
Abstract. The emission of phonons produced under the absorp-
tion or emission of a g quantum (or the scattering of an electron
or a neutron) by an atomic nucleus in a crystal lattice is a
Poisson process from the probability point of view. This ap-
proach enables, in particular, an expression for the MoÈ ssbauer
effect probability to be derived in a simple and transparent
manner without the cumbersome mathematical (quantum-me-
chanical) computations being involved.

1. Introduction

In just a few years following its discovery over four decades
ago, nuclear gamma resonance, owing to Rudolf MoÈ ss-
bauer's pioneering work [1, 2] and the work of others,
evolved into one of the most widely accepted nuclear
method for investigating both the fundamental physical
problems and applied problems in many areas of chemistry,
geology, biology, medicine, metallurgy, etc. While the early
research efforts mostly focused on various aspects of the
phenomenon itself [3 ± 7], the subsequent work in this field
was mainly of applied nature [8 ± 10]. Today, along with
long-lived radioactive nuclei traditionally used as a source of
g radiation for the MoÈ ssbauer effect, alternative approaches
such as synchrotron radiation, the use of neutron capture

reactions, reactions with charged particles and the Coulomb
excitation to directly excite MoÈ ssbauer transitions are
receiving ever wider attention. Significant improvements
have been made in the methodology of research. In fact,
the MoÈ ssbauer effect has already become a mature curricu-
lum subject for laboratory courses at highly-specialized
university departments as well as at general physics labora-
tories [11, 12].

The aim the authors pursue in offering yet another
theoretical approach to a well-known effect is a purely
methodological one, namely, to show that many aspects of
the processes with the absorption and emission of phonons
can be described to our opinion with simpler and more
physical concepts than they usually are. In presenting the
material we attempted to avoid complicated quantum
mechanical derivations but rather relied on more vivid, if
less rigorous, general concepts. Unavoidably, some deriva-
tions due to other authors are repeated in the paper.

The scientific literature on the MoÈ ssbauer effect is
enormous, as witnessed by the publication rate growth from
about 1,000 per year in the early 70s to 2,000 per year by the
early 90s. Since the modern electronic database allows, in
principle, to obtain any required information from this huge
source, only review papers and those original works needed
for the discussion of the basic theoretical and experimental
aspects of the effect are included in our reference list.

2. Basic features of nuclear gamma resonance

We begin by discussing the simplest properties of nuclear
gamma resonance. If the energy of a photon hitting an
atomic nucleus equals the energy difference between the
nuclear ground state and one of its excited states, then the
nucleus can absorb the photon thus making a transition into
corresponding excited state. This process is possible only for
g rays of certain energies and is therefore of a resonant
nature.

The energy dependence of the resonant g-quantum
absorption cross section is determined by the g wavelength,
the spins of the nuclei in their ground (Io) and excited (Ie)
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states, and the probability of internal conversion:

sa�E� � 2Ie � 1

2Io � 1

2p�l2

1� K

�G=2�2
�Eÿ E0�2 � �G=2�2

; �1�

In this equation (known as the Lorentz formula or, in
nuclear physics, as the Breit ±Wigner formula), K � Ge=Gg is
the internal conversion coefficient [Ge=G � K=�1� K� deter-
mining the probability that the nucleus having absorbed a
photon falls into its ground state after giving energy to the
atomic electrons], the parameter G � Ge � Gg is the full width
of distribution at half maximum, E0 is the nuclear transition
energy, and �l � l=2p is the reduced wavelength of the g
radiation.

It is well known that the width of an excited level G is
related to its mean lifetime t � T1=2= ln 2 (T1=2 being the half-
life of the state) by the uncertainty relation

Gt � �h : �2�

Numerically, the natural linewidth is expressed in terms of the
average lifetime and the decay period of the excited state as
follows

G�eV� � 6:58� 10ÿ16

t�s� � 4:55� 10ÿ16

T1=2�s� : �3�

The natural width of a level is determined only by decay
processes and characterizes both the width of the energy
distribution of incident g quanta and that of the nuclear
absorption level. Only in the ideal case have the emission and
absorption lines an ideal shape. As indicated previously [5], if
the emission and absorption lines are Lorentzian in shape and
have a width G, then the experimental curve is also a
Lorentzian, and for a not very thick absorber the instru-
mental width is

Gins

G
� 2:00� 0:27l ; 04 l4 5 : �4�

The effective thickness of the absorber is l � f 0nas0t, where
f 0 is the fraction of g rays absorbed recoil-free, n is the
atomic concentration, a is the relative abundance of nuclei
absorbing g rays resonantly, t is the absorber thickness, and
the absorption cross section at resonance is
s0 � 2p�l2�1� K�ÿ1�2Ie � 1�=�2I0 � 1�.

If other factors cause the level to broaden, the line shape is
not necessarily Lorentzian. The experimentally determined
resonance linewidth Gexp results from the superposition of the
source and absorber lines. If the absorbers and sources are
thin enough then, in the absence of vibrations, it is seen from
Eqn (4) that the linewidth is practically twice the natural
width, 2G. Increasing the absorber thickness broadens the
resonance line considerably. This is because the quanta whose
energy is close to the line maximum are strongly absorbed
even in a thin absorber, and for such quanta increasing the
thickness of the absorber has a smaller effect than for those at
the wings of the line. Another possible reason for line
broadening is the self-absorption of quanta in the source
provided this latter contains resonantly absorbing nuclei. A
significant contribution to the linewidth comes from the
instrumental broadening related to the imperfection of
measuring devices, in particular the vibrations of the source
and the absorber (Doppler broadening) and the absorber's
nonuniform motion with respect to the source.

At first sight, the resonant absorption of g rays seems to be
a widespread, easy-to-observe phenomenon. Indeed, one
would expect that all one needs to detect it is to pass a beam
of g rays from a radioactive source through an absorber
containing the same nuclei in an unexcited state. This is not
the case, however, because the energy Eg carried away by a g
quantum turns out to be less than E0, the energy of the
transition between the levels. A small but quite noticeable
fraction of the energy is carried away by the nucleus which, as
a result of recoil, starts moving in the opposite direction to
that of the g quantum that flies out.

Let us make some simple estimates. A nucleus emitting a
g quantum acquires a recoil momentum equal inmagnitude to
the momentum of the g quantum. If the nucleus is free and
initially at rest, the recoil energy R of the nucleus of massMn

is

R � p2

2Mn
� E 2

g

2Mnc2
: �5�

Consider as an example the nucleus of lead, 119Sn, in which
the energy separation between the ground and the first excited
levels isE0 � 23:8 keV. The recoil energy in this case amounts
to

R � E 2
g

2Mnc2
' E 2

0

2Mnc2
' �2:38� 104�2

2� 119� 108
� 2:5� 10ÿ3 eV : �6�

The energy spent on the recoil of the nucleus that absorbs a
g quantum turns out to be exactly the same, so that the
emission line is shifted by an amount R to the left, while the
absorption line is shifted by the same amount to the right of
E0.

In discussing the effect of the shift R on the resonant
absorption of g rays, it should be noted that the quantity R is
of little interest in itself. What is of interest is the relation
between R and the width G of the corresponding resonance
line. Resonant absorption is possible only if the emission and
absorption spectra overlap, i.e. when one finds

2R4G : �7�

This condition is almost never obeyed for g transitions in free
nuclei. Thus, for the 119Sn nucleus considered above,
G ' 3� 10ÿ8 eV, i.e. orders of magnitude less than R. Note
that for optical transitions in atoms, the relation between R
and G is markedly different. The transition energies in this
case turn out to be four, and hence R eight, orders of
magnitude less than for g radiation, and the level widths in
these processes are of the same order of magnitude. Resonant
absorption is easily observed in this situation (R Wood,
1904).

In principle, the energy shift 2R can be compensated using
theDoppler effect. For this, the emitting and absorbing nuclei
must move with a velocity

v � c � 2R
Eg

�8�

relative to each other. For 119Sn nuclei, the velocity required is
v ' 60 m sÿ1.

In real processes, the width of an emission (absorption)
line is composed of the natural linewidth plus its Doppler
width, of which the latter, due to the thermal motion of the
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atoms, is dominant. Let us make necessary estimates. The
Doppler shift of a level, D, may be calculated from non-
relativistic formulas because u, the atomic thermal velocity, is
much less than the speed of light. Thus we have

D � u

c
Eg ' u

c
E0 : �9�

To estimate the quantity u, recall that the average kinetic
energy per degree of freedom (for motion towards or away
from the absorber) is �1=2�kBT. This gives
�1=2�Mnu

2 � �1=2�kBT, so that

u �
���������
kBT

Mn

s
; �10�

which when substituted to Eqn (9) and using Eqn (6) yields

D �
���������������
2RkBT

p
: �11�

A more accurate calculation (see below) gives

D � 2
������������
RkBT

p
: �12�

At room temperatures kBT ' 1=40 eV, so that for 119Sn
one finds

D � 2
�������������������������������������������������
2:3� 10ÿ3 � 2:5� 10ÿ2
p

� 1:5� 10ÿ2 eV

showing that the Doppler linewidth greatly exceeds the
natural linewidth and in some cases Ð in 119Sn, for example
Ð it is found to be more than R. As a result of the Doppler
broadening, there is a partial overlap between the emission
and absorption lines, implying that a certain number of g
quanta exist for which the recoil R is compensated and
resonant absorption can in principle be observed, albeit with
very small probability.

The above picture of gamma emission and absorption
processes involved in nuclear transitions is valid if the binding
energy in the material is negligible, i.e. if atomic nuclei may be
considered free. The characteristic features of nuclear reso-
nant fluorescence we have described abovewere at the basis of
experimental techniques in the pre-MoÈ ssbauer period.

We proceed now to the absorption and emission of
g quanta by nuclei making up a crystal lattice. The simplest
Ð and least interesting Ð case is that in which the recoil
energy exceeds the binding energy of a nucleus in the lattice.
The binding of the nucleus is then of little significance, and no
new phenomena occur. The energy required to displace a
nucleus is quite large, ranging from 10 to 30 eV. Formula (6)
shows that this situation is only possible for highly energetic
g quanta.

If the energy of the emitted g quanta is Eg < 1MeV, the
recoil energy is not sufficiently large to eject a nucleus from
the crystal lattice, and the recoil momentum is, in one form or
another, transferred to the entire crystal. The recoil energy
most often is converted to sound vibrations of the latticeÐan
obvious transformation both from the quantum mechanical
and classical points of view (in the former context, the recoil
energy is transferred to sound vibration quanta, i.e. pho-
nons).

Phonons are generated Ð and hence the recoil energy
transforms to sound waves Ð more easily when more
phonons are already available, i.e. at sufficiently high
temperatures. The reason is that phonons obey Einstein ±

Bose statistics, and the number of phonons increases rapidly
with temperature. According to quantum statistics, the
probability for the generation of bosons of frequency o is
proportional to the number of such bosons that already exist
(induced emission). At low temperatures, this `boson ampli-
fication' process is unlikely, and if this mechanism is the one
masking the phononless process, then the greater fraction of
events can be described by Eqn (1). Indeed, in considering the
energy and momentum balance for these cases, the mass of
the nucleus in the recoil energy equation (5) should be
replaced by the mass of the entire crystal, with the result
that the recoil energy is reduced by 10 to 20 orders of
magnitude and becomes small enough to be considered zero.
It is commonly said that in such processes the recoil
momentum is transferred to the entire crystal. This state-
ment, even though it is widely used in the scientific literature
and has in fact become part of scientific jargon in the field, is
however incorrect because the momentum lost by a particle (g
quantum) interacting with one of the components of a
composite target is always transferred to the entire target.

While elastic scattering does not excite the internal
degrees of freedom of the target, strictly speaking the energy
Ef of the particle that flies out is less than initial energy Ei by
the recoil energy R, which is received by the entire target. The
elastic (recoil-free) emission and absorption of g quanta in
solids has come to be known as theMoÈssbauer effect.

We now turn to discuss the absorption and emission of
g quanta in more detail.

3. Emission from nuclei in a gas

If a free emitting nucleus moves with a velocity v prior to the
emission of a g quantum, then the recoil energy turns out to be
other than indicated above because the kinetic energy change
in one reference frame differs from that in a frame of reference
moving with a velocity v relative to the first, viz.

DE2 � DE1 � Dp1v ; �13�
where Dp1 is the momentum change in the first reference
frame.

In an ensemble of chaoticallymoving, noninteracting with
each other emitting nuclei (i.e. when the emitter is a classical
ideal gas), the emitted g quanta have a broad energy
distribution with the first two moments given by


Eg
�
T
� E0 ÿ R�

�
E0

vp

c

�
T

� E0 ÿ R ; �14�



E2
g

�
T
�
��

E0 ÿ R� E0
vp̂

c

�2�
T

' 
Eg
�2
T

�
1� hv

2iT
c2

�
:

�15�

The symbol h. . .iT in the above equations denotes the
averaging over the nuclear velocity distribution in the
emitting gas at temperature T, and p̂ � pg=jpgj. From Eqns
(14) and (15) it follows that

hE 2
g iT ÿ hEgi2T � hE 2

g iT
hv2iT
c2

: �16�

The spectrum of emitted g quanta centers at the energy value
E0 ÿ R, the width of the distribution being determined by the
mean square of the velocity the nucleus had prior to emission.

An explicit expression for this distribution is obtained
easily by noting that the velocity distribution of ideal gas
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atoms has a Maxwellian form

P�Eg� dEg � 1���
p
p exp

�
ÿ Eg ÿ E0 � R

D2

�
dEg

D
; �17�

where D ' 2
������������
RkBT
p

(for R5Eg) is the Doppler width of the
emission (+) or absorption (ÿ) line.

We have, in Eqn (17), made use of the fact that

v2x �
2

M
Ex � 2

M

kT

2
� kT

M
; �18�

where Ex is the average kinetic energy per degree of freedom
of an atom moving in ideal gas (along the momentum of the
emitted quantum).

Strictly speaking, the energy distribution curve exhibits
this Gaussian form in its central portion provided D4G0.
For G4D, the Doppler broadening of line is of no
significance. For arbitrary G=D, the distribution function for
jEg ÿ �E0 � R�j4G decreases according to the Breit ±
Wigner formula.

4. The Lipkin sum rule

Although the qualitative analysis of data on g quanta
emission from a moving nucleus (including the chaotic
thermal motion of atoms in a gaseous phase) shows g-
quantum energies both greater than and smaller than
E0 ÿ R to be possible, the spectrum-averaged recoil energy
of the nucleus is independent of the precise type of nuclear
motion and is equal to R. This statement follows from a sum
rule first obtained by Lipkin in 1960 [13].

Sum rules fix the value of the sum (integral) of the matrix
elements for transitions between the states of a system under
study, and take their origin in the probabilistic nature of
quantum-mechanical predictions. The simplest and the most
fundamental sum rule states that the total probability of
finding the system in one of its possible state is unity.

What interests us here is to what extent the absorption or
emission of a g quantum changes the state of the crystal
lattice.

The line shape for the absorption (emission) of a g
quantum with momentum p is given by

I�Eg ÿ ER � En0� �
X
n

F�Eg ÿ ER � En0 ÿ En�

�
�����n���� exp� ipR

�h

�����n0�����2 ; �19�

where jni �jn0i� andEn �En0� are the wave function and energy
defining the motion of the center of mass of the absorbing
(emitting) nucleus in the final (initial) state, andR is the radius
vector of the nuclear center of mass. The function
F�Eg ÿ ER � En0 ÿ En� is nothing but the resonance factor
in the Breit ±Wigner formula (1), and jhnj exp�ipR=�h�jn0ij2
determines the probability of the transition from the initial
state jn0i to one of the final states jni.

One important property of the function I�E� can be
obtained in a straightforward manner. Expanding the
function F�Eg ÿ ER � En0 ÿ En� formally in a power series
in �En ÿ En0� (the energy transfer involved in the transition
n! n0), we obtain

I�Eg ÿ ER � En0� ' F�Eg ÿ ER� � F 0�Eg ÿ ER�

�
X
n

�En ÿ En0�
�����n���� exp� ipR

�h

�����n0�����2 � . . . ; �20�

where we have used the fact that since the system is closed the
wave functions jnimust satisfy the condition

X
n

�����n���� exp� ipR

�h

�����n0�����2 � 1 : �21�

This condition reflects the fact that the sum of the probabil-
ities for the transition from the initial state to any other state is
unity Ð a fact which, as indicated above, can also be
considered as a sum rule.

Direct calculation shows that

X
n

�En ÿ En0�
�����n���� exp� ipR

�h

�����n0�����2 � p2

2M
; �22�

where M is the mass of the absorbing (emitting) nucleus.
Thus, what the Lipkin sum rule states is that the average
energy transferred to all the final states of the system during
the emission of a g quantum by a nucleus is exactly the recoil
energy of the nucleus.

Based on this universal result, an important qualitative
prediction can be made about when a transition without
energy transfer to the crystal lattice may occur with sub-
stantial probability. If a system can make transitions with a
large energy transfer (exceeding even the recoil energy of a
free nucleus), i.e. if hard phonon excitations are important in
the case of a nucleus in a crystal, then (i) nearly all terms in the
sum (22) correspond to such transitions, (ii) virtually no long-
wavelength phonons are excited in the system, and (iii) the
probability for a zero-energy-change transition (or, formally,
for the excitation of a l � 1 phonon) increases considerably.
In other words, in a polyatomic lattice the probability of
MoÈ ssbauer effect is generally enhanced.

Thus, in particular, the presence of optical modes can
drastically change the temperature dependence of the
MoÈ ssbauer effect in the crystal. The reason is that optical
phonons start to be excited at higher temperatures than
acoustic phonons, so if optical modes are actively involved
in the vibrations of the emitting atom, the probability of a
phononless g emission event decreases with temperature
much more slowly compared with the case of a monatomic
lattice with the same Debye temperature.

5. A nucleus in a crystal lattice

If a g emitting nucleus is incorporated into a molecule or a
crystal, the laws of conservation of energy and momentum
must be obeyed by the isolated system composed of the g
quantum plus the molecule (or crystal) containing the
nucleus. In considering the system g-quantum+ the emitting
nucleus, the laws of conservation of energy and momentum
turn out `to be separated', thus permitting g emission,
processes in which the momentum is transferred to the entire
massive emitter, so that the recoil energy is virtually zero (i.e.
leaves the radiation energy unchanged).

It should be noted that, as F L Shapiro [3] has shown,
while a full description of the phenomenon requires a
complete quantum-mechanical treatment, some characteris-
tic features of nuclear g resonance in condensed media can be
vividly described in classical terms. Because of the thermal
motion of the lattice atoms, the emitting nucleus is in
continuous vibrational motion which, due to the Doppler
effect, results in the g emission being frequency modulated,
with a large number of side lines appearing in its spectrum.
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The higher the temperature, the larger the vibration ampli-
tudes, the larger the degree of modulation, and the lower the
intensity of the carrier frequency (unshifted line). In other
words, theMoÈ ssbauer line is rather strong if, as will be shown
below, the vibration amplitude of lattice atoms is small
compared with the g radiation wavelength.

Before discussing the probability of theMoÈ ssbauer effect,
we first consider the characteristic time scales determining
various aspects of the process. As pointed out by A BMigdal
[14], the radiative lifetime is defined as the time interval
t0 � lg=c, where lg is the emission wavelength. For a g
quantum with energy Eg � 100 MeV, one obtains

lg � 2p
kg
� 2p�h

pg
� 2p�hc

pgc
� 2p�hc

Eg
� 10ÿ12 cm ; �23�

giving

t0 � 10ÿ12

3� 1010
' 0:3� 10ÿ22 s : �24�

For Eg=100 keV, the wavelength is 10ÿ 9 cm and hence
t0 ' 3� 10ÿ20 s. Strictly speaking, our estimate holds good
for l > Rn � 10ÿ12 cm, when t0 � Rn=c. Our first example
puts a limit on these two estimates. In practically interesting
cases Eg � 10ÿ100 keV and t0 � �1:5 ± 0:3� � 10ÿ19 s.

It is therefore reasonable to assume that the whole
emission process proceeds in two stages: the emission
proper, with a characteristic time t0, and the final stage,
when slow (molecular and solid-state) degrees of freedom
with characteristic times t1 � 10ÿ13 s come into play. Thus,
during the g quantum emission process the emitting nucleus
instantly receives a recoil momentum pg, but it practically
does not move from its original position for a time t0 5 t1.

Since a g quantum may be emitted at any time during the
lifetime � �h=G of the excited state of the nucleus, it is on the
passage of this time interval that the process of emission
should be considered completed. Only thereafter we can
speak about the fixed energy of the emitted quantum and a
certain excitation of the phonon subsystem of the crystal, and
the final result therefore depends on the value of the
parameter t1G=�h. For t1G=�h4 1, a nucleus in a crystal emits
as a free particle, and for t1G=�h5 1, the energy distribution of
g quanta is strongly affected by the way the nucleus is bound
to the crystal (molecule).

Thus, in the first case the nucleus should be expected to
emit as a free particle moving with a momentum p0, the
probability of finding a particular value of p0 being
determined by the nuclear momentum distribution in the
crystal. In the second limiting case, in accord with the general
rules of quantum mechanics, the excitation of the original
motion of the nuclear center-of-mass breaks down into a set
of independent proper motions of a harmonic crystal Ð
normal modes of vibration with the excitation of various
numbers of their quanta, i.e. phonons. At the semiclassical
level this transformation may be interpreted as the emission
of various numbers of phonons. We can analyze such a
process based on probability-theoretic hypotheses that
underlie the Poisson random process. The very application
of a semiclassical treatment of this process relies on the
properties of the motion of a harmonic oscillator which
suddenly acquires a momentum p; these properties admit
such a nonquantum description.

Thus, the subsequent motion of a nucleus incorporating
into a molecule or a crystal requires, strictly speaking, an

exact quantum-mechanical treatment. To reduce the problem
to its essentials, let us model the center-of-mass motion of an
emitting nucleus by a one-dimensional harmonic oscillator
(potential energy U�x� � kx2=2) originally occupying the
ground state j0�.

Immediately after the emission of a g quantum the center-
of-mass wave function of the nucleus is of the form

jf� � exp

�
i
pg
�h
x

�
j0i : �25�

Such a sudden shaking of the slow subsystem (the center-
of-mass motion of the nucleus) enables the excitation of
oscillator states with n5 1 [n being the quantum number of
the excited state with energy En � �ho�n� 1=2�, whereo is the
oscillator frequency]. Along with this, there is a probability
that the oscillator will remain in the unexcited state j0i. The
wave function j f i is a linear combination of the oscillator
eigenstates, viz.

j f i �
X1
n�0

Cnjni : �26�

According to the laws of quantummechanics, the probabilityeWn of the system being excited to the state jni is determined by
jCnj2. Since the acts of excitation of a particular state jn0i are
independent of the excitation of other states, probability-
theoretic arguments show that eWn obeys the Poisson
distribution

eWf � eWn � hni
n

n!
exp

ÿÿ hni� ; X1
n� 0

eWn � 1 ; �27�

where angle brackets h. . .i denote the averaging over the
distribution eWn.

This form of eWn is confirmed by a rigorous quantum-
mechanical calculation. From the foregoing arguments, the
expression for hni follows clearly as

hni � R

�ho
� E 2

g

2Mc2�ho
: �28�

The quantity we are concerned with Ð the probability of
the oscillator remaining in its original state j0i despite the
momentum transfer pg Ð is given by

eW0 � exp
ÿÿ hni� : �29�

This indicates the probability of detecting an emission line
with a natural width G, i.e.

P�E0� /
eW0

�Eg ÿ E0�2 � G 2=4
: �30�

Similarly, with probability eW1 � hni exp�ÿhni� there
appears an emission line corresponding to the excitation of a
single phonon, of the form

1

�Eg ÿ E0 � �ho�2 � G 2=4
; �31�

and so forth.
This result (we limit the discussion to an unshifted

emission line) can be extended in a straightforward manner
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to the case of a harmonic crystal involving N atoms. The
probability eWf is then the product of S � 3Nÿ 6 ' 3N
probabilities eWni for each of the independent normal modes
of vibration, viz.

eWf �
YS
i� 1

eWni : �32�

This model of localized crystal vibrations is known as the
Einstein model. In a more realistic approach the dynamics of
a crystal are modelled by a system of independent, travelling
collective motions (phonons). In this case the structure of eWf

remains the same, because the individual modes of the
collective motion are independent, and ni must be under-
stood as the number of excited phonons, i.e. of the quanta of
the ith vibrational mode.

The probability of a recoil-free transition is defined as

eW0 �
YS
i� 1

exp

�
ÿ �pgei�

2

2M�hoi

�
� exp

�
ÿ
XS
i�1

�pgei�2
2M�hoi

�

� exp�ÿ2W0� : �33�
Hereoi and ei are the frequency and the polarization vector of
the ith normal mode in a crystal.

The quantity exp�ÿ2W0� is the so-called Debye ±Waller
factor familiar from the theory of scattering of X-rays and
thermal neutrons in crystals (for the crystal target assumed to
be at the absolute zero of temperature, T � 0). For the case of
a simple cubic lattice relation (28) derived above becomes

X
i

�pgei�2
2M�hoi

� p2

2M

1

3N

X3N
i� 1

1

�hoi
� p2

2M

�
1

�ho

�
: �34�

Here h. . .i denotes the averaging over the frequency spectrum
of the normal modes of the crystal, namely, one finds�

1

�ho

�
�
� omax

0

g�o�
�ho

do ;
� omax

0

g�o� do � 1 : �35�

The number of vibrational modes in the interval �o� do;o�
is 3Ng�o� do.

In the case of the Debye model of a crystal, we have

g�o� do �
3o2

o3
max

do for o4omax � oD ;

0 for o5omax ;

8<: �36�

whereoD is the Debye frequency, and the Debye temperature
is given byY � �homax=k.

Consequently, in this model one obtains�
1

�ho

�
� 3

o3
max

� omax

0

o0 do
�ho

� 3

2

o2
0

o3
D

� 3

2�hoD
; �37�

hni � E 2
g

2Mc2

�
1

�ho

�
� 3E 2

g

4Mc2
1

�hoD
� 3

4

E 2
g

Mc2
1

kY
: �38�

The probability of finding an unshifted line is larger, the
higher the Debye temperature of the crystal and the lower the
energy of the nuclear g transition (in accord with the Lipkin
sum rule).

The Debye ±Waller factor is thus

exp�ÿ2W0� � exp
�ÿ hni� � exp

�
ÿ R

�
1

�ho

��
: �39�

We can put the Debye ±Waller factor into a form allowing a
different interpretation qualitatively. From the virial theorem
we have

1

2
Mo2hx2i � hp

2i
2M
� Etot

2
� �ho

4
; T � 0 : �40�

From this it follows

hx2i � �h

2Mo
;

1

�ho
� hx2i 2M

�h2
; �41�

hp2i �M�ho
2

;
1

�ho
� 1

hp2i
M

2
: �42�

It is readily seen that

hx2ihp2i � �h2

4
�43�

in response to the uncertainty relation.
Using the above relations, the Debye ±Waller factor can

be put in the form

exp�ÿ2W0� � exp

�
ÿ R

�ho

�
� exp

�
ÿ R

2M

�h2
hx2i

�
� exp

�
ÿ E 2

g

�h2c2
hx2i

�
� exp

�ÿ k2ghx2i
�

� exp

�
ÿ 4p2hx2i

l2g

�
: �44�

Written in this way, the Debye ±Waller factor shows that
waves generated at various points in the crystal add up with
random phase factors exp�ij�R0; x�� � exp�ikgx� at the point
of observation, R0. If the variance of j�R0; x� is weak and if
various displacements are independent of each other, then
averaging over the Gaussian distribution yields



exp

�
ij�R0; x�

�� � exp

�
ÿ 4p2hx2i

l2

�
: �45�

The decoherence of the added waves can be neglected if���������hx2ip
5 l=2p.

A totally different physical interpretation complementary
to the previous one can be obtained by writing

exp�ÿ2W0� � exp

�
ÿ �h2k2g
4 hp2i

�
: �46�

The radiation stays coherent if the recoil momentum is small
compared to the momentum spread of the vibrating nucleus,���������hp2ip

. The transition from the wave to the corpuscular
picture of the process occurs in accord with the uncertainty
relation (43).

6. Nonzero temperatures

Arguments based on the assumption of phonons being
excited independently during the emission of a g quantum
are not valid if the emitter is found itself at nonzero
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temperature. The quanta of harmonic vibrational modes Ð
phonons in the case of a crystal Ð are quasi-particles obeying
Bose ± Einstein statistics and they cannot be treated as
independent because of there being specific statistical correla-
tions between them (induced emission of phonons). In the
case of a crystal emitter, however, the expression for the
Debye ±Waller thermal factor valid for any temperature (see
above) can be employed and one arrives at

exp�ÿ2Wf�T � exp

�
ÿ 4p2hu2iT

l2

�
: �47�

Here hu2iT is the mean square of the displacement of the
emitting nucleus in the harmonic crystal. Using now the
relation between hu2iT and the total energy, i.e.

Mo2hu2iT
2

� �ho
�
hnoiT �

1

2

�
; hnoiT �

1

exp��ho=kT� ÿ 1
;

�48�

and again limiting ourselves to the one-degree-of-freedom
case, we have

hu2iT �
2�h

Mo

�
hnoiT �

1

2

�
: �49�

For a monatomic cubic lattice, one finds

2WT �
�hk2g
2M

1

3N

X3N
s�1

2hnsiT � 1

os

� �hk2g
2M

� omax

0

2hnsiT � 1

o
g�o� do

� R

�h

� omax

0

�
2

exp��ho=kT� ÿ 1
� 1

�
g�o� do

o
; �50�

which in the Debye approximation becomes

2WT � 6R

kY

�
1

4
� T

Y
F
�
Y
T

��
; F�x� � 1

x

�x
0

tdt

exp tÿ 1
:

�51�

In the limiting cases of temperatures T far above and far
below the Debye temperature, we have

2WT ' 3R

2kY

�
1� 2p2

3

�
T

Y

�2�
; T5Y ; �52�

and

2WT ' 6R

kY

�
T

Y

�2

; T4Y ; �53�

respectively.
In the case of a small number of vibrational degrees of

freedom, corrections are needed to the above results because
our analysis ignored certain correlations between the quanta
of one and the same vibrational mode. In large systems such
as a crystal (3N4 1), the ignored corrections are small. In one
dimension, however, an exact quantum-mechanical calcula-
tion shows that the thermal exponential should be multiplied
by an additional factor, giving

eW0 � exp�ÿ2WT�I0
�
2WT shÿ1

�ho
2kT

�
: �54�

Here I0�x� is a zero-order Bessel function in the
imaginary argument. For T! 0, it is known that
I0 2WT shÿ1��ho=2kT��! I0�0� � 1
ÿ

, and we retrieve the
result exp�ÿ2W0� obtained above. If the number of normal
vibrational modes of the system is large, we have

eW0 � exp�ÿ2WT�
Y3N
s�1

I0

�
2WTs sh

ÿ1 �hos

2kT

�
; �55�

where 2WTs
� 2W=N is the amount each of the modes

contributes to 2WT.
The above correction to the previous resulteW0 � exp�ÿ2WT� is significant when, along with the large

number of vibrational degrees of freedomwhich are generally
on the same footing with one another, there is a small group
which is special in some respect. Such a situation occurs when
the emitter is placed within a crystal of dissimilar atoms and
therefore represents an impurity.

7. Excitation of a large number of phonons

We now turn to that portion of the emission line that governs
the excitation (absorption) of a large number of phonons. For
T � 0, only transitions that excite quanta of elastic vibrations
are possible. We take as our starting point the Poisson
distribution

eWn � hni
n

n!
exp�ÿhni� : �56�

If n � hni�1� e�, then for hni4 1 and e5 1, the Poisson
distribution reduces to the Gaussian one

eWn ' 1������������
2phnip exp

�
ÿ �nÿ hni�

2

2hni
�
;

�nÿ hni�2� � hni;

s �
�������������������������
�nÿ hni�2�q

�
�������
hni

p
: �57�

For large n �n4 1� and small deviations from hni
�n � hni�1� e�; e5 1� we shall have a Gaussian instead of a
Poisson distribution.

Thus, for T � 0, in the case of a harmonic oscillator,
hni � 2W0 � R=�ho, we have

P�Eg� dEg � 1���������������
2pR�ho
p exp

�
ÿ �Eg ÿ E0 � R�2

2R�ho

�
dEg : �58�

It is interesting to compare this expression with the distribu-
tion of Eg in the case of an emitting nucleus in a gas at
temperature T:

P�Eg� dEg � 1���
p
p dEg

D
exp

�
ÿ �Eg ÿ E0 � R�2

D2

�
;

D � 2
����������
RkT
p

: �59�

The squares of the widths of these distributions are

D2
osc� 2R�ho � 4RE0 � 8RhEk iT�0 ; T � 0 ;

D2
gas� 4RkT � 8RhEk i : �60�
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The interpolation formula linking these two extremes is
obtained by rewriting the above relations in the form

D2
osc� 8RhEk iT � 4RhEtotiT : �61�

In the Debye model, one has

hEtotiT � 3kT

�
T

Y

�3 �Y=T
0

�
1

exp tÿ 1
� 1

2

�
t 3 dt : �62�

For an arbitrary frequency spectrum of the normal
vibrational modes of the crystal, we find

hEtotiT �
�omax

0

g�o��ho
�
hnoi � 1

2

�
do : �63�

Thus, for arbitrary temperature, the width of the energy
distribution of g radiation accompanied by the emission (and
absorption) of a large number of phonons is given by

D2 � 4RhEtotiT : �64�
In the high-temperature range, the center-of-mass motion of
the emitter can be treated classically. Then only the velocity
distribution is of importance and indeed we arrive at

D2 � 8RhEk i � 4RhEtoti ; T4Y : �65�

At the same time, it follows that

D2 � 4REtot � 2R�ho ; T � 0 : �66�

8. Conclusions

Admittedly, many undeniably important topics related to the
MoÈ ssbauer effect remained untreated in this paper. Among
them are the coherent effects which emerge due to the fact that
waves corresponding to g quanta coherently scattered from
two scatterers interfere with each other; if resonantly
scattering nuclei are introduced in a regular manner into a
crystal lattice, resonant nuclear diffraction of g quanta is
possible Ð and indeed is examined experimentally. Mention
should also be made of the suppression of inelastic nuclear
reaction channels at high concentrations of resonantly
scattering nuclei Ð an effect theoretically predicted by Yu
M Kagan and A M Afanas'ev [15] and then confirmed
repeatedly by experiment.

In the present paper we have not even touched on
developments in experimental methodology (practical
aspects of experiment are reviewed in detail in Ref. [16], and
methods for analyzing MoÈ ssbauer spectra are discussed in
Ref. [17]). Most of the studies related to the use of the
MoÈ ssbauer effect have and are being conducted in the
transmission geometry because of its simplicity, the large
magnitude of the effect, and the high counting rate. It should
be noted, however, that also experiments on the detection of
scattered radiation, secondary X-rays, and conversion elec-
trons are being conducted. In conversionMoÈ ssbauer spectro-
scopy, the resonant absorption of g quanta is detected by the
change in the intensity of the conversion electrons escaping
the sample. Emission spectroscopy [18] explores materials
containing implanted radioactive nuclei which Ð as a result
of nuclear transformations and a subsequent g transition
cascade Ð form excited nuclei that emit resonant g quanta.

As already mentioned, the application spectrum of the
MoÈ ssbauer effect covers many other fields, including chem-

istry [19], biology [20], magnetism [21], surface physics [22],
the physics of metals, archeology, geology, and medicine. An
indisputable advantage of MoÈ ssbauer spectroscopy is that it
takes only one experiment to determine the probability of the
effect, the temperature and chemical shifts, quadrupole and
magnetic splittings, and the line shapes of individual
components. In addition to that, MoÈ ssbauer spectra lend
themselves to being affected by a variety of external factors
such as temperature, pressure, electric and magnetic fields,
ultrasound, etc. The development of the g laser using the
MoÈ ssbauer effect is another promising line of research in this
field [23].

Much attention is currently being given to the use of
synchrotron radiation in g-resonance spectroscopy [24, 25].

Among recent theoretical studies, those of Refs [26 ± 28]
deserve special mention. Lomonosov and Sazonov [26]
developed a time-dependent theory of resonant fluorescence
and analyzed the wave packets of scattered particles by
considering their dynamics of formation and propagation in
space. Hoy [27], in his treatment of a one-dimensional
quantum-mechanical model of nuclear resonance scattering
of g radiation, takes into account possible resonant re-
emissions, which is especially important for the accurate
time analysis of spectroscopic data. Of particular interest is
the work of Koncharovskaya et al. [28], who emphasize the
possibility of using a coherent optical laser field to control a
nuclear ± electron system. It is shown that the emission
(absorption) spectra of isomeric nuclear levels can be
changed significantly by exploiting the coupling between the
electronic and nuclear degrees of freedom.

Two final remarks are in order. First, although the
discussion in this paper has focused on the MoÈ ssbauer
effect, practically all the conclusions hold for electron or
neutron scattering in a lattice Ð processes which also involve
the excitation of the phonon subsystem. Second, an unshifted
line can be observed not only in crystals but also in large
biological molecules or complex chemical compounds.
Separate fragments of such molecules may be in more than
one stable equilibrium state, among which random transi-
tionsmay occur at sufficiently high temperatures. Because the
motion of such a fragment is confined spatially, the emission
and absorption spectra of their constituent nuclei contain an
unshifted line of natural width against the background of an
additional Lorentzian line due to diffusion of fragments [29,
30].
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