
Abstract. The motion of spinning relativistic particles in exter-
nal electromagnetic and gravitational fields is considered. The
self-consistent equations of motion are built with the noncovar-
iant description of spin and with the usual, `naive' definition of
the coordinate of a relativistic particle. A simple derivation of
the gravitational interaction of first order in spin is presented
for a relativistic particle. The approach developed allows one to
consider effects of higher order in spin. Concrete calculations
are performed for the second order. The gravimagnetic moment
is discussed, a special spin effect in general relativity. We also
consider the contributions of the spin interactions of first and
second order to the gravitational radiation of compact binary
stars.

1. Introduction

The problem of the motion of a particle with internal angular
momentum (spin) in an external field consists of two parts: the
description of the spin precession and the account of the spin
influence on the trajectory of motion. To the lowest non-
vanishing order in cÿ2, the complete solution for the case of an
external electromagnetic field was given more than 70 years

ago [1]. Gyroscope precession in a centrally symmetric
gravitational field was considered to the same approximation
even earlier [2]. Then, much later, spin precession was
investigated in the case of the gravitational spin ± spin
interaction [3]. The fully relativistic problem of spin preces-
sion in an external electromagnetic field was also solved more
than 70 years ago [4], and then in a more convenient
formalism, using the covariant vector of spin, in [5].

The situation is different with the second part of the
problem, which refers to the spin influence on the trajectory.
Covariant equations of motion for a relativistic spinning
particle in an electromagnetic field were written in the same
paper [4], and for the case of a gravitational field in [6]. These
equations have been discussed repeatedly from various points
of view in numerous papers (see, e.g., [7 ± 18]). The problem of
the influence of the spin on the trajectory of a particle in an
external field is not only of purely theoretical interest. In
particular, it attracts attention because it is related to the
description of the motion of relativistic particles in accel-
erators [19] (see also the recent review [20]).

In fact, it is far from being obvious whether one can
observe in practice the discussed spin corrections to the
equations of motion of elementary particles, for instance, an
electron or proton. According to the well-known argument by
Bohr (see [21]), the additional Lorentz force due to the finite
size of the wave packet of a charged particle and to the
uncertainty relation exceeds the corresponding component of
the Stern ±Gerlach force. However, this argument by itself
does not exclude in principle the possibility of observing a
common Stern ±Gerlach effect, even a small one, in the
presence of a larger background due to the uncertainty
relation. In particular, in a recent paper [22] this possibility
was claimed to be supported by numerical calculations.
Moreover, spin-dependent correlations certainly exist in
differential cross sections of scattering processes. So, it was
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proposed long ago to separate charged particles of different
polarizations through the spin interaction with external fields
in a storage ring [23]. Though this proposal is being discussed
rather actively (see review [20]), it is not yet clear whether it is
feasible technically.

There are however macroscopic objects for which internal
rotation certainly influences their trajectories. We mean the
motion of Kerr black holes in external gravitational fields.
This problem is of importance in particular for the calculation
of the gravitational radiation of binary stars. In this
connection it was considered in [24 ± 27]. However, when
turning to these calculations, we found [28] that the equations
of motion used in these papers taking account of spin to the
lowest nonvanishing order in cÿ2 differ from those corre-
sponding to the well-known gravitational spin ± orbit inter-
action even in the simpler case of an external field. As we will
see, the reason for the disagreement consists in different
definitions of the center-of-mass coordinate. Moreover, it
turned out that the widely used Papapetrou equations in the
same cÿ2 approximation [6] also fail to reproduce the result
for the gravitational spin ± orbit interaction found in the
classical work [2]. This discrepancy was pointed out long
ago in [29]; however the explanation suggested in [29] does not
appear satisfactory (see Section 3.2).

The present review is essentially based on recent works
[28, 30, 31] where the equations of motion of a relativistic
particle were derived with a noncovariant description of spin.
These equations agree with well-known limiting cases.
Though for an external electromagnetic field such equations
(in the linear-in-spin approximation) have been obtained
previously [19] (see also [20]), we would like to start with
comments related to this approximation in electrodynamics.

2. Covariant and noncovariant equations
of motion of a spinning particle
in an electromagnetic field

2.1 Problems with covariant equations of motion
The interaction of spin with an external electromagnetic field
is described, up to terms on the order of cÿ2, by the well-
known Hamiltonian (see, e.g., [32])

H � ÿ eg

2m
sB� e�gÿ 1�

2m2
s�p� E� : �1�

Here B and E are external magnetic and electric fields; e,m, s,
and p are the particle charge, mass, spin, and momentum,
respectively; and g is its gyromagnetic ratio. Let us emphasize
that the structure of the second (Thomas) term in this
expression has not only been firmly established theoreti-
cally, but has also been confirmed with high accuracy
experimentally, at any rate in atomic physics. To avoid
misunderstandings, let us note that, generally speaking, the
last term in formula (1) should be rewritten in a Hermitian
form (see, e.g., [33]):

�p� E� ! 1

2
�p� Eÿ E� p� � p� E� i

2
HH� E :

We will be mainly interested, however, in the semiclassical
approximation, when field derivatives in the interaction linear
in spin, are neglected. (Besides, the correction with HH� E
vanishes in the case of a potential electric field considered in
[32].)

Let us try to construct a covariant equation of motion
accounting for spin, which would reproduce in the same
approximation the force

fm � eg

2m
sB;m� e�gÿ 1�

2m

�
d

dt
�E� s�m ÿ s�v� E;m �

�
�2�

corresponding to the Hamiltonian (1) (here and below a
comma with a subscript denotes a partial derivative). A
covariant correction f m to the Lorentz force eF mnun should
be linear in the tensor of spin Smn and in the gradient of the
tensor of electromagnetic field Fmn;l ; it may also depend on
the 4-velocity u m. Since u mum � 1, this correction must satisfy
the condition um f

m � 0.
From the above-mentioned tensors, one can construct

only two independent structures meeting the last condition.
The first,

ZmKFnl;KS
nl ÿ Fln;K u

KS lnu m ; �3�

reduces in the cÿ2 approximation to

2s�B;mÿ v� E;m � ; �4�
and the second,

u lFln;Ku
KS nm ; �5�

reduces to

d

dt
�s� E� m : �6�

Mote that possible structures with the contraction FnK;lS
Kl

reduce to (3) and (5), due to the Maxwell equations and the
antisymmetry of SKl.

Obviously, no linear combination of (4) and (6) can
reproduce the correct expression (2) for the spin-dependent
force. In a somewhat less general way this was shown in [28].

But why is it that the correct (in the cÿ2 approximation)
formula (2) cannot be obtained from a covariant expression
for the force? Obviously, one can easily reproduce by a linear
combination of (4) and (6) those terms in (2) that are
proportional to g. In other words, there is no problem to
present in a covariant form the terms that describe, so to say,
direct interaction of a magnetic moment with external fields.
It is the terms in (2) independent of g and corresponding to the
Thomas precession that cannot be written covariantly.
Certainly, the Thomas precession can be described beyond
the cÿ2 approximation, for arbitrary velocities. We mean as a
noncovariance the nontensor form of the transformation law.
Of course, the noncovariance of the equations does not mean
that the physical observables have the wrong transformation
properties. It is sufficient to recall electrodynamics in the
Coulomb gage.

2.2 Relation between different definitions
of the coordinate of a spinning particle
It was noted in [28] that the covariant formalism can be
reconciled with the correct results if the coordinate x entering
into the covariant equation is related to the usual coordinate r
in the cÿ2 approximation as follows:

x � r� 1

2m
s� v : �7�
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The generalization of this substitution to the case of arbitrary
velocities

x � r� g
m�g� 1� s� v ; g � 1�������������

1ÿ v2
p �8�

was introduced in [20]. Obviously, after this velocity-
dependent substitution, the Lagrangian depends explicitly
on the acceleration, which does not allow the standard
Hamiltonian approach to be applied. An essential advantage
of using the coordinate r is, in our opinion, the possibility of
applying the Hamiltonian formalism.

But why can the spin precession itself (as distinct from the
spin influence on the trajectory) be described covariantly [4, 5]
without any concern for the coordinate definition? First of all,
the covariant equations of spin precession

dSm

dt
� e

2m

�
gFmnS

n ÿ �gÿ 2� umFlnu
lS n� �9�

(here Sm is the covariant 4-vector of spin) are written in the
semiclassical approximation, i.e., the coordinate dependence
of external fields is completely neglected. Second, equations
(9) are linear and homogeneous in spin. So, even if one went
beyond the semiclassical approach here, but stayed within the
approximation linear in spin, the use of the usual coordinate
r, which differs from x in terms proportional to s only, would
be completely legitimate.

Since relations (7), (8) are valid for a free particle as well,
their origin can be elucidated with a simple example of a free
particle with a spin 1=2. Here, instead of theDirac representa-
tion with the Hamiltonian of the standard form

HD � ap� bm ;

it is convenient to use the Foldy ±Wouthuysen representation
[34]. Then the Hamiltonian is

HFW � b Ep; Ep �
����������������
p2 �m2

p
;

and the 4-component wave functions c� of the states of
positive and negative energies reduce in fact to the 2-
component spinors f�:

c� �
�
f�
0

�
; cÿ �

�
0

fÿ

�
:

Obviously, in the Foldy ±Wouthuysen representation the
operator of coordinate r̂ defined by the usual relation

r̂c�r� � rc�r� �10�

is just r.
The transition from the exact Dirac equation in an

external field to its approximate form containing only the
first-order correction in cÿ2 is performed just by means of the
Foldy ±Wouthuysen transformation. Thus, in the resulting
cÿ2 Hamiltonian the coordinate of a spinning electron is the
same r as in the completely nonrelativistic case. Nobody
makes substitution (7) in the Coulomb potential when
treating the spin ± orbit interaction in the hydrogen atom.

One more limiting case, which is of a special interest to us,
is a classical spinning particle. Such a particle is in fact a well-
localized wave packet constructed from positive-energy
states, i.e., it is naturally described in the Foldy ±Wouthuy-

sen representation. Therefore, it is r that is natural to consider
as the coordinate of a relativistic spinning particle.

A certain subtlety here is that in the Dirac representation
the operator r̂ is nondiagonal. However, the operator
equations of motion certainly have the same form both in
the Dirac and Foldy ±Wouthuysen representations. Corre-
spondingly, the semiclassical approximation to both is the
same. In particular, the time derivatives on the left-hand side
of the classical equations of motion are taken of the same
coordinate r that serves as an argument of the fields on the
right-hand side of these equations.

As to the covariant operator x̂, it has the simplest form in
the Dirac representation:

x̂D �
����
E
m

r
b r̂D

����
E
m

r
; �11�

where r̂D is the operator acting on the wave function in the
Dirac representation according to rule (10). The covariance of
the matrix element cyx̂c is obvious: the matrix b transforms
cy into �c, and the factors

��������
E=m

p
are needed for the covariant

normalization of the wave functions.
Let us rewrite the operator x̂ in the Foldy ±Wouthuysen

representation. The matrix U of the Foldy ±Wouthuysen
transformation is

U � m� Eÿ bap��������������������
2E�m� E�p : �12�

The calculation, which is conveniently performed in the
momentum representation where rD � iHHp, results in the
following expression:

x̂FW � U yx̂DU � b
�
r� 1

m�m� E� s� p

�
ÿ 1

2m

��ap�̂r� r̂�ap�� : �13�

Here

s � 1

2

r 0
0 r

� �
�14�

is the relativistic operator of spin. Note that the different
components of the relativistic coordinate operator (13) do not
commute. If we confine ourselves to the space of the positive-
energy states, thenwe can put b � 1 in (13) and drop the terms
with a. In this way we arrive at expression (8).

However, we wish to attract attention to the problems
arising in the covariant formulation of the equations of
motion of a spinning relativistic particle. One of them is that
the constraints u mSm � 0 (or u mSmn � 0) should be taken into
account. This problem is of a technical character, and is quite
solvable (see, e.g., [14]).

Another one is much more serious. The covariant
equations of motion contain a third time-derivative. For
instance, the well-known Papapetrou equation [6] for a
particle in an external gravitational field is

D

Dt

�
mum ÿ Smn

Dun

Dt

�
� ÿ 1

2
Rmnrsu

nS rs : �15�

Here, t is the proper time, un � Dxn=Dt, and Rmnrs is the
Riemann tensor. As long as the term

ÿ D

Dt

�
Smn

Du n

Dt

�
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with the third time-derivative is treated perturbatively, no
special troubles arise with it. However, the inherent short-
coming of Eqn (15) is that beyond the perturbation theory it
evidently has spurious, nonphysical solutions.

2.3 Noncovariant formalism
Correct equations of motion in an electromagnetic field
including spin to first order have been known for a fairly
long time [19]. Though being fully relativistic, they are
noncovariant and based on the initial physical definition of
spin. According to this definition, spin is a 3-dimensional
vector s (or 3-dimensional antisymmetric tensor smn) of the
internal angular momentum defined in the rest frame of the
particle. The covariant vector of spin Sm (or the covariant
antisymmetric tensor Smn) is obtained from s (or smn) by the
Lorentz transformation. By the way, an advantage of this
approach is that the constraints u mSm � 0 and u mSmn � 0 hold
identically. The precession frequency for a spin s at an
arbitrary velocity is well-known (see, for instance, [32]):

O � e

2m

�
�gÿ 2�

�
Bÿ g

g� 1
v�vB� ÿ v� E

�
� 2

�
1

g
Bÿ 1

g� 1
v� E

��
: �16�

Naturally, the corresponding interaction Lagrangian (here
the Lagrangian formulation is somewhat more convenient
than the Hamiltonian one) equals

Le1 � Os � e

2m
s

�
�gÿ 2�

�
Bÿ g

g� 1
v�vB� ÿ v� E

�
� 2

�
1

g
Bÿ 1

g� 1
v� E

��
: �17�

The equation of motion for the position has the usual form�
HHÿ d

dt
HHv

�
Ltot � 0 ; �18�

where Ltot is the total Lagrangian of the system. The equation
of motion for the spin in the general form is

_s � ÿfLtot; sg ; �19�

where f::: ; :::g is the Poisson bracket. For spin components, it
is written as

fsi; sjg � ÿEi jk sk ;
which is quite natural, according, for instance, to the well-
known correspondence between the Poisson bracket and
commutator. Correspondingly, in the quantum problem,

_s � ÿi �Ltot; s� : �20�

3. Spin precession in a gravitational field

In this section we present a simple and general derivation of
the equations of spin precession in a gravitational field
(restricting ourselves to first order in spin), based on a
remarkable analogy between gravitational and electromag-
netic fields. Due to this correspondence, the formulae of the
previous section are naturally adapted for the case of an
external gravitational field. In this way, we easily reproduce
and generalize the known results for gravitational spin effects.

3.1 General relations
It follows from the angular momentum conservation in flat
space-time taken together with the equivalence principle that
the 4-vector of spin S m is transported parallel to the particle
world line. The parallel transport of a vector along a geodesic
x m�t�means that its covariant derivative vanishes:

DSm

Dt
� 0 : �21�

Wewill use the tetrad formalism natural for the description of
spin. In view of relation (21), the equation for the tetrad
components of spin Sa � S me am is

DSa

Dt
� dSa

dt
� Smeam;nu

n � Zabgbcd u
dSc : �22�

Here,

gabc � eam;n e
m
be

n
c � ÿgbac �23�

are the Ricci rotation coefficients [35, § 98]. Certainly, the
equation for the tetrad 4-velocity components is exactly the
same:

dua

dt
� Zabgbcd u

duc : �24�
Themeaning of Eqns (22), (24) is clear: the tetrad components
of both vectors vary in the same way, due only to the rotation
of the local Lorentz vierbein.

In exactly the same way, the 4-dimensional spin and
velocity of a charged particle with gyromagnetic ratio g � 2
precess with the same angular velocity in an external
electromagnetic field [by virtue of equation (9) at g � 2 and
the Lorentz equation]:

dSa

dt
� e

m
FabS

b;
dua
dt
� e

m
Fabu

b :

Thus, the correspondence

e

m
Fab $ gabcu

c �25�

becomes obvious. The correspondence (25) makes it possible
to obtain the precession frequency x of the 3-dimensional
vector of spin s in the external gravitational field from
expression (16) via the simple substitution

e

m
Bi ! ÿ 1

2
Eiklgklcu

c ;
e

m
Ei ! g0icu

c : �26�

This frequency is

oi � ÿEikl
�
1

2
gklc �

uk

u0 � 1
g0lc

�
uc

u0w
: �27�

The factor 1=u0w in (27) is related to the transition in the
left-hand side of Eqn (22) to the differentiation with respect to
the world time t:

d

dt
� dt

dt
d

dt
� u0w

d

dt
:

A subscript w is attached to the quantity u0w to emphasize that
u0w is a world, but not a tetrad, component of 4-velocity. All
other indices in expression (27) are tetrad ones,
c � 0; 1; 2; 3; i; k; l � 1; 2; 3. The corresponding spin-depen-
dent correction to the Lagrangian is

Lsg � xs : �28�
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However, in some respect, the first-order spin interaction
with a gravitational field differs essentially from that with an
electromagnetic field. In the electromagnetic case, the inter-
action depends, generally speaking, on a free phenomenolo-
gical parameter, g factor. Moreover, if one allows for the
violation of both P and T invariances, one more parameter
arises here, the value of the electric dipole moment of the
particle. The point is that both magnetic and electric dipole
moments interact with the electromagnetic field strength, thus
this interaction is gage-invariant for any value of these
moments. Only the spin-independent interaction with the
electromagnetic vector potential is fixed by the charge
conservation and gage invariance.

Meanwhile, the Ricci rotation coefficients gabc entering
into the gravitational first-order spin interaction (28), as
distinct from the Riemann tensor, are not covariant. This
interaction is fixed in a unique way by the angularmomentum
conservation in flat space-time taken together with the
equivalence principle, and it has no free parameters [36, 37].
On the other hand, it is no surprise that the precession
frequency x depends not on the Riemann tensor, but on the
rotation coefficients. Indeed, this frequency should not have
tensor properties: let us recall that a spin that is at rest in an
inertial reference frame precesses in a rotating one.

This approach is applied below to the problems of spin ±
orbit and spin ± spin interactions, as well as to spin precession
in a plane gravitational wave.1 We mostly consider the weak-
field approximation. However, as distinct from the standard
approaches, all three problems can easily be solved now for
arbitrary particle velocities. The combination of a high
velocity for a spinning particle with a weak gravitational
field obviously refers to a scattering problem. Another
possible application is to a spinning particle bound by other
forces, for instance, by electromagnetic ones, when we are
looking for the correction to the precession frequency due to
the gravitational interaction.

Let us recall that in the weak-field approximation, where

gmn � Zmn � hmn; jhmnj5 1 ;

there is no difference between the tetrad and world indices in
eam and the tetrad looks as follows:

emn � Zmn � ~emn; j~emnj5 1 :

The well-known relation between the tetrads and the metric

eamebn Zab � gmn

in the weak-field approximation reduces to

~emn � ~enm � hmn :

The demand that tetrads should be expressed via the
metric only, results in the so-called symmetric gage for the
tetrads, where

~emn � 1

2
hmn :

Then, in the weak-field approximation the Ricci coefficients
are

gabc �
1

2
�hbc;a ÿ hac;b� : �29�

3.2 Spin ± orbit interaction. Weak field
In the centrally symmetric field created by a mass M, the
metric is

h00 � ÿ rg
r
� ÿ 2kM

r
; hmn � ÿ rg

r
dmn � ÿ 2kM

r
dmn :

�30�
Here, the nonvanishing Ricci coefficients are

gi jk �
kM

r3
�djkri ÿ dikrj� ; g0i 0 � ÿ

kM

r3
ri : �31�

Substituting these expressions into formula (27) yields the
following result for the precession frequency:

xl s � 2g� 1

g� 1

kM

r3
v� r : �32�

In the limit of low velocities, g! 1, the answer goes over into
the classical result of [2]. The corresponding equation of
motion derived from Lagrangian (28) is:

�r �ÿ kM

r3
rÿ 3

kM

mr3

�
v� sÿ 3

2
�nv� n� sÿ 3

2
n
ÿ
n�v� s���;

n � r

r
: �33�

In the covariant approach the motion of a spinning
particle is described by the Papapetrou equation (15), which
in the linear-in-spin approximation reduces to

Dum
Dt
� ÿ 1

2m
Rmnrs u

nS rs : �34�

Note that the right-hand side of equation (34) is the only
covariant structure possible here (up to a numerical factor).

For the nonrelativistic motion in the gravitational field
created by a massM, Eqn (34) gives

�x � ÿ kM

x3
xÿ 3

kM

mx3

h
v� sÿ �nv� n� sÿ 2n

ÿ
n�v� s��i;

n � x

x
: �35�

The reason for the disagreement between Eqns (33) and
(35) is that they refer to the coordinates r and x defined in
different ways [see (7)].

This discrepancy was pointed out long ago in [29] where
the classical result [see (32) at g! 1] was derived from the
scattering amplitude for a Dirac particle in a gravitational
field. The explanation suggested in [29] for the disagreement
is: ``The quantum field theory of the spin-1/2 particle from
which the classical result was derived does not have any spin
supplementary condition.2 This is because field theories deal
with point particles and not with extended bodies.''

However, first of all, spin in the Dirac theory of course
satisfies the above-mentioned constraint (in the sense of
expectation values). On the other hand, is a proton in a
gravitational field a point particle or an extended body? A
deuteron? A uranium nucleus? Obviously, an extended body
can be treated as a point particle as long as we do not go into
the details of its structure and as long as we do not consider its
internal excitations. We dwell here on this point since one
sometimes hears utterances similar to that above on ``point

2 The supplementary conditions u mSmn � 0 or u mSm � 0 are meant.

1 We are grateful to T Vargas for attracting our attention to the last

problem.
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particles and extended bodies'' even from some well-known
theorists.

3.3 Spin ± orbit interaction. Schwarzschild field
In the present subsection we treat the spin precession in the
Schwarzschild field beyond the weak-field approximation
(though neglecting the spin influence on the trajectory). The
3-dimensional components of the Schwarzschild metric can
be conveniently written as

gmn � ÿ
�
dmn ÿ rmrn

r2

�
ÿ rmrn

r2
1

1ÿ rg=r

� ÿd?mn ÿ nmnn
1

1ÿ rg=r
: �36�

Nonvanishing tetrads are chosen as follows:

e
�0�
0 �

�����������������
1ÿ rg=r

q
; e�k�m � d?km � nknm

1�����������������
1ÿ rg=r

p �37�

(in this subsection, the tetrad indices are singled out by
brackets). Now, the nonvanishing Ricci coefficients (here,
their last indices are world ones) are

g�0��i�0 � ÿ
kM

r3
ri ; g�i��j�k �

1ÿ �����������������
1ÿ rg=r

p
r2

�djkri ÿ dikrj� :
�38�

At last, the precession frequency in this case is

x� ÿL rg
2mr3

�
2

u0 � u0
�����������������
1ÿ rg=r

p � 1

1� u0
�����������������
1ÿ rg=r

p �
:

�39�

Here, m and L are the particle mass and the orbital angular
momentum, respectively;

u0 � dt

dt
�
�
1ÿ rg=rÿ �nv�2 1

1ÿ rg=r
ÿ �v?�2

�ÿ1=2
:

The rather cumbersome general expression (39) simplified
for a circular orbit. Here,

u0 �
�
1ÿ 3kM

r

�ÿ1=2
;

L � mr

�
kM

r

�1=2 �
1ÿ 3kM

r

�ÿ1=2
;

so that

o � �kM�
1=2

r3=2

�
1ÿ

�
1ÿ 3kM

r

�1=2�
: �40�

The general case of spin precession in the Schwarzschild field
was considered previously in [38]. Our expression (40) agrees
with the corresponding result of [38] (the precession is
considered there with respect to the proper time t, but not
with respect to t).

3.4 Spin ± spin interaction
Let the spin of the central body be s0. The components of the
metric linear in s0, which are responsible for the spin ± spin
interaction, are

h0i � 2k
�s0 � r�i

r3
:

Here, the nonvanishing Ricci coefficients are

gij0� k

�
Hi

�s0 � r�j
r3

ÿ Hj
�s0 � r�i

r3

�
; g0ij � ÿkHi

�s0 � r� j
r3

:

�41�

The frequency of the spin ± spin precession is

xss � ÿk
�
2ÿ 1

g

�
�s0HH�HH 1

r

� k
g

g� 1

�
v�s0HH� ÿ s0�vHH� � �vs0�HH

��vHH� 1
r
: �42�

In the low-velocity limit this formula also goes over into the
corresponding classical result [3].

3.5 Spin precession in a plane gravitational wave
Let a weak gravitational wave propagate along the axis 3. It is
well known (see, for instance, [35, § 107]) that here coordinate
conditions can be chosen in such a way that the only
nonvanishing components of hmn are

h11 � ÿh22 � f1�tÿ z�; h12 � h21 � f2�tÿ z� :

A straightforward (though rather tedious) calculation
with formulae (27), (29) results in the following expressions
for the components of the angular velocity:

ow1 � 1

2

�
1ÿ g

g� 1
v3

�
� _f1v2 ÿ _f2v1� ;

ow2 � 1

2

�
1ÿ g

g� 1
v3

�
� _f1v1 � _f2v2� ;

ow3 � g
g� 1

�
_f1v1v2 ÿ 1

2
_f2 �v21 ÿ v22�

�
: �43�

The equations of motion in a plane gravitational wave
follow from the corresponding Lagrangian L � xws. In the
covariant approach this problem was considered in [39, 40].

4. Effects of higher order in spin

4.1 The idea of general formalism
The above rather simple considerations were quite sufficient
for the description of the effects linear in spin. However, at
least in the motion of rotating black holes (and possibly in
some subtle spin effects for polarized nuclei of high spin in
storage rings), an interaction of second order in spin may
manifest itself. Anyway, going beyond the linear approxima-
tion in spin is of a certain theoretical interest. To study this
general problem, a more sophisticated approach [30, 31] is
needed. It is based on the following physically obvious
argument already mentioned in Section 3.2: as long as we do
not consider excitations of internal degrees of freedom of a
body moving in an external field, this body (even if it is a
macroscopic one!) can be treated as an elementary particle
with spin. Thus, the Lagrangian of the spin interaction with
an external field can be derived from the amplitude of elastic
scattering of a particle with spin s by an external field. In this
way we can describe the interaction of a relativistic particle to
first order in the external field, but to arbitrary order in the
spin. Explicit closed formulae were obtained in [30, 31] for the
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interaction of second order in spin. According to the
arguments presented in Section 1, the discussion of the
effects nonlinear in spin may be physically meaningful first
of all in the classical limit s4 1. This limit is certainly
adequate for rotating black holes. However, having in mind
the above-mentioned problem of polarized nuclei, as well as
some theoretical questions, the results were derived in [31] for
arbitrary spins.

Below, we briefly present the technique for the investiga-
tion of effects of higher order in spin (a more detailed
presentation is contained in [30, 31]) and the results obtained
in this way. The details of the calculations are not necessary
for understanding the results, and may be omitted when
reading for the first time.

4.2 Equations of motion of a spinning particle
in an electromagnetic field. Second-order effects
The Lagrangian of the spin interaction with an external field
can be derived from the amplitude

ÿeJ mAm �44�

of elastic scattering of a particle with spin s by a vector
potential Am [30]. The matrix element Jm of the electromag-
netic current operator between states with momenta k and k0

can be written (under P and T invariance) as follows (see [30,
31, 41]):

Jm � 1����������
EkEk0
p �c�k 0�

�
pmFe � 1

2
Smnq

n Fm

�
c�k� : �45�

Here, pm � �k 0 � k�m=2, and qm � �k 0 ÿ k�m.
The wave function of a particle with an arbitrary spin c

can be written (see, for instance, Ref. [32, § 31]) as

c � 1���
2
p x

Z

� �
: �46�

Both spinors,

x � �xa1 a2 ::: ap
_b1 _b2 ::: _bq

	
;

and

Z � �Zb1 b2 ::: bq_a1 _a2 ::: _ap

	
are symmetric in the dotted and undotted indices separately,
and

p� q � 2s :

For a particle of half-integer spin, one can choose

p � s� 1

2
; q � sÿ 1

2
:

In the case of integer spin, it is convenient to use

p � q � s :

The spinors x and Z are chosen in such a way that under
reflection they go over into each other (up to a phase). When
p 6� q, they are different objects that belong to different
representations of the Lorentz group. If p � q, these two
spinors coincide. Nevertheless, we will use the same expres-

sion (46) for the wave function of any spin, i.e., we will also
formally introduce the object Z for an integer spin, keeping in
mind that it is expressed in terms of x . This will allow us to
perform calculations in the same way for the integer and half-
integer spins.

In the rest frame, both x and Z coincide with a
nonrelativistic spinor x0, which is symmetric in all indices; in
this frame, there is no difference between dotted and undotted
indices. The spinors x and Z are obtained from x0 through the
Lorentz transformation:

x � exp

�
R
ff
2

�
x0 ; Z � exp

�
ÿ R

ff
2

�
x0 : �47�

Here, the vector ff is directed along the velocity, tanhf � v,

R �
Xp
i�1

r i ÿ
Xp�q
i�p�1

r i ;

and r i acts on the ith index of the spinor x0 as follows:

r i x0 � �r i�aibi �x0�:::bi::: : �48�

In the Lorentz transformation (47) for x, after the action of
the operator R on x0 the first p indices are identified with the
upper undotted indices and the next q indices are identified
with the lower dotted indices. The inverse situation takes
place for Z.

Then,

�c � cyg0 � cy 0 I
I 0

� �
;

where I is the product of unit 2� 2 matrices acting on all
indices of the spinors x and Z . The components of the matrix
Smn � ÿSnm are

S0n � ÿSn 0
0 Sn

� �
; �49�

Smn � ÿ2iEmnk
sk 0
0 sk

� �
; �50�

s � 1

2

X2s
i�1

r i :

The scalar operators Fe;m in (45) depend on two invar-
iants, t�q2 and t��Smqm�2, where S m � �i=4�E mnKlSKlpn=m is
the spin 4-vector. In the expansion in the electric multipoles

Fe�t; t� �
XNe

n�0
fe;2n�t� tn ;

the highest power Ne obviously equals s and sÿ 1=2 for the
integer and half-integer spins, respectively. In the magnetic
multipole expansion

Fm�t; t� �
XNm

n�0
fm;2n�t� tn ;

the highest powerNm constitutes sÿ 1 and sÿ 1=2 for integer
and half-integer spins, respectively. It can be easily seen that
fe; 0�0� � 1, fm; 0�0� � g=2.

Of course, the terms linear in spin in the amplitude (44)
reproduce the well-known result (17). As to the interaction of
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second order in spins, respectively which we are interested in
here, even the final formula for it is lengthy:

Le2 � Q

2s�2sÿ 1�
�
�sHH� ÿ g

g� 1
�vs��vHH�

�
�
�
�s E� ÿ g

g� 1
�sv��vE� � ÿs�v� B���

� e

2m2

g
g� 1

ÿ
s �v� HH����gÿ 1� 1

g

�
�s B�

ÿ �gÿ 1� g
g� 1

�sv��vB� ÿ
�
gÿ g

g� 1

�ÿ
s �v� E��� :

�51�
Here, the particle quadrupole moment Q is defined as usual:
Q � Qzzjsz�s.

It is well-known that the electromagnetic interaction of
the convection current and magnetic moment also contri-
butes in the nonrelativistic limit to the quadrupole interac-
tion. The value of this induced contribution to the quadrupole
moment [already included into Q in formula (51)] is [41]

DQ � ÿe �gÿ 1�
�

�h

mc

�2
s ; integer spin ,

sÿ 1=2 ; half-integer spin .

�
�52�

In this formula, we have explicitly singled out the Planck
constant �h to demonstrate that the induced quadrupole
moment DQ vanishes in the classical limit
�h! 0; s!1; �hs! const. Therefore, the contribution pro-
portional to DQ does not in fact influence the equations of
motion of a classical particle (though it plays a role in atomic
spectroscopy [41]).

On the other hand, the electromagnetic interactions of the
convection current and spin current also induce an interac-
tion of second order in spin, which has a classical limit and is
described by the last two lines of formula (51). This Q-
independent part of the interaction (51) tends to zero in the
nonrelativistic limit. Besides, it is reducible in spin; in other
words, the structure si sj in it cannot be rewritten as an
irreducible tensor si sj ÿ �1=3�di j s2. The Q-independent part
of the interaction (51) does not have a quadrupole structure at
all.

Of great interest is the asymptotic behavior of the
interaction (51) as g!1 . Surprisingly, though both Q-
dependent andQ-independent parts of the interaction (51) by
themselves increase with energy, there is a particular value of
the quadrupole moment for which this interaction as a whole
drops as g!1 .

The situation resembles that for the interaction linear in
spin. It is well-known (see, e.g., [11, 42, 43]) that there is a
special value of the g factor, g � 2, at which the electro-
magnetic interaction linear in spin decreases with increasing
energy. This follows immediately from formula (16) for
g!1. Thus, the choice g � 2 for the bare magnetic
moment is a necessary (but insufficient!) condition of
unitarity and renormalizability in quantum electrodynamics.
It holds not only for the electron, but also for the charged
vector boson in the renormalizable electroweak theory. Other
arguments in favor of g � 2 are given in [44 ± 48].

The same situation holds for the second-order spin
interaction in electrodynamics. There is a special value of
the quadrupole moment Q at which this interaction also
decreases with increasing energy. If we also assume g � 2,

this value is

Q � ÿs�2sÿ 1� e

m2
: �53�

The same preferred value of the quadrupole moment was
derived also otherwise, using the supersymmetric sum
rules [45, 47, 48]. Again, (53) is a necessary condition of
unitarity and renormalizability. And indeed, this is the value
of the quadrupole moment of the charged vector boson in the
renormalizable electroweak theory. For it,

g � 2; s � 1; Q � ÿ e

m2
:

4.3 Second-order spin effects in a gravitational field
For a binary star, effects of second-order in spin are of the
same order of magnitude as the spin ± spin interaction when
the spins of the components of the system are comparable
[28]. The influence of the latter on the characteristics of the
gravitational radiation becomes noticeable for a system of
two extreme black holes [25]. Correspondingly, second-order
spin effects in the equations of motion become substantial if
at least one component of a binary is close to an extreme black
hole [28]. Therefore, the investigation of these effects is not
only of purely theoretical interest. In principle they may be
observed with the gravitational wave detectors under con-
struction.

The equations of motion in an external gravitational field
to any order in spin can be obtained by means of a simple
substitution from the corresponding equations of motion in
an electromagnetic field.

The elastic scattering amplitude in a weak external
gravitational field hmn is

ÿ 1

2
Tmnh

mn �54�

(in due time, we will go over to a generally covariant form).
The matrix element Tmn of the energy-momentum tensor
between the states of momenta k and k0 can be written as [30]

Tmn � 1

4
����������
EkEk0
p �c�k0��4 pm pn F1

� �pmSnl � pnSml� ql F2 � �Zmnq2 ÿ qmqn�F3

� �SmSnq
2 ÿ �Smqn � Snqm��Sq� � Zmn�Sq�2

�
F4

	
c�k� :
�55�

The scalar operators Fi in this expression are also expanded in
powers of t � �Sq�2:

Fi�t; t� �
XNi

n�0
fi;2n�t� tn : �56�

Since we are interested in the equations of motion in empty
space, the terms proportional to F3 and F4 in expansion (55)
will be omitted, because when rewritten in the covariant form,
they are proportional to the scalar curvature andRicci tensor,
respectively. Thus, the amplitude (54) can be presented in the
following form:

ÿ 1

2
����������
EkEk0
p �c�k 0�

�
pm F1 � 1

2
Sml q

l F2

�
c�k� hmn pn : �57�
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Clearly, (57) differs from (44), (45) by the following substitu-
tion only:

eAm ! 1

2
hmn p

n : �58�

With this substitution in (51), one can obtain the second-
order spin interaction of a particle with a gravitational field.

After this substitution, further calculations are performed
in the same way as in the case of an external electromagnetic
field. The only thing left is to get rid of the weak-field
approximation by rewriting the expressions dependent on
hmn via the Ricci coefficients in the terms of first order in spin,
and via the Riemann tensor in the terms of higher orders.

The terms of second order in spin arising in this way can
also be obtained otherwise. There is an instructive short-cut
that allows one to derive without lengthy calculations the so-
called gravimagnetic interaction [11], a gravitational analo-
gue of the Q-dependent terms in formula (51). It was already
mentioned that the analogy between first-order spin interac-
tions in electrodynamics and gravity is incomplete. The
electromagnetic interaction depends on the field strength,
which is gage-invariant. However, the gravitational one
depends not on the Riemann tensor, which is generally
covariant, but on the Ricci rotation coefficients, which are
not. In this respect, the second-order spin interaction
discussed below, the gravimagnetic one, which depends on
the Riemann tensor, is the gravitational analogue of the first-
order spin interactions in electrodynamics.

The starting point of the derivation is the observation that
the canonical momentum pm enters into a relativistic wave
equation for a particle in external electromagnetic and
gravitational fields through the combination

Pm � pm ÿ eAm ÿ 1

2
Sabgabm :

Here and below, Sab are the generators of the Lorentz group
(which differ from our previous definition ofSab by the factor
i=2), and gabm � ecmgabc. The commutation relation

�Pm;Pn� � ÿieFmn � i

2
SabRabmn �59�

demonstrates the remarkable correspondence

eFmn $ ÿ 1

2
SabRabmn : �60�

The squared form of the Dirac equation in an external
electromagnetic field

�ÿgmnPmPn �m2 � eSabFab�c � 0

prompts that for an arbitrary spin s the Lagrangian

ÿ e

2m
SabFab

describes the magnetic moment interaction for g � 2; the
factor 1=�2m� in this Lagrangian, additional to the above
wave equation, becomes obvious from the comparison with
the nonrelativistic limit.

Clearly, for an arbitrary g factor this covariant magnetic
moment interaction is

Le1 � ÿ eg

4m
FabS ab : �61�

This is in fact a covariant form of g-dependent terms in
Lagrangian (17). As to the g-independent, Thomas terms in

(17), it has already been pointed out that they cannot be
presented in a covariant form with the usual, physical
definition of the coordinate r. In analogy with the magnetic
moment

eg

2m
Sab ;

it is natural to define the gravimagnetic moment

ÿ K
2m

S abScd :

Now, the correspondence (60) prompts the following gravita-
tional analogue of the Lagrangian (61):

Lgm � K
8m

S abS cdRabcd : �62�

This is what we call the gravimagnetic interaction. Note that
in the classical limit we have S ab ! Sab � e abcdScud.

The gravimagnetic ratio K, like the gyromagnetic ratio g in
electrodynamics, may in general have any value. Still, it is
natural that in gravity the value K � 1 is singled out as g � 2
in electrodynamics. Indeed, the analysis of the complete
Lagrangian for the gravitational interaction of second order
in spin, including of course K-independent terms, which
correspond to the Q-independent terms in (51), demonstrate
that just for K � 1 this total interaction asymptotically tends
to zero with increasing energy [11, 30, 31]. The same
conclusion is made in [49 ± 52]. Unfortunately, the gravita-
tional interaction for any spin is not renormalizable even at
K � 1.

In any case, for g � 2 and K � 1 the equations of motion
have the simplest form. Moreover, it has been shown in [11]
that just this value of the gravimagnetic ratio, K � 1, follows
from the wave equations in the Feynman gage both for the
photon and graviton in an external gravitational field, as well
as from the Rarita ± Schwinger equation for s � 3=2 in a
gravitational field.

The situation for spin 1=2 is worthy of a separate
discussion. Obviously, no second-order spin interaction is
possible here. Indeed, for spin 1=2 the properties of the spin
matrices S ab � �i=4��gagb ÿ gbga� are such that SabScdRabcd

degenerates into the scalar curvature R (times 1=2) without
any spin dependence at all. So, our arguments in favor of
K � 1 do not apply for spin 1=2. And indeed, the squared
Dirac equation containsR=4, but with K � 1 one obtains here
R=8.Nevertheless, we cannot see any real physical meaning in
the recent proposal [53] to ascribe to the electron (which in
fact has no gravimagnetic interaction at all) the gravimagnetic
ratio K � 2.

Wave equations for particles of arbitrary spins in an
external gravitational field were previously considered in
[54]. The equation for integer spins proposed in [54] also
corresponds to the gravimagnetic ratio K � 1. However, the
value of K prescribed in [54] for half-integer spins is different.
Even in the classical limit s!1 it does not tend to unity. This
obviously does not complywith the correspondence principle,
according to which at least in this classical limit there should
be no difference between integer and half-integer spins.

5. Multipoles of black holes

Let us come back from elementary particles to macroscopic
bodies. For a classical object, the values of both parameters g
and K depend in general on the various properties of the body.
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However, for black holes the situation is different. It has been
shown in [55] from an analysis of theKerr ±Newman solution
that the gyromagnetic ratio of a charged rotating black hole is
universal (and equal to that of the electron!): g � 2.

We will show that for the Kerr black hole the gravimag-
netic ratio is K � 1. This value follows in fact from the analysis
of the motion of the spin of a black hole in an external field in
[24] (though this statement was not explicitly formulated
there). We present here an independent and, in our opinion,
simpler derivation of this important result.

At large distances from a Kerr hole, the hole can be
considered as a point source of a weak gravitational field. To
a linear approximation in the field of a hole at rest, the
Lagrangian density corresponding to the interaction (62) can
be written as

L � K
4m
�sHH�2 h00 d�r� : �63�

The correction to the energy-momentum tensor induced by
this interaction has a single component:

dT00 � ÿ K
2m
�sHH�2 d�r� : �64�

In the gage

�h mn;n� 0 ; �hmn � hmn ÿ 1

2
Zmnh

a
a ; �65�

the static Einstein equation for the corresponding correction
h00 to the 00-component of the metric is

Dh00 � 8pkT00 :

The correction itself is

h00 � K
k

m
�sHH�2 1

r
: �66�

Let us compare h00 with the corresponding contribution
to the Kerr metric. In the Boyer ±Lindquist coordinates, this
metric is

ds2 �
�
1ÿ rgr

S

�
dt2 ÿ S

D
dr2 ÿ S dy2

ÿ
�
r2 � a2 � a2

rgr

S
sin2 y

�
sin2 y df2 � 2a

rgr

S
sin2 y df dt ;

�67�
where D � r2 ÿ rgr� a2, S � r2 � a2 cos2 y, and a � s=m. At
rg � 0, the metric (67) describes a flat space in spheroidal
coordinates [35].

Meanwhile, it is Cartesian coordinates that correspond in
the flat space to the gage (65). The transition from the
spheroidal coordinates to Cartesian ones is carried out with
the required accuracy by the substitution

r! r� a�ar� ÿ ra2

2r2
:

In the Cartesian coordinates, the spin-dependent part of the
00-component of the metric

g00 � 1ÿ rg
r
� rga

2

2r3
�3 cos2 yÿ 1�

obviously coincides with h00 from formula (66) at K � 1. A
somewhat more tedious consideration of the space compo-
nents of the Kerr metric leads to the same result, K � 1.

Note that the motion of the Kerr black hole in an external
gravitational field is not described by the Papapetrou
equation even if one leaves aside the problem of the spin ±
orbit interaction, linear in spin. The point is that this equation
refers to the case K � 0 [14].

It is proven in the same way that for a charged Kerr hole
the gravimagnetic ratio K is also unity. Moreover, the electric
quadrupole moment of a charged Kerr hole also equals

Q � ÿ2 es2

m2
; �68�

the value at which the interaction quadratic in spin decreases
with energy (this is the obvious limit of the general formula
(53) as s!1).

It can be demonstrated [56] that other, higher multipoles
of a charged Kerr hole, both electromagnetic and gravita-
tional, also possess just those values that guarantee that the
interaction of any order in spin (but of course, linear in an
external field) asymptotically decreases with increasing
energy.

6. Gravitational interaction of spinning bodies,
and radiation of compact binary stars

It is expected that in a few years the gravitational radiation
from coalescing binary stars will be observed by laser
interferometer systems. Its successful detection depends
crucially on the accurate theoretical prediction of the exact
form of the signal. In this way the observed effect becomes
sensitive to the relativistic corrections of the orders cÿ2, cÿ3

and cÿ4 to the motion of a binary system and to the radiation
intensity. In particular, the spin ± orbit interaction becomes
essential. Moreover, effects of second order in spin may be
observed in the gravitational radiation, in the case of two
extreme Kerr black holes [25].

6.1 Spin interactions in a two-body problem
The spin interactions in a two-body problem can easily be
obtained from the well-known results for the limiting case
when one of the bodies (say, 2) is very heavy. In this limit we
have the usual spin ± orbit interaction with the frequency xls

given in fact by formula (32) (the limit g! 1 is sufficient
here):

V1
1ls � ÿxls s1 � 3

2

k

r3
m2

m1
ls1 : �69�

Here and below, s1 and m1 are the spin and mass of the first
body, s2 and m2 are the spin and the mass of the second one,
and r is the radius vector connecting the two bodies. Then,
there is a so-called Lense ±Thirring interaction of the orbital
angular momentum l with the spin s2 of the central body [57]

V1
2ls � 2

k

r3
ls2 : �70�

Simple arguments of symmetry on particle permutation now
dictate the form of the total spin ± orbit interaction for the
two-body problem:

Vls � k

r3
l

�
3

2

�
m2

m1
s1 �m1

m2
s2

�
� 2�s1 � s2�

�
: �71�

As to the spin ± spin interaction, it is of the usual form,
withxss given by formula (42) (again the lowest nonvanishing
order in cÿ1 is implied):
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Vss � k

r3
�
3�s1n��s2n� ÿ s1s2

�
; n � r

r
: �72�

Of course, both expressions (71) and (72) can be derived
directly, following, for instance, the approach of [35, § 106,
Problem 4].

Let us now go over to the gravimagnetic interaction. This
interaction (62) for particle 1 with the field created by a heavy
massm2 reduces in lowest, first order in c

ÿ2 to the quadrupole
form:

V1
s �

3

2

k

r3
m2 Q

s
1mnnmnn ; �73�

where the effective gravitational quadrupole moment of
particle 1 is

Qs
1mn �

K1
m1

�
s1ms1n ÿ 1

3
dmns

2
1

�
:

For the two-body problem under discussion, expression (73)
generalizes to the following self-interaction of spins:

Vs � 3

2

k

r3

�
K1

m2

m1
s1ms1n � K2

m1

m2
s2ms2n

�
�
�
nmnn ÿ 1

3
dmn

�
; �74�

resembling the usual spin ± spin interaction (72).
At K1;2 � 1, the effective quadrupole interaction (74) is of

the same order of magnitude as the spin ± spin one (72). Even
in the most favorable case when they can become important,
i.e., that of two extreme Kerr black holes, both interactions
are of the cÿ4 order. The star rotation velocity is here� c, but
the star radius is close to the gravitational one rg � cÿ2, so
that each spin s � cÿ1 [25]. The same argument demonstrates
that the spin ± orbit interaction is of the cÿ3 order [25].

6.2 Contribution of spin interactions to gravitational
radiation
The spin interactions contribute in various ways to the
gravitational radiation: through spin-dependent corrections
to the orbit radius r and to the equations of motion used to
evaluate the time derivatives, which enter into the usual
expression for the gravitational quadrupole radiation;
through the corrections to the 00-component of the energy-
momentum tensor of the particles; through the gravitational
analogue of the magnetic quadrupole radiation in electro-
dynamics; and through retardation effects.

In all our discussions of gravitational radiation, we
restrict ourselves to the case of circular orbits, which is the
most interesting one from the physical point of view [25].
Besides, the assumption of circular orbits essentially simpli-
fies the calculations. Still the calculations remain tedious, so
only the final results are presented here.

The relative correction to the radiation intensity gener-
ated by the spin ± orbit interaction (71) is [28]

Ils
Iq
� ÿ l�73s� 45n�

12m1m2r2
: �75�

Here,

Iq � 32k4m2
1m

2
2 �m1 �m2�
5r5

is the unperturbed quadrupole intensity;

s � s1 � s2 ; n � m2

m1
s1 �m1

m2
s2 :

It can be easily checked that the corresponding result of [25,
26] would be reduced to agreement with (75) for the proper
definition of the center-of-mass coordinate.

The correction due to the spin ± spin interaction (72) is [25,
26]

Iss
Iq
� 1

48m1m2r2
�649s1ts2t ÿ 223s1s2� : �76�

The expressions for Iss, as well as that for Is below, have been
averaged over the period of rotation. That is why both of
them contain the spin components st orthogonal to the orbit
plane.

And at last, the spin-self-interaction correction, generated
by the gravimagnetic interaction (74) and by the above-
mentioned gravitational analogue of the magnetic quadru-
pole radiation in electrodynamics, is [28]

Is
Iq
� 1

4m1m2r2

��
27K1 ÿ 1

24

�
m2

m1
s21t �

�
27K2 ÿ 1

24

�
m1

m2
s22t

ÿ
�
9K1 ÿ 7

24

�
m2

m1
s21 ÿ

�
9K2 ÿ 7

24

�
m1

m2
s22

�
: �77�

This correction is also discussed in [58].
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