing through the two atoms. It was
also shown that foro01 � o02 and certain values of detuning,
multipolarity appears due to the lack of uniqueness in the
determination of the atomic inversions. Figure 13 shows the
numerical results for the atomic inversions w1 and w2 for the
case in which the first and second atoms differ somewhat in
frequency. The atomic inversions may differ significantly in
this case, and this fact can be used for recording quantum
information on individual atoms in a quantum computer
(which is a small object).

11.4 Optical holography of small objects
Let us consider the interference of polarizing fields, Eqn
(11.1), produced by two atoms of a small object, with a
reference field with wave vector k00 (Fig. 14) [72].

We start by calculating the field at observation points in
the wave zone, where

k0jrÿ r1j4 1 ; k0jrÿ r2j4 1 :

For such observation points, the terms proportional to
1=Rj are dominant in Eqn (11.7), and the electric and
magnetic field strengths at r assume the respective forms [8]

E�r; t� � E0I�r; t� ÿ
�
n1 � �n1 � �p1�

�
c2R1

ÿ
�
n2 � �n2 � �p2�

�
c2R2

;

�11:25�
H�r; t� � H 0I�r; t� �

1

c2R1
��p1 � n1� � 1

c2R2
��p2 � n2� ;

where E0I and H0I are, respectively, the electric and magnetic
fields of the reference plane wave with wave vector k00. For a
plane wave we have [18]

H0I �
1

k 00
�k00 � E0I� ;

where k 00 � k0. Since the induced dipole moments for both
atoms in a small object are given by Eqns (11.19) for the times
tÿ R1=c and tÿ R2=c, using Eqn (11.15) we obtain

�pgj � ÿo2pg0 j exp�ik0Rj� exp�ÿiot� � c:c: ; �11:26�

where the index g refers to the x-, y- or z-components of the
induced dipole moment of the jth atom, Rj � jrÿ rjj.

Let Ds be a surface element in the neighborhood of the
observation point r at the surface of the hologram. Then the
intensity of optical radiation at this point is given by

I�r� � Ds � c
4p
� Is�r� ; Is�r� �

���E�H�y
�� ; �11:27�

where the quantities E andH at r are given by Eqn (11.25). By
changing the point of observation, we find the intensity
distribution for the interfering fields in the plane of the
hologram. Below we will present characteristic holographic
pictures obtained from Eqn (11.27) for various conditions.

Formulas (11.15) contain denominators whose real parts
can vanish as the external frequencyo or the separationR are
varied. In this case the amplitudes of the induced dipole
moments of the first and second atoms reach their maximum
values. From Eqn (11.15), the conditions for this to occur are

Re
�
a1a2G 2 exp�2ik0R�

	 � 1

4
;

Re
�
a1a2F 2 exp�2ik0R�

	 � 1 ; �11:28�
depending on the orientation of the dipole moments relative
to the coordinate axes.

Let us separate out resonances with wave vectors k01 and
k02, respectively, in the spectra of the first and second atoms in
the small object. The polarizabilities a1 and a2 of the atoms
are different according to Eqn (11.11). Note that Tj � gÿ10 j ,
where g0 j � 2e2k20 j=�3mc� ( j � 1; 2). Let

k01 � 89000 cmÿ1 ; k02 � 92000 cmÿ1 ;

then

g01 � 0:45� 108 sÿ1 ; g02 � 0:48� 108 sÿ1 :
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Figure 13. Dependence of the inversion of the atoms in a small object on

the angle between the wave vector k0 of the external wave and the axis

passing through the atoms. Curves 1 and 2 represent the inversions w1 and

w2 of the first and second atoms, respectively.

x

y

z

k0

k00

R1

R0

Ds s

1

2

Figure 14. Optical scheme of the holographic recording of a small object

consisting of two closely spaced atoms. The plane of the hologram is at a

distance R0 from the first atom and coincides with the xz plane; k0 is the

wave vector of the object beam, k0 kz; k00 is the wave vector of the reference
beam, k00 ? z;Ds is an element of the plane hologram, located at a distance

R1 from the first atom, R5 l, R0 4 l, and l is the wavelength of the

reference and the object radiation, both from one source.
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In the case of exact resonance

Re �a1� � 1:8� 10ÿ16 s3 ; Re �a2� � 1:6� 10ÿ16 s3 ;

Im �a1� � 3:6� 10ÿ16 cm3 ; Im �a2� � 3:2� 10ÿ16 cm3 :

Thus, in the absence of interaction between the atomswe have
two isolated resonances, which correspond to two isotropic
atoms.

The self-consistent atom-atom interaction determined by
the solution (11.15) considerably modifies the spectroscopic
properties of the atoms that constitute the small object.
Numerical analysis shows that a small object of size
R � 1 nm has four dimensional resonances at the following
wave vectors:

k 001 � 86992:9 cmÿ1 ; k 002�93900:2 cmÿ1 ;

k 003�88326:3 cmÿ1 ; k 004�92646:9 cmÿ1 :

The positions of the dimensional resonances on the axis of
wave vectors depend strongly on the separation and polariz-
abilities a1 and a2 of the isolated atoms the small object is
made of. The first and the second atom behave as anisotropic
particles. The effective polarizabilities of the atoms, in the
case of exact dimensional resonances, differ considerably
from their isolated-atom resonance values a1 and a2.
Furthermore, near the dimensional resonances

k 002 � 93900:2 cmÿ1 ; k 003 � 88326:3 cmÿ1

negative dispersion is exhibited by the first and the second
atom.

Let us now examine some properties of the optical
holograms which form when a two-atom small object is
irradiated by a coherent object wave.

Figure 15 illustrates numerical calculations of the inten-
sity (11.27) for a plane hologram at a distance R0 � 100 cm
from a small object. The frequencies of the object and
reference waves are equal and match the dimensional
resonances. The separation between the atoms in the small
object isR � 1 nm. The phase plane of the reference wave is at
an angle a0 � 0 to the plane of the hologram. Both the object
and reference waves are linearly polarized, and the vectorsE0I

and E00I have the following components:

E0I�E0I; 0; 0� ; E 00I�0; 0;E 00I� :

The angle y between the vector k0 and R is 90�. The field
intensity in the plane of the hologram is expressed in units of
Ds�c=�4p��, where Ds � Dx � Dz. The area of the hologram is
LxLy � 1 cm2. Numerical calculations show the dimensional
resonances to be narrow, with a width of about 0.1 cmÿ1.

Let us next perform four numerical experiments taking
the object and reference frequencies to match the exact
dimensional resonances with the wave numbers

k 001 � 86992:9 cmÿ1 ; k 002 � 93900:2 cmÿ1 ;

k 003 � 88326:3 cmÿ1 ; k 004 � 92646:9 cmÿ1 :

In this case the dimensional resonances

k 001 � 86992:9 cmÿ1 ; k 002 � 93900:2 cmÿ1

separate out the y-components of the induced dipole
moments of the first and second atoms in the small object,
because the x- and z-components vanish for these values.
Conversely, the dimensional resonances

k 003 � 88326:3 cmÿ1 ; k 004 � 92646:9 cmÿ1

separate out the x- and z-components of the induced dipole
moments of the first and second atoms. Thus, using various
dimensional resonances, it is possible to investigate the
induced anisotropy of a small object.
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Figure 15.Distribution of the intensity Is in the plane xz of a hologram of a

two-atom nanostructural object, for a normally incident object wave. �E0I

has the coordinates �0;Ey
0I; 0�, Ey

0I � 1 CGSE unit, the distance R0 from

the object to the center of the hologram is 100 cm, and the coordinates of

the wave vector �k00 of the reference wave are �0; 0;ÿk0�; Imax � �Is�max in

CGSE units. The object and reference waves have equal frequencies,

corresponding to four resonances with wave numbers (a) 86992.9 cmÿ1,
(b) 93900.2 cmÿ1, (c) 88326.3 cmÿ1, and (d) 92646.9 cmÿ1. The atoms that

constitute the nanostructural object are different and have eigenfrequen-

cies with wave numbers 89000 cmÿ1 and 92000 cmÿ1. The interatomic

separation in the object is 1 nm. The hologram measures 0:6� 0:6 cm2 in

size.
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12. Conclusion

Thus, this review presents equations, nonlocal in both space
and time, that describe the propagation of photons [Eqns
(5.11), (5.18)] and of classical fields [Eqns (6.1) ± (6.3), (6.8),
(6.16), (6.17), (6.30), (6.31)] taking into account the influence
of the surrounding charges (electrons and atomic nuclei) on
the process of the interaction between external radiation and
an electron at a certain point of observationwithin the system.

These nonlocal equations are derived based on the
quantum electrodynamical and semiclassical approaches.
The former approach separates out those third-order effects
which are accompanied by the exchange of virtual photons
between atomic electrons and which involve the emission
(absorption) of a real photon. The Feynman diagrams for
these effects are shown in Fig. 1. It is shown that these are
precisely the effects that control the refractive index, i.e., are
responsible for the formation of a wave propagating in the
optical medium with a wave vector different from that of the
wave in vacuum. This fundamental statement is proved
within the framework of the electric dipole approximation
by going over from Eqn (5.11) to the integral equation for
electromagnetic waves in an optical medium, the equation
which is well known in classical optics and which, in turn,
allows the Lorentz ±Lorentz formula for the refractive index
of the medium to be rigorously derived using the Ewald ±
Oseen procedure.

The third-order effects (see Fig. 1) can be represented, as
shown in Section 3, in terms of polarizing fields which depend
on the types of intermediate states involved and on the types
of quantum transitions present in the spectrum of the
interacting fields. Based on the concepts of polarizing fields,
the following conclusions are made.

First, in the electric dipole approximation the polarizing
field is produced by a dipole and is treated as a field of virtual
photons. In a system of two atoms this field is of a nonlocal
nature. The dipole of one of the atoms is excited by the
external field at the position of this particular atom, and the
transition with the emission (absorption) of a real photon
occurs at the position of the other atom.

Second, depending on the types of quantum transitions
occurring in the spectrum of interacting atoms, different
photon propagation equations can be obtained, which can
be represented as nonlocal integral equations for a contin-
uous medium.

In the present review, some boundary value problems
were solved to demonstrate the advantages of the nonlocal
equations over Maxwell's local equations. In doing this, the
existence of the near-field effect in the optics of dielectrics was
proved theoretically, and from this fact the concept of a
discrete-continuous dielectric with a structural factor as a
necessary element was developed. This factor is most
important in the surface layers of dielectrics, in superthin
films, and also in small objects with linear dimensions much
less than the light wavelength involved. It can also be argued
that the near-field effect is a more general concept than the
local field effect [26]. The latter is predicted theoretically to
occur in nonlinear resonant optical phenomena as one goes
over from the microscopic to the macroscopic field using the
relations (8.2) in the modified Bloch equations [24]. The near
field effect introduces the structural factor and is also taken
into account by the relation (8.12) if an optical effect is, for
example, considered in a superthin film consisting of resonant
atoms [73].

Of particular interest from the point of view of the
application of the nonlocal equations are so-called small
objects, with linear dimensions much less than the wave-
length of the light. This review considers two problems
concerning two-atom small objects in the field of quasi-
resonant radiation, for weak and for strong radiation. The
solutions of these problems suggest important conclusions
about the use of optical radiation for the study of small
objects, for obtaining the holograms of such objects, depend-
ing on the processes inside them, and for using small objects
as quantum computer components.

The author expresses his gratitude to K A Valiev,
L A Shelepin, and A N Oraevski|̄ for helpful discussion of
the fundamental results of this review.

13. Appendix

A. The tensor bP is described by the following, rather
cumbersome, equations:

bP�x; y; z� � a0
� bL�z� � bT�z��� bS�x; y; z� ;

bP�0� � a0bJ� bS�0� ;bL�z� � bFÿ1 bL 0�z�bF ; z 6� 0 ;

where the rotation matrix bF has the form

bF � ÿ cosFI ÿ sinFI 0
sinFI ÿ cosFI 0
0 0 1

 !
:

The inverse matrix bFÿ1 is obtained by the replacement
FI ! ÿFI. The symmetric third-rank tensor bL 0�z� has the
following components:

L0xy�z� � L0zy�z� � 0 ;

L0xx�z��ÿ2p exp
ÿ
ik0

��������������
e2 � z2

p �
e2
1ÿ ik0

���������������
e 2 � z 2
p

�e 2 � z 2�3=2
J1�x�
x

;

L0yy�z� � 2p exp
ÿ
ik0

���������������
e 2 � z 2

p �
�
�

xJ1�x����������������
e 2 � z 2
p ÿ e2

1ÿ ik0
���������������
e 2 � z 2
p

�e 2 � z 2�3=2
�
J0�x� ÿ J1�x�

x

��
;

L0zz�z� � L0xx�z� � L0yy�z� ;

L0zx�z� � 2p exp
ÿ
ik0

���������������
e 2 � z 2

p �
iez

1ÿ ik0
���������������
e 2 � z 2
p

�e 2 � z 2�3=2
J1�x� ;

where x � k0e sin yI and Jn is the nth-order Bessel function.
The tensor T�z� is defined by

bT�z� � bFÿ1 bT 0�z�bF ;
where bT 0�z� is a symmetric third-rank tensor having the
following components:

T 0xy�z� � T 0xy�z� � 0 ;

T 0xx�z� � 2p
�e
0

J0
ÿ
k0r sin yI

�
G�R�

�
��

z

R

�2�
ÿ k 2

0 ÿ i
3k0
R
� 3

R2

�
�
�
ik0 ÿ 1

R

�
1

R

�
r dr ;
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T 0zz�z� � ÿ2pk 2
0 sin

2 yI

�e
0

J0�k0r sin yI�G�R�rdr ;
T 0yy�z� � T 0xx�z� � T 0zz�z� ;
T 0xz�z� � 2pik0z sin yI

�
�e
0

J0�k0r sin yI�G�R�
�
ik0 ÿ 1

R

�
r
R

dr ;

R �
���������������
r2 � z2

p
:

Unlike the tensors bL and bT, which are functions of the
coordinate z only, the tensor bS also depends on the
coordinates of the point of observation in the (x; y) plane:

bS�x; y; z� � Sxx�x; y; z� Syx�x; y; z� Szx�x; y; z�
Syx�x; y; z� Syy�x; y; z� Szy�x; y; z�
Szx�x; y; z� Szy�x; y; z� Szz�x; y; z�

0@ 1A ;

Skl�x; y; z� � a30

X
aj

G�Raj�

� exp
�ÿ ik0Raj sin yI �cosFI najx � sinFI najy�

�
�
�
k20�dkl ÿ najk najl�ÿ ik0

3najk najl ÿ dkl
Raj

� 3najknajl ÿ dkl
R2

aj

�
;

Raj �
�������������������������������������������������������
�xÿ xaj�2 � �yÿ yaj�2 � z2

q
;

najx �
xÿ xaj
Raj

; najy �
yÿ yaj
Raj

; najz �
z

Raj

;

where dkl is the Kronecker delta. The summation runs over
the atoms of the jth layer lying within the sphere of radius e
centered at the observation point.

The tensor bS has a translational symmetry:bS x� a0x; y; z� � � bS x� a0x; y� a0y; z
ÿ �

� bS x; y� a0y; z
ÿ � � bS�x; y; z� ;

where a0x and a0y are the lattice constants in the directions x
and y, respectively. In the calculations of this paper,
a0x � a0y � a0.

The tensor bJ has the formbJ � bFÿ1bJ 0 bF ;bJ 0 is a diagonal tensor with the components

J 0xx � 2p
exp�ik0e�

e

�
J0�x� � J1�x�

x
�ik0eÿ 1�

�
� 2pk0 sin

2 yI

�
k0

�e
0

exp�ik0r� J1�a�
a

drÿ i

1� cos yI

�
;

J 0yy � 2p
exp�ik0e�

e
�1ÿ ik0e� J1�x�x

� 2pk0

�
i

cos yI
ÿ k0

�e
0

exp�ik0r� J0�a� dr
�
;

J 0zz � ÿ2p
exp�ik0e�

e
J0�x�

� 2pk0

�
i

cos yI
ÿ k0

�e
0

exp�ik0r�J0�a� dr
�

ÿ 2pk0 sin
2 yI

�
k0

�e
0

exp�ik0r� J1�a�
a

drÿ i

1� cos yI

�
;

where x � k0e sin yI

B. The tensor bP in Eqns (9.5) and (9.10) is given bybP�z� � �zjÿ1 ÿ zj�
� bL�z� � bT�z��� bS�z� ; z 6� 0 ;

bP�0� � �zjÿ1 ÿ zj�bJ� bS�0� ; z � 0 :

The symmetric third-rank tensor bL�z� has the following
components:

Lxy�z� � Lzy�z� � 0 ;

Lxx�z� � ÿ2p exp�ik0L0��L2
0 ÿ z2� 1ÿ ik0L0

L3
0

J1�x�
x

;

Lyy�z� � 2p exp�ik0L0�
�
xJ1�x�
L0

ÿ �L2
0 ÿ z2� 1ÿ ik0L0

L3
0

�
�
J0�x� ÿ J1�x�

x

��
;

Lzz�z� � Lxx�z� � Lyy�z� ;
Lzx�z� � 2p exp�ik0L0� iz

����������������
L2
0 ÿ z2

q
1ÿ ik0L0

L3
0

J1�x� ;

where x � k0

����������������
L2
0 ÿ z2

q
sin yI, and Jn is the nth-order Bessel

function.bT�z� is a symmetric third-rank tensor:

Txy�z� � Txy�z� � 0 ;

Txx�z� � 2p
� ����������

L2
0
ÿz2

p

0

J0�k0r sin yI�G�R�

�
�
�zR�2

�
ÿ k20 ÿ i

3k0
R
� 3

R2

�
�
�
ik0 ÿ 1

R

�
1

R

�
r dr ;

Tzz�z� � ÿ2pk20 sin2 yI
� ����������

L2
0
ÿz2

p

0

J0�k0r sin yI�G�R�r dr ;
Tyy�z� � Txx�z� � Tzz�z� ;

Txz�z� � 2pik0z sin yI

� ����������
L2
0
ÿz2

p

0

J0�k0r sin yI�G�R�

�
�
ik0 ÿ 1

R

�
r
R

dr ;

where R �
���������������
r2 � z2

p
.bS is a symmetric tensor with the components

Skl�z� � 1

N

X
aj

G�Raj� exp
�ÿ ikIx�xÿ xaj�

�
�
�
k20�dkl ÿ najk najl� ÿ ik0

3najk najl ÿ dkl
Raj

� 3najk najl ÿ dkl
R2

aj

�
;

Raj �
�������������������������������������������������������
�xÿ xaj�2 � �yÿ yaj�2 � z2

q
;

where dkl is the Kronecker delta. The summation runs over
the atoms of the jth layer lying within the sphere of radius
�L2

0 ÿ z2�1=2.bJ is a diagonal tensor with the components

Jxx � 2p
exp

�
ik0

����������������
L2
0 ÿ z2

q �
����������������
L2
0 ÿ z2

q
�
�
J0�x� � J1�x�

x

�
ik0

����������������
L2
0 ÿ z2

q
ÿ 1
��
� 2pk0 sin

2 yI

�
�
k0

� ����������
L2
0
ÿz2

p

0

exp�ik0r� J1�a�
a

drÿ i

1� cos yI

�
;
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Jyy � 2p
exp

ÿ
ik0

����������������
L2
0 ÿ z2

q �����������������
L2
0 ÿ z2

q �
1ÿ ik0

����������������
L2
0 ÿ z2

q � J1�x�
x

� 2pk0

�
i

cos yI
ÿ k0

� ����������
L2
0
ÿz2

p

0

exp�ik0r�J0�a� dr
�
;

Jzz � ÿ2p
exp

�
ik0

����������������
L2
0 ÿ z2

q �
����������������
L2
0 ÿ z2

q J0�x�

� 2pk0

�
i

cos yI
ÿ k0

� ����������
L2
0
ÿz2

p

0

exp�ik0r�J0�a� dr
�

ÿ 2pk0 sin
2 yI

�
k0

� ����������
L2
0
ÿz2

p

0

exp�ik0r� J1�a�
a

drÿ i

1� cos yI

�
;

where x � k0

����������������
L2
0 ÿ z2

q
sin yI, a � k0r sin yI.
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