
Abstract. Data on order ± disorder phase transformations in
strongly nonstoichiometric carbides and nitrides MXy (X=C,
N) of Group IV and V transition metals at temperatures below
1300 ± 1400 K are reviewed. The order-parameter functional
method as applied to atomic and vacancy ordering in strongly
nonstoichiometric MXy compounds and to phase equilibrium
calculations for M±X systems is discussed. Phase diagram
calculations for the Ti ± C, Zr ± C, Hf ± C, V ± C, Nb ± C,
Ta ±C, Ti ±N, and Ti ± B ±C systems (with the inclusion of
the ordering of nonstoichiometric carbides and nitrides) and
those for pseudobinary carbide M(1)C ±M(2)C systems are pre-
sented. Heat capacity, electrical resistivity and magnetic sus-
ceptibility changes at reversible order ± disorder phase
transformations in nonstoichiometric carbides are considered.

1. Introduction

The idea of a crystal as a periodic, three-dimensional, and
completely ordered ensemble of particles is the physical
model of a perfect solid. Real crystals always have defects of
various types. The geometric classification of defects takes
into account the dimensionality of the distortions of the
lattice introduced by the defects. Point (zero-dimensional)
defects generate atomic displacements in the crystal, which (in

the case of localization near a single defect) concentrate
within a volume of microscopic dimensions, rapidly decrease
in size, oscillate, and die down in the tenth to twelfth
coordination shell, i.e., over distances not exceeding three to
four lattice parameters. Vacancies or impurity atoms corre-
spond to such a definition of a point defect. One-dimensional
(linear) defects are dislocations, while two-dimensional, or
surface, defects are grain boundaries (interfaces), antiphase
boundaries in ordered alloys and compounds, stacking faults,
etc.

It is point defects that are associated to the greatest extent
with nonstoichiometry. The geometric classification of
defects implies, indirectly, that point defects are noninteract-
ing. However, the absence of interaction between defects can
be directly linked to their low concentration: if the concentra-
tion exceeds 0.1 at.%, the defects begin to interact. The effect
of point defects on the properties of a crystal is determined by
the defect concentration and the character of their distribu-
tion in the lattice.

The presence of defectsmeans that an exact stoichiometric
composition of crystalline compounds is more an exception
than a rule. However, in many compounds the concentration
of defects within a broad range of temperatures and pressures
is so low that determining it is beyond the limits of modern
methods, so that here all deviations from the stoichiometric
composition can be ignored.

At T > 0 K, there can be no absolutely defect-free
crystals, so that the presence of defects is not by itself an
indication of nonstoichiometry. What is essentially an
indication is the experimentally observable discrepancy
between the chemical composition of a compound and the
concentration of the sites of the crystal lattice occupied by the
components of the compounds. Nonstoichiometry leads to
the emergence of unfilled sites of the crystal lattice, i.e.,
structural vacancies designated by a symbol &. Nonstoichio-
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metry is possible only in crystal substances consisting of two
or more components.

In most binary and more complicated compounds, the
concentration of defects (vacancies or interstitial atoms) is
fairly low and at 300 K does not exceed 0.01 at.%, while the
distance between nearest defects is very large and amounts to
several microns or even greater [1, 2]. There are, however,
compounds in which under ordinary conditions the concen-
tration of such defects as vacancies is very high. Probably the
best-known of such compounds is wustite FeO. This
compound always contains an excess of oxygen due to the
presence of vacancies in the iron sublattice; for example, at
1300 K wustite has the composition Fe0.88O. Sizable devia-
tions from stoichiometry accompanied by vacancy formation
in the metal sublattice have been detected in the iron and
copper sulfides Fe0.85S and Cu1.73S, with a B8-type structure
(NiAs). Large deviations from stoichiometry with vacancies
in the oxygen sublattice are characteristic of the higher oxides
TiO2, V2O5, CeO2, UO2, MoO3, WO3, etc.

Probably the first who used the term `structural vacancy'
were Andrievski|̄ and Gurov [3]. Later the term was used to
describe the defect structure of nonstoichiometric carbides,
nitrides, and oxides [4 ± 6]. At present the term has gained
wide acceptance in discussing topics related to nonstoichio-
metric compounds [1, 2, 7 ± 21]. The special features of
structural vacancies as defects are in that their concentration
is directly linked to the chemical composition of the
nonstoichiometric compound; this concentration may be as
high as several at.%. In nonstoichiometric compounds the
structural vacancies are analogs of atoms, i.e., they are
quasiparticles; in their own sublattice they act in the same
way as the atoms of this sublattice. Inmost nonstoichiometric
compounds, only one sublattice contains structural vacan-
cies. However, there are nonstoichiometric compounds in
which both sublattices have structural vacancies; the concen-
trations of the structural vacancies in different sublattices
may be equal or unequal, depending on the composition of
the compound. This duality, i.e., the simultaneous presence of
structural vacancies in the metallic and oxygen sublattice, is a
characteristic feature of cubic monoxides of titanium and
vanadium [22, 23].

As a result of intensive studies of oxides (and later
carbides and nitrides) of transition metals it was established
that there exist nonstoichiometric phases with broad homo-
geneity ranges. For instance, according to various data, cubic
titanium monoxide TiOy has a homogeneity region ranging
from TiO0.65 ± 0.80 to TiO1.25 ± 1.33, while cubic titanium
carbide TiCy exists in the range from TiC0.48 to TiC1.00. In
view of the extremely high concentration of vacancies in such
phases, the question arises of how the vacancies are
distributed over the crystal lattice.

Formally, the vacant sites of the crystal lattice behave as
atoms occupying the sites of the same lattice. For this reason
the structural vacancies are interpreted not simply as `holes'
in the crystal lattice but as a certain analog of atoms.
Structural vacancies diffuse in the lattice in the same way as
real atoms do, and the deviation from stoichiometry and the
related homogeneity range can be considered as a substitu-
tional solid solution, which can be ordered or disordered. The
interpretation of a vacant site as a structural element of a
crystal identical to an occupied site [24] emerged in the 1960s
and 1970s, when the problems of nonstoichiometry and
ordering in oxides, sulfides, and chalcogenides were being
actively discussed [25].

Disorder always violates the regularity of the crystal.
However, in the case of substitutional solutions, the symme-
try of the crystal lattice is conserved even in the presence of
disorder. Indeed, for substitutional solutions there is no way
that we can know what species of the atom is at a given site r;
instead we know the probability for an atom of one or
another species to occupy the site. In other words, for
substitutional solutions there exists a probability lattice with
all elements of the crystal's symmetry.

Analysis of the structure of nonstoichiometric com-
pounds made it possible to distinguish between two opposite
tendencies, ordering and disordering. The ordered distribu-
tion of vacancies has a high probability of existing at low
temperatures, while the disordered distribution exists at high
temperatures, when the entropy contribution to the free
energy of the nonstoichiometric compound is sufficiently
large. Completely ordered and completely disordered dis-
tributions are the limiting states of the nonstoichiometric
compound. As a result of ordering, within the homogeneity
region of the nonstoichiometric compound there emerge one
or several ordered phases, which can also have homogeneity
ranges. The maximum degree of long-range order equal to
unity is achieved for ordered phases, whose composition is
stoichiometric. Between the chaotic (disordered) distribution
of structural vacancies and the presence of long-range order
in their arrangement there are intermediate states, including
those with short-range order. Thus, nonstoichiometry is
closely related to ordering and disordering processes. More
than that, the presence of nonstoichiometry is a prerequisite
for order or disorder in the distribution of atoms and
vacancies in the structure of nonstoichiometric compounds.

Usually we say that a compound is nonstoichiometric if a
high concentration of atomic defects is observed even in the
absence of impurity atoms. Highly nonstoichiometric com-
pounds are those that contain structural-vacancy type defects
and have homogeneity regions within which the vacancy
concentration is so high that the vacancies interact. A
homogeneity region is one within which the nonstoichio-
metric compound exists under variations of the composition
of this compound for which the type of crystal structure
remains unaltered. The combination `highly nonstoichio-
metric compound' should be understood as a term. This
concept extends to compounds with a stoichiometric compo-
sition if the compound `lies' within the homogeneity region. A
similar concept of a `highly nonstoichiometric phase' was
introduced by Anderson [24] while discussing nonstoichio-
metry in chalcogenides and sulfides, but it did not gain wide
acceptance.

The group of highly nonstoichiometric interstitial com-
pounds incorporates carbides, nitrides, and oxides MXy and
M2Xy (X=C,N, andO) of Group IV andGroup V transition
metals [26, 27] and related ternary compounds with extended
homogeneity ranges. Nonstoichiometry manifests itself most
vividly in carbides and nitrides of Group IV and Group V
metals. The concentration of structural vacancies & in
carbides and nitrides can vary within wide limits and reach
30 ± 50 at.% and higher at the lower boundary of the
homogeneity range of these compounds. This suggests that
the crystal lattice of carbides and nitrides is extremely stable
with respect to the formation of structural vacancies.

The compounds that belong to the class of highly
nonstoichiometric interstitial compounds are primarily
cubic [with the B1-type base structure (NaCl)] and hexagonal
[with the L03-type base structure (W2C)] carbides, nitrides,
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and oxides MXy and M2Xy of transition metals [26 ± 29]. In
these compounds, the nonmetallic interstitial atoms X (C, N,
and O) are located in the octahedral interstices of an fcc or
close-packed hexagonal (hcp) crystal lattice formed by the
atoms of the transition metal M. Depending on the extent of
the deviation from stoichiometry, the interstitial atoms can
occupy all octahedral interstices or only some of these
interstices, i.e., form atomic groups XM6 or &M6. Ternary
compounds also are represented in the group of highly
nonstoichiometric compounds. The main element of the
structure of these ternary compounds is an ideal or distorted
octahedron consisting of six atoms of the transition metal.
Partial occupancy of the octahedral interstices is the cause of
sufficiently extended homogeneity regions in many ternary
compounds, among which are M5Si3X with a D88-type
hexagonal structure (Mn5Si3), M3AlX with an E21-type
cubic structure (CaTiO3), M3Al2X with an A13-type cubic
structure (b-Mn), M2AlX with a hexagonal structure of the
Cr2AlC type, and others [30]. The difference between the
structures of binary and ternary highly nonstoichiometric
interstitial compounds is due to the way in which the
octahedrons XM6 are connected. In binary compounds
MXy with a B1-type structure (NaCl), the octahedrons are
connected along all twelve edges; in M5Si3X, along two faces;
in the cubic compounds M3AlX and M3Al2X, at all six
vertices; and in the so-called Nowotny phases M2AlX, each
octahedron XM6 is connected to the neighboring octahe-
drons along six edges.

The history of studies of highly nonstoichiometric
carbides and nitrides can arbitrary be divided into three
periods. In the first period (from the beginning of the 20th
century up to 1940), carbides and nitrides were interpreted as
ordinary chemical compounds of stoichiometric composi-
tion. Most studies in this period were related to finding the
types of crystal structure of the carbides and nitrides obtained
in one way or another. By the end of this period, the study of
the physical properties of carbides and nitrides began, and
massive discrepancies between the results of different investi-
gations of the properties of a single carbide or nitride were
revealed. These discrepancies could not be explained by the
measurement errors or by differences in the experimental
methods. Detailed crystallochemical studies showed that the
discrepancies were due to the different content of the
interstitial atoms (carbon or nitrogen) in the same com-
pound. It proved that the composition of the carbides and
nitrides of Group IV and Group V transition metals can vary
within very broad limits while the crystal structure remains
unchanged.

The second period in the history of studies of highly
nonstoichiometric compounds (1940 ± 1970) was related to
investigations of the composition ± property dependences.
Interest in the compounds in question peaked in the 1960s,
when thousands of papers appeared in which researchers
studied the effect of composition on the crystal-chemical,
thermodynamic, electrical, magnetic, mechanical, and other
properties of these substances. The researchers erroneously
concluded that there was almost nothing left to study in these
compounds.

For a long time after nonstoichiometric compounds were
shown to have extended ranges of homogeneity, researchers
assumed that nonmetallic interstitial atoms and structural
vacancies (unoccupied interstices of the metallic sublattice)
are distributed in the lattice at random. However, in 1967 and
in later years crystallographic studies revealed that under

certain conditions the interstitial atoms and vacancies become
redistributed among the sites of the crystal lattice to form
various ordered structures. These investigations ushered in
the third period of studies, which were actively pursued in
1980s and 1990s and were related to investigations into
disorder ± order transformations and phase equilibria in
highly nonstoichiometric compounds and into the effect of
order on the properties of the compounds.

This review discusses the theoretical and experimental
results obtained in the last 10 to 15 years in the studies of
phase equilibria and disorder ± order transformations and
their effects on highly nonstoichiometric carbides and
nitrides of Group IV and Group V transition metals.

2. Ordering in highly nonstoichiometric
interstitial compounds

Atomic ordering considered as a structural disorder ± order
phase transition is the result of a redistribution of the atoms
among the sites of the crystal lattice of a substitutional solid
solution. But ordering is possible not only in substitutional
solutions. It may also occur in interstitial solutions if the
number of interstitial positions exceeds the number of atoms
that occupy these positions. In the event of ordering in
interstitial solutions, the unoccupied positions and the
interstitial atoms act as a substitutional solution of species
residing on these positions, while the solvent atoms form the
skeleton inside which the interstitial atoms and vacancies
become redistributed.

Thus, under certain conditions the presence of structural
vacancies in nonstoichiometric compounds may lead to
ordering. The nonmetallic interstitial atoms in the disordered
compound MXy are statistically distributed among the sites
of the defect (containing structural vacancies) nonmetal
sublattice; the random distribution of the interstitial atoms
means that the probabilities for any sites of the nonmetal
sublattice to become occupied by an interstitial atom X are
the same and equal to y (which is the relative content of the
interstitial atoms), due to which all the sites of the nonmetal
sublattice are crystallographically equivalent. As a result of
the ordering that can occur as the temperature lowers, the
disordered nonmetal sublattice `splits' into several sublat-
tices. The sublattices of the ordered phases of the nonstoichio-
metric compound differ from each other by the probability of
occupancy of their sites by interstitial atoms. In the simplest
case, the disordered nonmetal sublattice splits into a sub-
lattice of the interstitial atoms and a sublattice of the
structural vacancies. Ordering is accompanied by the low-
ering of the symmetry of the crystal's space group, since part
of the symmetry transformations of the disordered nonmetal
sublattice that superimpose the occupied sites on the
unoccupied is not included in the group of symmetry
elements of the ordered compound (because these sites
become crystallographically nonequivalent).

A detailed description of the superstructures of non-
stoichiometric carbides and nitrides can be found in Refs
[2, 14, 17, 28, 29, 31 ± 33]. The main ordered phases are listed
in Table 1. These phases have a general formula M2tX2tÿ1,
where t � 1, 1.5, 2, 3, and 4. So far, about twenty ordered
phases of nonstoichiometric carbides and nitrides have been
discovered. However, until recently not one phase diagram
of M±C andM±N systems that would allow for ordering of
the nonstoichiometric compounds MCy and MNy had been
built.
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Indeed, even the phase diagrams of the M±C and M±N
systems that appear in reference books published in 1987 ±
1990 [90 ± 92] usually duplicate the phase diagrams studied 20
to 30 years ago that were built for temperatures above 1300 ±
1500 K [93 ± 95]. No ordering of nonstoichiometric com-
pounds occuring at lower temperatures was reflected in
these diagrams. The one exception was the phase diagram of
the V ±C system [96] in which the boundaries of the ordered
phases V8C7, V6C5, and V2C were depicted tentatively.

Experimental studies of phase diagrams of transition
metals with carbon and nitrogen are extremely involved,
since the compounds that are formed have very high melting
temperatures (up to 4300 K), interact with the gaseous
medium, and evaporate disproportionately. It has proved
extremely difficult to attain an equilibrium ordered state of
nonstoichiometric compounds at reduced temperatures

(below 1300 ± 1400 K) due to the low diffusion rate. The
existing experimental data provide only a general picture of
the position of the ordered phases in the phase diagram and
are insufficient for building the phase boundaries more
accurately. In view of this, the various theoretical methods
and models that make it possible to account for atomic
ordering are of interest. Most modern theoretical models
used in this field [97 ± 104] are based either on the mean-field
approximation or the cluster approximation.

The main problem of the statistical theory of atomic
ordering is building the thermodynamics of a system consist-
ing ofmany interacting particles. In themean-field model and
its different variants, this problem is solved, to one extent or
another, by replacing the individual interatomic interactions
with an interaction averaged over all the atoms. In particular,
to describe the structural disorder ± order phase transitions in

Table 1. Ordered phases of highly nonstoichiometric carbides and nitrides of Group IV and Group V transition metals.

Ordered phase Base phase

ReferencesFormula Honogeneity range
or nonmetal
content (at.%)

Lattice, structure
type

Space group Formula Lattice,
structure type

Ti2C
Ti2C
Ti3C2

Ti2C
Ti2C
Ti3C2

Ti2C
Ti3C2

Ti6C5

d0-ZrCy

ZrCy(Zr2C)
ZrC0.75

Zr2C
Zr3C2

Zr6C5

Hf3C2

Hf6C5

bp-V2C
b0-V2C
V6C5

V6C5

d0-VCy

d00m-VCy

V8C7

Nb2C
Nb2C
Nb6C5

Nb6C5

Nb3C2

Nb6C5

Ta2C
Ta6C5

Ta6C5

d0-Ti2N
Ti2N
d0-Ti2N
Ti2N
Ti3N2

Ti6N5

Ti6N5

V2N
V9N4

d0-VNy

V32N26

Nb4N3

TiC0.52 ë TiC0.71

TiC0.58 ë TiC0.63

TiC0.64 ë TiC0.68

TiC0.49 ë TiC0.54

TiC0.55 ë TiC0.59

TiC0.63 ë TiC0.67

TiC0.47 ë TiC0.54

TiC0.62 ë TiC0.70

TiC0.80 ë TiC0.90

39.0 ë 43.0
ZrC0.63 ë ZrC0.74

ZrC0.69 ë ZrC0.77

ZrC0.47 ë ZrC0.54

ZrC0.60 ë ZrC0.71

ZrC0.76 ë ZrC0.92

HfC0.67 ëHfC0.72

HfC0.77 ëHfC0.90

� 33:0 (VC0.5)
� 33:0 (VC0.5)
� 45:5 (VC0.83)
� 45:5 (VC0.83)
� 45:5 (VC0.83)

45.0 ë 47.0
� 46.6 (VC0.87)
� 33.3 (NbC0.5)
� 33.3 (NbC0.5)
NbC0.75 ëNbC0.84

NbC0,81 ëNbC0.88

NbC0.67 ëNbC0.71

NbC0.78 ëNbC0.90

� 33.3 (TaC0.5)
TaC0.79 ëTaC0.89

TaC0.81 ëTaC0.89

� 33.0 ë 33.3
TiN0.45 ëTiN0.50

TiN0.50 ëTiN0.51

TiN0.52 ëTiN0.57

TiN0.58 ëTiN0.72

TiN0.77 ëTiN0.90

44.7 ë 45.6
� 33.3
� 33.0
44.0 ë 47.0
�VN0.78

� 43.0

Cubic
Trigonal
Orthorhombic
Cubic
Trigonal
Rhombic

Trigonal
Cubic
Cubic, ThC0.76 type

Orthorhombic, z-Fe2N type
Hexagonal
Trigonal
Monoclinic
Trigonal
Monoclinic
Cubic
Orthorhombic, type z-Fe2N
Hexagonal, e-Fe2N type
Trigonal, V6C5 type [33]
Monoclinic

Trigonal
Incommensurate phase, M6C5 type

Tetragonal
Tetragonal
Tetragonal

Orthorhombic
Hexagonal, e-Fe2N type
Hexagonal
Tetragonal
Tetragonal
Tetragonal

Fd3m

R�3m
C2221
Fd3m

R�3m
C2221

Pbcn

P31, P32
C2

P4332

Pnma

P31, P32
C2=m

I41=amd

I41=amd

I41=amd

P6322

P42=nmc

I4=mmm

TiCy

TiCy

TiCy

TiCy

TiCy

TiCy

TiCy

TiCy

TiCy

ZrCy

ZrCy

ZrCy

ZrCy

ZrCy

ZrCy

HfCy

HfCy

V2Cy

V2Cy

VCy

VCy

VCy

VCy

VCy

Nb2Cy

Nb2Cy

NbCy

NbCy

NbCy

NbCy

Ta2Cy

TaCy

TaCy

TiNy

TiNy

TiNy

TiNy

TiNy

TiNy

TiNy

V2Ny

V9N4

VNy

VNy

NbNy

fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
hcp, L03
hcp, L03
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
hcp, L03
hcp, L03
fcc, B1
fcc, B1
fcc, B1
fcc, B1
hcp, L03
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
fcc, B1
hcp, L03
hcp, L03
fcc, B1
fcc, B1
fcc, B1

[34, 35]
[36, 37]
[36, 38]
[39]
[39]
[39]
[26, 40]
[26, 40]
[26, 40]
[41]
[35]
[42]
[2, 26, 43 ë 46]
[2, 26, 43 ë 46]
[2, 26, 43 ë 46]
[2, 26, 46 ë 48]
[2, 26, 46, 47]
[41, 49]
[41, 49]
[50 ë 53]
[54, 55]
[41]
[41]
[51 ë 53, 56 ë 60]
[61]
[61]
[62 ë 64]
[65 ë 70]
[2, 26, 43 ë 46]
[2, 26, 43 ë 46]
[71]
[72 ë 76]
[2, 26, 43 ë 46]
[77 ë 81]
[82]
[83 ë 85]
[26, 40, 47]
[26, 40, 47]
[26, 40, 47]
[86]
[62]
[87]
[41]
[87]
[88, 89]
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substitutional and interstitial solid solutions, a variant of the
mean-field approximation known as the method of static
concentration waves [98] has proved its effectiveness. It is
based on the idea of the one-particle distribution function
nn�r� describing the distribution of atoms of a given species n
among the sites r of the crystal lattice. However, as a result of
using a one-particle distribution function the method of static
concentration waves ignores multiparticle correlations. More
than that, the problem of determining the energy parameters
(the mixing energies V�k�), which are needed if we want to
calculate the configurational energy, is not solved directly in
themethod of static concentration waves. For this reason, the
theoretical approach to finding the superstructures in real
systems by employing the method of static concentration
waves has yet to be realized. So far the method has not been
used to calculate phase diagrams with nonstoichiometric
compounds.

In the cluster methods [99 ± 102, 104], the results of the
mean-field approximation are improved by applying the same
reasoning to a cluster as to a single site of the lattice occupied
by an atom of a given species. As a result, local correlations
and interactions are taken into account by examining a
compact group of atoms in a medium whose properties
correspond to the average microscopic state of the sub-
stance. In other words, the interactions between the particles
inside the cluster are taken into account exactly, while the
interactions between the clusters are taken into account
approximately, by using an effective field of some sort. To
allow for correlations in structural phase transitions, such
cluster approximations as the quasichemical approximation
[105], the Bethe method [106], and Kikuchi's cluster variation
method [99 ± 101] are employed. The most effective is the
cluster variation method, but this method has not been used
to analyze ordering in such complex objects as nonstoichio-
metric compounds.

In Refs [2, 14, 107, 108], the order-parameter functional
(OPF) method was developed to describe structural disor-
der ± order phase transitions in substitutional solid solutions
AyB1ÿy and in nonstoichiometric interstitial compounds
MXy&1ÿy. This method also became known as the thermo-
dynamic model of atomic ordering [109, 110]. Physically, the
OPF method is based on the mean-field approximation, but
by its formalism the method belongs to the group of cluster
methods. However, it differs from cluster methods by its
capacity to take into account the symmetry of a crystal with
any long-range parameter in detail. In the OPF method, as
well in the cluster variation method [99 ± 102], the crystal is
described by a set of figures of type s with a configuration i;
the sequence fsg of special figures necessary to describe a
crystal incorporates the base cluster and the overlap figures.
The main feature of the OPF method is the representation of
the probabilities of different figures (clusters) in terms of the
values of the distribution function nn�r�, which directly de-
pends on the long-range order parameters Z. The distribution
function nn�r� is the probability of finding the atoms of a given
species n at the sites r of the ordering lattice. Using the OPF
methodmade it possible to describe not only qualitatively but
also quantitatively the first- and second-order phase transi-
tions of the disorder ± order type in a number of nonstoichio-
metric interstitial compounds MXy and solid solutions
AyB1ÿy and to determine the types of superstructures that
are in thermodynamic equilibrium in them [2, 14, 17, 108].

In recent decades the theory of phase transitions has seen
the active development of mathematical simulation by the

molecular-dynamics and Monte Carlo methods. In particu-
lar, theMonte Carlomethod was used to analyze the ordering
of nonstoichiometric titanium carbide [36, 38]. This is a
universal numerical method of solving mathematical pro-
blems by simulating random quantities [111]. Before the
computer era, it could not find wide application since
modeling random quantities is an extremely tedious pro-
blem. Today, however, it is used to analyze cooperative
phenomena, in which probability plays an important role.

To employ theMonte Carlo method, a fairly small part of
the crystal containing a sufficiently large number of atoms (no
less than 1000) is separated and is considered as one cell of the
periodic lattice out of the set of identical cells. Any
equilibrium characteristic of such a system of N particles can
be calculated by averaging over the canonical configuration
ensemble g�1; . . . ;N� � exp�ÿbU�1; . . . ;N��, where U is the
potential energy of the system. Let us assume that in an initial
configuration the atoms are at the points R1, R2, . . ., RN. By
the use of a random-number generator the ith atom is
displaced by a vector R 0i ÿ Ri � d . The length of the step jdj
is chosen arbitrarily in such a way that the entire system can
be traversed using a finite number of steps. After each step the
changeDU in the energy of the system is calculated; ifDU4 0,
the new configuration is suitable as the next step. The random
walks obtained in this manner form a canonical ensemble.
Usually, the energy is assumed to be the energy of pairwise
(two-particle) interactions. As a result of the sequential
procedure, for fixed parameters of particle±particle interac-
tions a certain equilibrium distribution of atoms among the
lattice sites sets in the system, a distribution that corresponds
to a state with minimum energy. Obviously, the accuracy of
the result depends on the number N.

Two main features of the Monte Carlo method follow
from the above discussion. The first is that the calculation
algorithm is fairly simple and the second, that the calculation
error is proportional to 1=

����
N
p

.
DeNovion et al. [36] and Priem et al. [86] studied ordering

in nonstoichiometric titanium and niobium carbides and in
titanium nitride. They used the inverse Monte Carlo method
and, using neutron-diffraction data on short-range order as
the basis, calculated the energy of pairwise interactions in the
nonmetal sublattice. A cell measuring 18� 17� 17 � 5202
fcc unit cells containing 20808 sites of the nonmetal sublattice
was used for simulation.

In the sections that follow we briefly discuss the special
features of the description of phase equilibria by the OPF
method, generalize the data on phase equilibria in the binary
systems M±C and M±N, and give the phase diagrams of
these systems that were calculated with allowance for
ordering by the OPF and Monte Carlo methods and the
phase diagrams of pseudobinary carbide systems calculated
in the subregular solution approximation. The construction
of phase diagrams is important not only from the theoretical
viewpoint but also for practical reasons, since this makes it
possible to find the temperature ± concentration regions of
existence of the disordered and ordered phases, which differ
significantly both in structure and in properties [2, 14, 17, 33].

3. Free energy and equilibrium conditions
for ordered phases

Let us examine the ordering process in a binary interstitial
solid solution AyB1ÿy or in a nonstoichiometric compound
MXy&1ÿy, i.e., ordering in a binary system A±B or X±&.
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What is assumed is that ordered phases of the A2tÿ1B or
M2tX2tÿ1& type, where t � 1; 1,5; 2; 3; 4, can be formed in
these systems as a result of a disorder ± order transition. We
will denote the free energies of the disordered phase AyB1ÿy
(MXy) and the ordered phase A2tÿ1B (M2tX2tÿ1) by F�y; 0;T �
and F�y; Z;T �, respectively. If we write the dependence of the
enthalpy of formationH�y; 0;T � and the nonconfigurational
entropy S�y; 0;T � of the disordered crystal (Z � 0) on the
crystal's composition y as a power series in y, i.e.,

H�y; 0;T � � N
XR�s�
n�0

ynHn�T � ;

S�y; 0;T � � N
XR�s�
n�0

ynSn�T � ; �1�

then, as shown in the OPF method [108], the free energy F of
the crystal is described, for any order parameter [from Z � 0
to Z � Zmax�y�], by the formula

F�y; Z;T � � N

�X
s

K�s�y�s�
�
F0�T � � yF1�T �

�
XR�s�
n�2

P
�n��s�
0 �y; Z�Fn�T �

�
ÿ TSc�y; Z�

�
: �2�

Here s is the type of figure (cluster) in the sequence fsg of
special figures needed to describe ordering by the OPF
method, y�s� is the overestimation factor allowing for the
overlap of the figures s in the crystal lattice, K�s� is the factor
linking the enthalpy of the crystal and the energy of all figures
of the given type s with different configurations, R�s� is the
number of sites incorporated in a figure of type s belonging to
the ordered lattice, P

�n��s�
0 is the probability of a complete n-

subfigure formed by n4R�s� sites of the figure s (all sites of a
complete n-subfigure are occupied by atoms of the species A
(for the solid solution AyB1ÿy) or the species X [for the
nonstoichiometric compoundMXy)], and Sc is the configura-
tional (combinatorial) entropy. The probabilityP

�n��s�
0 in (2) is

a function of y and Z, with the result that for given y andT the
variable is the long-range order parameter Z, while the model
parameters are F0�T �;F1�T �; . . . ;Fn�T �.

According to Ref. [14], for a crystal in equilibrium all
possible values of the distribution function degenerate to
two values, n

� d�
1 and n

� d�
2 , corresponding to the case where

all long-range order parameters are the same:
Z1 � Z2 � . . . � Zm � Z. If the ordering of the solid solution
AyB1ÿy or the nonstoichiometric compound MXy leads to
the formation of an ordered phase, A2tÿ1B or M2tX2tÿ1, the
degenerate values n

� d�
1 (the probability of finding an atom of

species A at a site of the sublattice B or an interstitial atom
X at a site of the vacancy sublattice) and n

� d�
2 (the

probability of finding an atom of species A at a site of the
sublattice A or an interstitial atom X at a site of the
sublattice formed by the interstitial atoms) are

n
�d�
1 � yÿ �2tÿ 1�Z

2t
; n

�d�
2 � y� Z

2t
: �3�

At Z � 0 we have n
�d�
1 � n

�d�
2 � y, i.e., these probabilities

describe a disordered state. The probability of any figure
(cluster) that incorporates several sites of the lattice in which
the ordering process takes place can be expressed in terms of
the probabilities n

�d�
1 and n

�d�
2 . Note that P

�0��s�
0 � 0 and

P
�1��s�
0 � y [14, 107].

The configurational (combinatorial) entropy of the
ordered phase AyB1ÿy or M2tX2tÿ1 is given by the following
formula:

Sc�y; Z� � ÿ kB
2t

n
n
�d�
1 ln n

�d�
1 � �1ÿ n

�d�
1 � ln�1ÿ n

�d�
1 �

� �2tÿ 1��n�d�2 ln n
�d�
2 � �1ÿ n

�d�
2 ln�1ÿ n

�d�
2 �
�o
: �4�

Clearly, when Z � 0, equation (4) describes the configura-
tional entropy Sc�y; 0� of the disordered crystal.

With allowance for (1) ± (3), the free energy F�y; 0;T � of
the disordered (Z � 0) crystal has the form

F�y; 0;T � � N

�X
n

y nFn�T � ÿ TSc�y; 0�
�
: �5�

The equilibrium of the disordered and ordered phases is
described by the following set of equations:

qF�y1; 0;T �
qy1

� qF�y2; Z;T �
qy2

;

F�y1; 0;T � ÿ y1
qF�y1; 0;T �

qy1
� F�y2; Z;T � ÿ y2

qF�y2; Z;T �
qy2

;

�6�

where y1 and y2 are the relative contents of the
component A (or X) in the disordered and ordered
phases, respectively.

According to Ref. [43], after substituting (2), (4), and (5)
into the set of equations (6) and combining the result with (3)
we arrive at the following conditions for equilibrium of the
disordered phase AyB1ÿy (or MXy) and the ordered phase
A2tÿ1B (or M2tX2tÿ1):XR�s�

n�0
y
�nÿ1�
1

�
n� �1ÿ n�y1

�
Fn�T � � kBT ln y1

�
X
s

K�s�y�s�
�XR�s�

n�0

�
P
�n��s�
0 � �1ÿ y2� qP

�n��s�
0

qy2

�

� Fn�T � ÿ Z
XR�s�
n�0

qP�n��s�0

qZ
Fn�T � � kBT

2t

�
h
ln n

�d�
1 � �2tÿ 1� ln n�d�2

i�
Z�Zequil

;

XR�s�
n�0
�1ÿ n�yn

1Fn�T � � kBT ln�1ÿ y1�

�
X
s

K�s�y�s�
�XR�s�

n�0

�
P
�n��s�
0 ÿ y2

qP�n��s�0

qy2

�
Fn�T �

ÿ Z
XR�s�
n�0

qP�n��s�0

qZ
Fn�T � � kBT

2t

h
ln
ÿ
1ÿ n

�d�
1

�
� �2tÿ 1� ln ÿ1ÿ n

�d�
2

�i�
Z�Zequil

: �7�

Reasoning in a similar manner, we arrive at the conditions for
equilibrium of the two ordered phases of the A2tiÿ1B or
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M2tiX2tiÿ1 type, where i � 1 or 2:X2
i�1
�ÿ1�i

X
s

K�s�y�s�
�XR�s�

n�0

�
P
�n��s�
0i

� �1ÿ yi� qP
�n��s�
0i

qyi

�
Fn�T � ÿ Zi

XR�s�
n�0

qP�n��s�0i

qZi
Fn�T �

� kBT

2ti

h
ln n

�d�
1;i � �2ti ÿ 1� ln n�d�2;i

i�
Zi�Zi; equil

� 0 ;

X2
i�1
� ÿ 1�i

X
s

K�s�y�s�
�XR�s�

n�0

�
P
�n��s�
0i ÿ yi

qP�n��s�0i

qyi

�
Fn�T �

ÿ Zi
XR�s�
n�0

qP�n��s�0i

qZi
Fn�T � � kBT

2ti

h
ln
ÿ
1ÿ n

�d�
1;i

�
� �2ti ÿ 1� ln ÿ1ÿ n

�d�
2;i

�i�
Zi�Zi; equil

� 0 : �8�

Here yi, P
�n��s�
0i , Zi, ti, n

�d�
1;i , and n

�d�
2;i are the quantities

corresponding to the ordered phases A2tiÿ1B (or M2tiX2tiÿ1).
The equilibrium value of the long-range order parameter

Zequil in the ordered phase A2tÿ1B (or M2tX2tÿ1) can be found
from the condition for the minimum of free energy of this
phase, when thermodynamic equilibrium is achieved, i.e.,
from the condition qF�y; Z;T �=qZ � 0. If we allow for (2)
and (4), the condition becomes

X
s

K�s�y�s�
�XR�s�

n�0

qP�n��s�0

qZ
Fn�T � ÿ kBT

�2tÿ 1�
4t 2

� ln

�
n
�d�
2

1ÿ n
�d�
1

n
�d�
1 1ÿ n

�d�
2

� � ��
Z�Zequil

� 0 : �9�

Equations (7) ± (9) make it possible to calculate equili-
brium phase diagrams of binary systems in which ordering is
possible. The calculation parameters are the coefficients
F0�T �, F1�T �, . . ., Fn�T � of the expansion (5) of the free
energy of a disordered crystal. Thus, to calculate disorder±
order and order ± order transformations and equilibrium
structural states by the OPF method it is sufficient to know
the free energy of the disordered state of the crystal. This
quantity can be either specified by the model or found from
the experimental thermodynamic data.

4. Equilibrium conditions for nonstoichiometric
interstitial compounds

4.1 A model for nonstoichiometric interstitial compounds
The disordered nonstoichiometric monocarbides MCy and
mononitrides MNy have a B1-type structure, in which the
nonmetallic interstitial atoms and structural vacancies are
statistically distributed over the sites of the nonmetallic face-
centered cubic (fcc) sublattice. To give an OPF description of
the ordering of nonstoichiometric compounds MXy with a
B1-type structure, one must use a sequence fsg that
incorporates a base figure of type c (the base cluster in the
form of an octahedron consisting of six sites of the nonmetal
sublattice with a metal atom at the center) and overlap
figures, which are a figure of type b (a bond, i.e., two
neighboring sites of the nonmetal sublattice), and a figure of

type a (a site of the nonmetal sublattice) [2, 14, 17, 107 ± 110].
The base cluster in the form of an octahedron with a metal
atom at the center makes it possible to allow for all sites of the
crystal lattice; furthermore, the energy e�c�i of the base figure
incorporates (implicitly) the energies of the pairwise interac-
tions M±M and M±X, which are the main interactions in
nonstoichiometric interstitial compounds.

The results of numerous studies (generalized inRefs [2, 14,
95]), suggest that the energies e�a�i and e�b�i are extremely low
compared to eMÿM and eMÿX. This implies that e�a�i and e�b�i are
negligible compared to e�c�i , with the result that
K�a� � K�b� � 0. As shown in Refs [14, 107], the coefficient
K�c� can be found from the normalization conditionP

s K
�s�y�s� � 1; at y�c� � 1 and K�a� � K�b� � 0, this coeffi-

cient is equal to unity. Note that for fcc solid solutions
(alloys) only K�a� � 0, while K�b� 6� 0 and K�c� 6� 0.

According to Refs [2, 14], in real binary orderable systems
the expansions of the enthalpy of formation (1) and the free
energy (5) of disordered nonstoichiometric compounds MXy

or disordered alloysAyB1ÿy are limited by second-order terms
in concentration y, i.e., Fn>2�T � � 0. With allowance for this
fact and for the values of K�s� and y�s�, we can transform
expression (2) for the free energy of nonstoichiometric
compounds into the following form [107, 108]:

F�y; Z;T ��F0�T �� yF1�T � � P
�2�
0 F2�T � ÿ TSc�y; Z� ;

�10�

where

P
�2�
0 � P

�2��c�
0 � y2 ÿ a�s�Z2

4t 2
: �11�

Clearly, if at Z � 0 we combine (10) and (11), we obtain

F�y; 0;T � � F0�T � � yF1�T � � y2F2�T � ÿ TSc�y; 0� ;
�12�

where

Sc�y; 0� � ÿkB
�
y ln y� �1ÿ y� ln�1ÿ y�� : �13�

Equations (10) and (12) imply that the difference DF �
F�y; Z;T � ÿ F�y; 0;T � does not depend on the coefficients
F0�T � and F1�T � of the linear terms in expansion (5). If
expansions (1) that describe the composition dependences of
the enthalpy and the nonconfigurational entropy of the
disordered compound are linear, i.e.,

H�y; 0;T � � N
�
H0�T � � yH1�T �

�
;

S�y; 0;T � � N
�
S0�T � � yS1�T �

�
;

the free energy has the form

F�y; 0;T � � N
�
F0�T � � yF1�T � ÿ TSc�y; 0�

�
:

Generally Sc�y; Z� ÿ Sc�y; 0� < 0, so that for such a depen-
dence of the free energy we obtain DF > 0 and no ordered
phase is formed. Thus, within the adopted model approxima-
tions, the nonlinear dependence of the free energy F�y; 0;T �
(without allowance for the configurational entropy) and the
enthalpy of formation H�y; 0;T � is the necessary condition
for the ordering of highly nonstoichiometric compounds [2,
14, 17, 108, 112]. According to Ref. [113], the composition
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dependence of the free energy (without allowance for the
configurational entropy) of a disordered nonstoichiometric
compound MXy is represented by a concave curve; with
allowance for (12) this is possible only if F2�T � > 0. Hence,
for the disordered nonstoichiometric compounds MXy in
question, whose free energy F�y; 0;T � has the form (12), the
energy parameter F2�T � is always positive, i.e., F2�T � > 0.

The coefficient a�s� in equation (11) depends on the type
and structure of the ordered phase and on the shape of the
chosen base cluster. Using the concept of superstructural
short-range order [114, 115], we can show that for any
superstructure

a�s� � 1ÿ 2t� 2t

R�s��R�s� ÿ 1�
X
q

R�s�q
X
j

z
�s�
jq m

�j�
21 ; �14�

where R
�s�
q is the number of sites of the base cluster with the

neighbors fz�s�jq g; z�s�jq is the number of sites of the base cluster s
entering into the jth coordination shell of an arbitrary site q of
the same cluster; andm

�j�
21 is the relative number of sites of the

nonmetal sublattice occupied by interstitial atoms in the jth
coordination shell centered at a vacancy. Summation over q
and j in (14) is done within the limits of the base cluster, withP

q R
�s�
q � R�s� and

P
j z
�s�
jq � �R�s� ÿ 1�.

4.2 Basic equations
The transformation of the set of equations (7) carried out in
Refs [43, 44] with allowance for the model of stoichiometric
compounds adopted inRefs [2, 14]made it possible to derive a
set of equations describing the equilibrium of the disordered
phase MXy and the ordered phase M2tX2tÿ1:

y1�2ÿ y1� � kBT

F2�T � ln y1 � y2�2ÿ y2� � a�s�

4t2
Z2equil

� 1

2t

kBT

F2�T �
h
ln n

�d�
1 � �2tÿ 1� ln n�d�2

i
Z�Zequil

;

y21 ÿ
kBT

F2�T � ln�1ÿ y1� � y22 ÿ
a�s�

4t2
Z2equil ÿ

1

2t

kBT

F2�T �

�
h
ln
ÿ
1ÿ n

�d�
1

�� �2tÿ 1� ln ÿ1ÿ n
�d�
2

�i
Z�Zequil

:

�15�
The conditions for the equilibrium of two ordered phases
M2tiX2tiÿ1 (where i � 1 or 2) are

X2
i�1
�ÿ1�i

�
yi�2ÿ yi� � a

�s�
i

4t2i
Z2i; equil �

1

2ti

kBT

F2�T �

�
h
ln n

�d�
1;i � �2ti ÿ 1� ln n�d�2;i

i
Zi�Zi; equil

�
� 0 ;

X2
i�1
�ÿ1�i

�
y2i ÿ

a
�s�
i

4ti
Z2i; equil ÿ

1

2ti

kBT

F2�T �
h
ln
ÿ
1ÿ n

�d�
1;i

�
� �2ti ÿ 1� ln ÿ1ÿ n

�d�
2;i

�i
Zi�Zi; equil

�
� 0 : �16�

Solving the set of equations (15) and (16) for all binary
equilibria that are possible in the ordering compound MXy,
we can find the position of the phase boundaries and build the
equilibrium phase diagram.

With allowance for (10) and (11) and for the values of K�s�

and y�s�, we can write expression (9) for the equilibrium long-

range order parameter in the following form:

1

Zequil
ln

�
n
�d�
2 �1ÿ n

�d�
1 �

n
�d�
1 �1ÿ n

�d�
2 �

�
Z�Zequil

� 2a�s�

�2tÿ 1�
F2�T �
kBT

: �17�

When the disorder ± order transition temperature Ttrans is
reached, the free energies of the ordered and disordered
phases become equal and DF � F�y; Z;T � ÿ F�y; 0;T � � 0.
But when the equilibrium value of Z is reached, the free energy
F�y; Z;T � is at its minimum, with the result that
qF�y; Z;T �=qZ � 0. Combining these facts with (10) ± (12),
we see [14, 108] that the equilibrium conditions for the
disorder ± order transition are given by the equations

DF�y; Z;T � � ÿ a�s�Z2F2�T �
4t2

ÿ T
�
Sc�y; Z� ÿ Sc�y; 0�

� � 0 ;

�18�

qF�y; Z;T �
qZ

� ÿ a�s�

2t2
ZF2�T � ÿ T

qSc�y; Z�
qZ

� 0 : �19�

Reasoning along similar lines, we find [26] that the conditions
for the order ± order transition are

DF�y; Zl; Zh;T � �
�
a
�s�
h Z2h
4t2h

ÿ a
�s�
l Z2l
4t 2l

�
F2�T �

ÿ T
�
Sc;l�y; Zl� ÿ Sc;h�y; Zh�

� � 0 ; �20�

qF�y; Zl;T �
qZl

� ÿ a
�s�
l

2t 2l
ZlF2�T � ÿ T

qSc;l�y; Zl�
qZl

� 0 ; �21�

qF�y; Zh;T �
qZh

� ÿ a
�s�
h

2t 2h
ZhF2�T � ÿ T

qSc;h�y; Zh�
qZh

� 0 ; �22�

where the subscripts l and h correspond to the low- and high-
temperature phases, respectively. The solution of the set of
equations (18) and (19) or (20) ± (22) yields the equilibrium
values of the long-range order parameter at the transition
point, Ztrans, and the transition temperature, Ttrans. For
disorder ± order transitions the value of Ztrans can be found
by solving the equation

Ztrans
2

�
qSc�y; Z�

qZ

�
Z�Ztrans

ÿ Sc�y; Ztrans� � Sc�y; 0� � 0 : �23�

When we are dealing with an order±order transition, the
values of the long-range order parameters at transition
points, i.e., the values of Ztrans; l and Ztrans; h, which correspond
to the low- and high-temperature phases, can be found by self-
consistently solving the following equations:�

Zl
2

qSc;l�y; Zl�
qZl

ÿ Sc;l�y; Zl�
�

Zl�Ztrans; l

�
�
Zh
2

qSc;h�y; Zh�
qZh

ÿ Sc;h�y; Zh�
�

Zh�Ztrans; h
;

�
t 2l

a
�s�
l Zl

qSc;l�y; Zl�
qZl

�
Zl�Ztrans; l

�
�

t 2h

a
�s�
h Zh

qSc;h�y; Zh�
qZh

�
Zh�Ztrans; h

: �24�
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The quantity F2�T �, which characterizes the thermodynamic
properties of the crystal, does not enter into equations (23)
and (24). This means that Ztrans depends only on the
composition of the crystal and the type of superstructure
participating in the disorder ± order or order ± order transi-
tion.

As shown in Refs [2, 14, 29, 107 ± 110], the dependence of
the maximum value of the long-range order parameter on the
composition of the nonstoichiometric compound MXy in
which an ordered phase of the M2tX2tÿ1 type is formed can
be expressed as follows:

Zmax�y� �
2t�1ÿ y� ; if y5

2tÿ 1

2t
,

2ty

2tÿ 1
; if y <

2tÿ 1

2t
:

8><>: �25�

By determining Ztrans from (23) and substituting the result
into (19) we arrive at an expression for the disorder ± order
transition temperature Ttrans. The order ± order transition
temperature can be found by determining, via (24), the values
of Ztrans; l and Ztrans; h and substituting them into equations (21)
or (22), respectively. If the disorder ± order or order ± order
transitions are first-order, the transition temperature is given
by the formula

Ttrans � 2a�s�

�2tÿ 1�
F2�Ttrans�

kB
Ztrans

�
�
ln

�
n
�d�
2 �1ÿ n

�d�
1 �

n
�d�
1 �1ÿ n

�d�
2 �

�
Z�Ztrans

�ÿ1
: �26�

Note that the expression in braces is always positive. For
order ± order transitions, the values of a, t, and Ztrans in (26)
can correspond to either one of the two ordered phases in
equilibrium.

In second-order phase transitions, in which the long-range
order parameter varies smoothly from Ttrans to T as the
temperature lowers from Z � 0 to Z � Zequil, equation (26)
becomes [2]

Ttrans � 2a�s�

2tÿ 1
y�1ÿ y� F2�Ttrans�

kB
; �27�

which is similar to the formula for the transition temperature
in the mean-field approximation.We see that in second-order
phase transitions the dependence of the ordering temperature
on the composition of the compound MXy or the solid
solution AyB1ÿy is represented by a symmetric parabola
with its maximum at y � 1=2.

The entropy jump in order ± order or order ± disorder
transitions of the first order is given [47] by the formula

DStrans �
�
a
�s�
l Z2trans; l
4t 2l

ÿ a
�s�
h Z2trans; h
4t 2h

�
S2�Ttrans�

� Sc�y; Ztrans; h� ÿ S�y; Ztrans; l� ; �28�

where Ztrans; l and Ztrans; h are the equilibrium values of the
long-range order parameters at the transition point corre-
sponding to the low- and high-temperature phases, respec-
tively, and S2�T � � ÿqF2�T �=qT. In order ± disorder transi-
tions, the high-temperature phase is disordered and
Ztrans; h � 0 for this phase.

5. Equilibrium phase diagrams of M±C
and M±N systems with allowance for ordering
of nonstoichiometric carbides and nitrides

5.1 A model equilibrium phase diagram for the M±X
system with an ordering nonstoichiometric compound MXy

According to the data of Refs [2, 14, 17, 28, 29, 33] and the
results of the structural studies generalized in Section 2, from
the viewpoint of crystallography, superstructures of theM2X,
M3X2, M4X3, M6X5, and M8X7 types can form in nonstoi-
chiometric compoundsMXy with a base B1-type structure. A
detailed crystallographic description of theseM2tX2tÿ1 super-
structures and the distribution functions for the interstitial
atoms in such superstructures can be found in Ref. [29]; the
values of the coefficients t and a�s� for all the superstructures
are listed inTable 2. InRefs [14, 107, 108] it was shown that for
the disordered nonstoichiometric compounds MXy, whose
free energy is of the form (12), the energy parameter F2�T � is
positive. SinceTtrans is always positive, equations (26) and (27)
imply that the coefficient a�s� can only be positive. Thus, it is
wrong to assume that a trigonal (space group P�3m1) M3X2

superstructure, for which a�s� < 0, can form in an MXy

compound with a base structure of the B1 type. Hence,
below, when we mention the ordered phase M3X2, we mean
only orthorhombic (space groups Immm and C2221) and
monoclinic (space group P2) superstructures of this type.

The general form of the model equilibrium phase diagram
of an M±X system with an ordering nonstoichiometric
compound MXy in which all nonmetallic interstitial atoms
X are replaced by structural vacancies &, i.e., in which y
changes from 0 to 1, was found in Ref. [44].

According to the results of the thermodynamic calcula-
tions [2, 26, 43, 44] and crystallographic analysis [29], the

Table 2. Structural characteristics of possible ordered phases of highly nonstoichiometric compounds MXy with a B1-type base structure (NaCl).

Type of ordered
phase

Space group m
�1�
21 m

�2�
21 t a�s� 2a�s�

2tÿ 1

M2X

M3X2

M4X3

M6X5

M8X7

R�3m, Fd3m
I41=amd

P4=mmm

Immm, P2
C2221
P�3m1

Pm3m

I4=mmm

C2=m, P31, C2
Fm�3m, P4332

1/2
2/3
2/3
5/6
3/4
1/2
1
1
1
1

1
1/3
0
2/3
1
1
0
1/3
1
1

1
1
1
1.5
1.5
1.5
2
2
3
4

0.2
0.2
0.067 (1/15)
0.4
0.4
ÿ0.2
0,2
0.467 (7/15)
1.0
1.0

0.4
0.4
0.133
0.4
0.4
ÿ0.2
0.133
0.311
0.4
0.286
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formation of M3X2, M4X3, M6X5,and M8X7 superstructures
is a first-order phase transition, while an M2X-type super-
structure can form as a result of a second-order phase
transition. Transitions between ordered phases are first-
order.

From (26) and (27) it follows that Ttrans depends on the
coefficient 2a�s�=�2tÿ 1�. For superstructures of the M2X
type (space groups R�3m, Fd3m, and I41=amd), M3X2 type
(space groups Immm, C2221, and P2), and M6X5 type (space
groups C2=m, C2, and P31) this coefficient is the largest
(equal to 0.4), while for the tetragonal M2X (space group
P4=mmm) and cubic M4X3 (space group Pm3m) super-
structures it is the smallest (see Table 2). This implies that
for the superstructures of theM2X (space groupsR�3m, Fd3m,
and I41=amd), M3X2 (space groups Immm, C2221, and P2),
and M6X5 (space groups C2=m, P31, and C2) types, the
order ± disorder transition temperatures are comparable in
value, and in the equilibrium phase diagram these super-
structures are stable in close temperature intervals but in
distinct concentration intervals. The tetragonal superstruc-
ture M4X3 (space group I4=mmm), the cubic superstructure
M8X7 (space groups Fm3m and P4332), and especially the
tetragonal superstructure M2X (space group P4=mmm) and
the cubic superstructure M4X3 (space group Pm3m) can be
stable only in the low-temperature region.

The model phase diagram of an orderable nonstoichio-
metric compound MXy (0 < y < 1) has been calculated and
built for temperatures ranging from 300 K to the transition
temperature Ttrans [26, 44]. For nonstoichiometric carbides
and nitrides in this temperature range the ratio kBT=F2�T � is
a monotonic increasing function of T. This fact has made it
possible to build the phase diagram using the dimensionless
reduced temperature kBT=F2�T � (for the compounds in
question the reduced temperature kBT=F2�T � � 0:02 corre-
sponds to roughly 300 K). The calculated phase diagram
(Fig. 1) suggests that ordered phases of the M2X, M3X2, and
M6X5 types are formed in the process of ordering of the
nonstoichiometric compound MXy. There are four two-
phase regions in the phase diagram: M2X+M3X2,
M3X2+M6X5, M6X5+MXy, and M3X2+MXy. Within a
narrow concentration interval 0:52364 y4 0:5255
(y � X=M) at a fixed reduced temperature of
kBT=F2�T � � 0:09981 the M6X5 phase can form via the
peritectoid reaction M3X2+MXy !M6X5 (see the inset in
Fig. 1). At point 2 of the peritectoid transformation (see the
inset in Fig. 1) the curves representing the concentration
dependences of the M3X2, MXy, and M6X5 phases have a
common tangent, with the minimum of the free energy of the
disordered phase MXy corresponding to a value of y that is
larger than those corresponding to the minima of the free
energies of the ordered phases M3X2 and M6X5.

Even in the low-temperature region (i.e., at values of
kBT=F2�T � close to 0.02) the values of the parameter Zequil
of ordered phases of the M2X type (space group P4=mmm)
and of the M4X3 and M8X7 types are small and their free
energy is larger than that of other superstructures. For this
reason, in equilibrium no ordered phases of typesM2X (space
group P4=mmm), M4X3, and M8X7 can emerge in the
nonstoichiometric compounds MXy with a B1-type base
structure.

Thus, in the process of ordering of a nonstoichiometric
compound MXy, ordered phases of type M2X, M3X2, and
M6X5 are formed. Figure 2 depicts the dependence of the
parameters Ztrans and Zmax on the composition of a non-

stoichiometric compound MXy when superstructures of
type M3X2 and M6X5 are formed in this compound as a
result of a first-order phase transition.
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0.1000
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+
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Figure 1. Model equilibrium phase diagram of the M±X system built in

Ref. [44] with allowance for ordering of interstitial atoms X and structural

vacancies & in the nonstoichiometric interstitial compound MXy

(MXy&1ÿy) under the assumption that all nonmetallic interstitial atoms

X can be replaced by vacancies &. The solid curves represent phase

boundaries and the dashed curves, order ± order and order ± disorder

phase transitions of the first order; for the first-order transition

MXy $M2X the phase boundary and the phase transition curve

coincide. The inset depicts an enlarged area of the ordering region where

at a reduced temperature of kBT=F2�T� � 0:09981 a peritectoid transfor-

mation M3X2+MXy !M6X5 takes place.
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Figure 2. Equilibrium long-range order parameter at the transition point,

Ztrans (Ð), and themaximumvalue of the long-range order parameter, Zmax

(- - -), versus the composition of theMXy compound when ordered phases

of type M3X2 (1) and M6X5 (2) are formed.
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When calculating the ordering process in real nonstoi-
chiometric compounds, one must allow for the boundary
conditions of equilibrium. For instance, in the V ±C system
the upper boundary of the homogeneity range of disordered
cubic vanadium carbide VCy corresponds to VC0.875 (for all
other carbides and nitrides with a B1-type structure the upper
boundary of the homogeneity range corresponds to a
compound close in composition to, or even coinciding with,
MX1.00). This boundary effect is the reason why it is only in
vanadium carbide that an ordered cubic phase V8C7 (space
group P4132 or P4332) is formed. In other carbides and
nitrides, no equilibrium ordered cubic phase of type M8X7 is
formed.

In real nonstoichiometric compounds MXy, no complete
replacement of nonmetallic atoms by vacancies can occur,
since the symmetry of the crystal lattice of the metal M differs
from that of the metal sublattice of the nonstoichiometric
compound [2, 14]; finally, other compounds can exist (in
addition toMXy) in theM±X system. For instance, Group V
transition metals form with carbon and nitrogen not only
cubic carbides and nitrides MXy with a B1-type structure but
alsoM2Xy compounds with a hexagonal structure. In view of
this, when building phase diagrams of realM±X systems, one
must calculate, in addition to ordering, the equilibria with the
metal M or the compound M2Xy (M2X(comp)).

The equilibrium between the metal M and the ordered
phase M2tX2tÿ1, i.e., the position of the phase boundary
separating the two-phase region (M�M2tX2tÿ1) and the
ordered phase M2tX2tÿ1, is described by the following
expression [44]:

FM�T � � F0�T � ÿ y2F2�T � � a�s�

4t 2
Z2equilF2�T �

� kBT

2t

�
ln�1ÿ n

�d�
1 � � �2tÿ 1� ln�1ÿ n

�d�
2 �
�
Z�Zequil ;

�29�
where FM�T � is the free energy of the metal M.

The equilibrium between the ordered phase M2tX2tÿ1 and
theMXyb compound (here yb is themaximum relative content
of the nonmetallic atoms X at the upper boundary of the
homogeneity region) is described by the following equation
[26]:

FMXy b
�comp��T � � F0�T � � ybF1�T �

� y�2yb ÿ y�F2�T � � a�s�

4t 2
Z2equil F2�T �

� kBT

2t

n
ln
hÿ
n
�d�
1

�ybÿ1ÿ n
�d�
1

��1ÿyb�i
� �2tÿ 1� ln

hÿ
n
�d�
2 �yb

ÿ
1ÿ n

�d�
2

��1ÿyb�io
Z�Zequil

: �30�

According to this, the position of the lower boundary of
the homogeneity region of the ordered phase M2tX2tÿ1 which
is in equilibrium with the compound M2X(comp) (or
MX0.5(comp), i.e., yb � 0:5) can be calculated by the equation

0:5FM2X�comp��T � � F0�T � � 0:5F1�T � � y�1ÿ y�F2�T �

� a�s�

4t 2
Z2equil F2�T � � kBT

4t

n
ln
h
n
� d�
1

ÿ
1ÿ n

� d�
1

�i
� �2tÿ 1� ln

h
n
� d�
2

ÿ
1ÿ n

� d�
2

�io
Z�Zequil

; �31�

where FM2X�comp� is the free energy of the lower hexagonal
carbide or nitride. In the disordered state, with Z � 0,
equations (29) and (31) describe the position of the lower
boundary of the homogeneity range of the disordered
nonstoichiometric compound MXy. Thus, these equations
make it possible to calculate the equilibrium of the non-
stoichiometric compound MXy, which can be in a state with
any value of the long-range order parameter, from Zmax to 0.

The numerical values of the energy parameters F0�T �,
F1�T �, and F2�T � (Table 3) needed for calculating the phase
diagrams were obtained in Refs [2, 26, 43] by expanding the
free energy (without allowance for the contribution of the
configurational entropy) of the disordered compounds MCy

andMNy into a power series up to the second order in y; each
energy parameter F�T � was represented by a polynomial of
the type

F�T � � f0 � f1T� f2T
2 � f3T

ÿ1 � f4T lnT : �32�
The free energies of the disordered carbides TiCy, ZrCy,
HfCy, VCy, NbCy, and TaCy and the disordered nitride
TiNy were found in Refs [2, 26, 43, 52] on the basis of the
experimental thermodynamic data taken from Refs [51, 93,
95, 116 ± 122]. The temperature curves representing the
dependence of the free energy of the metals a-Ti, b-Ti, a-Zr,
b-Zr, and a-Hf and the lower carbides b-Nb2C, b-V2C, and a-
Ta2C in equilibrium with nonstoichiometric compounds
MXy were also represented by polynomials (32) obtained on
the basis of the data of Refs [120 ± 125]. The literature does
not contain experimental thermodynamic data characterizing
the tetragonal nitride e-Ti2N, which has no homogeneity
range. Hence, the temperature dependence of the free energy
of this nitride was found as a model parameter on the basis of
the data on the position on the phase boundary separating
TiNy and the two-phase region (e-Ti2N+TiNy) (these data
were taken from Refs [126, 127]). The values of the
coefficients f0 ± f4 for all phases taken into account in the
calculations of diagrams with allowance for ordering of the
nonstoichiometric compounds are listed in Table 3.

5.2 Phase diagrams of Ti ±C, Zr ±C, and Hf ±C systems
5.2.1 The Ti ±C system. In this system there is only one
compound capable of ordering, cubic titanium carbide TiCy.
At the lower boundary of the homogeneity range, titanium
carbide is in equilibrium with metallic a-Ti (when
T < 1150 K) or b-Ti (when T > 1150 K). According to Ref.
[40], for 1900K > T > 1000K the carbide that exists near the
lower boundary of the homogeneity region of the disordered
phase TiCy is TiC0.32 ± TiC0.37. Experiments have not yielded
the exact position of the lower boundary of the homogeneity
range; different estimates yield the composition TiC0.48 [93] or
TiC0.47 at 1900 K [90, 128]. According to Jonsson's calcula-
tions [129], this composition at 1900 K is TiC0.52. The data of
Murray [90], Storms [93], and Jonsson [129] reveal that, as the
temperature is lowered, the lower boundary of the homo-
geneity region of disordered titanium carbide TiCy shifts in
the direction of increasing y, i.e., in the direction of a carbide
with a higher content of carbon, at a rate that is somewhat
larger than that predicted by the calculations done in Ref.
[40].

Figure 3 depicts curves that represent the dependence, at
600 and 1200 K, of the free energy of the disordered and
crystallographically possible ordered phases on the carbon
content y in titanium carbide. At 600 K, in different
concentration ranges, the ordered Ti2C, Ti3C2, and Ti6C5
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phases and disordered titanium carbide TiCy (with y > 0:94)
(curves 2, 3, 4, and 1 in Fig. 3, respectively) may have the
lowest free energy. The ordered tetragonal phase Ti4C3 (space
group I4=mmm) and cubic phase Ti8C7 have larger free
energies (curves 5 and 6 in Fig. 3) and cannot form under
equilibrium conditions. The formation of the cubic phase
Ti4C3 (space group Pm3m) and the tetragonal phase Ti2C
(space group P4=mmm) at 600 K is impossible at all, since the
transition temperatures Ttrans for these phases lie below 300
K; for this reason the free-energy curves corresponding to
these phases are absent in Fig. 3. At 1000 K and higher, only
the disordered phase TiCy can exist over the entire homo-
geneity region.

The points I and II in Fig. 3 on the vertical axis (y � 0)
correspond to the free energies of a-Ti at 600 K and b-Ti at

1200 K, respectively. The tangent to the free energy F(y,
600 K) passing through the point I determines the free energy
and width of the two-phase region at the boundary with
metallic titanium. Figure 3 shows that at 600 K the two-phase
mixture (a-Ti+Ti2C) dominates at the boundary with
metallic titanium.

The low-temperature part of the phase diagram of the Ti ±
C system (Fig. 4) was calculated by the OPF method [40]; the
position of the phase boundaries outside the ordering region
is shown in accordance with the data of Murray [90] and
Storms [93].

Due to the wide homogeneity range of titanium carbide
TiCy, the Ti2C, Ti3C2, and Ti6C5 phases are formed in the
ordering process in thermodynamic equilibrium (see Fig. 4).
According to calculations, an ordered Ti2C phase is formed

Table 3. Coefficients in the polynomials (32) describing the parameters F0�T �, F1�T �, and F2�T � of the free energy F�y; 0;T � of disordered
nonstoichiometric compounds MXy, and the free energies F�T� of metals M and lower hexagonal carbides and nitrides M2X.

Phase Free-energy
parameters

Coefécient

f0,
kJ molÿ1

f1 � 102,
kJ (mol K)ÿ1

f2 � 106,
kJ (mol K2)ÿ1

f3,
kJ molÿ1

f4 � 102,
kJ (mol K)ÿ1

TiCy

a-Ti

b-Ti

ZrCy

a-Zr

b-Zr

HfCy

a-Hf

VCy

b-V2C

V8C7

NbCy

b-Nb2C

TaCy

a-Ta2C

TiNy

e-Ti2N

F0(298 ë 1500 K)
F1(298 ë 1500 K)
F2(298 ë 1500 K)

F(298 ë 1150)

F(1150 ë 2000 K)

F0(298 ë 1500 K)
F1(298 ë 1500 K)
F2(298 ë 1500 K)

F(298 ë 1140 K)

F(1140 ë 2200 K)

F0(298 ë 1500 K)
F1(298 ë 1500 K)
F2(298 ë 1500 K)

F(298 ë 2500 K)

F0(298 ë 2000 K)
F1(298 ë 2000 K)
F2(298 ë 2000 K)

F(298 ë 1600 K)

F(298 ë 1400 K)

F0(298 ë 1800 K)
F1(298 ë 1800 K)
F2(298 ë 1800 K)

F(298 ë 2500 K)

F0(298 ë 1800 K)
F1(298 ë 1800 K)
F2(298 ë 1800 K)

F(298 ë 2500 K)

F0(298 ë 2200 K)
F1(298 ë 2200 K)
F2(298 ë 2200 K)

F(500 ë 1350 K)

32.61
ÿ327.29
83.36

ÿ7.02

ÿ6.91

87.93
ÿ421.72
111.60

ÿ9.93

ÿ4.90

139.03
ÿ487.59
90.18

ÿ7.58

97.09
ÿ437.49
211.36

ÿ180.96

ÿ123.89

13.98
ÿ284.99
128.74

ÿ218.35

41.34
ÿ330.78
144.40

ÿ220.93

ÿ6.00
ÿ421.42
94.48

ÿ1067.24

3.16
7.15
12.77

12.00

18.05

ÿ39.28
66.07
0.80

15.60

16.19

ÿ83.59
108.80
7.54

11.37

145.0
ÿ86.23
267.21

513.67

274.13

6.87
18.89
1.40

38.69

17.57
4.12
ÿ0.036

37.26

20.09
5.76
ÿ2.49

707.07

ÿ9.67
3.09
ì

ÿ5.28

ì

ÿ30.38
40.84
ÿ13.50

ÿ2.34

ì

ÿ119.49
243.25
ÿ126.54

ÿ1.09

ÿ11.84
11.75
0

ÿ1.70

ÿ1.56

ÿ8.00
4.40
ì

ÿ6.28

3.04
ÿ10.48
1.80

ÿ6.97

ÿ8.40
ÿ8.20
18.80

306.89

ÿ3026
3164
ì

ì

ì

ÿ7357
7614
ì

182

ì

ÿ11001
12257
ì

ì

ÿ208
932
0

1290

608

1390
ÿ3186
2246

429

893
ÿ2325
1500

429

ì
ì
ì

127931

ÿ1.20
ÿ0.62
ÿ1.91

2.20

ÿ3.14

4.46
ÿ9.01
ì

ÿ2.86

ÿ3.04

11.17
ÿ16.42
ì

ÿ2.56

ÿ26.95
18.29
ÿ42.47

ÿ83.12

ÿ43.46

ÿ1.21
ÿ3.26
ì

ÿ6.65

ÿ3.13
ÿ0.69
ì

ÿ6.65

ÿ3.02
ÿ0.94
ì

ÿ96.45
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via a second-order phase transition with Ttrans � 920 ± 950 K.
The homogeneity region of Ti2C is fairly broad (TiC0.42 ±
TiC0.56 at 700 K and TiC0.40 ± TiC0.54 at 800 K) and is limited
from right and left by two-phase regions (a-Ti+Ti2C and
Ti2C+Ti3C2, respectively). The ordered Ti3C2 and Ti6C5

phases have homogeneity regions comparable in width
(TiC0.59 ± TiC0.71 for Ti3C2 and TiC0.74 ± TiC0.87 for Ti6C5 at
700 K) and are formed via a first-order phase transition.
Order ± order transitions in titanium carbide are also first-
order phase transitions. The calculated values of Ttrans,
DStrans, and the heat of phase transition DHtrans for all
possible order ± order and order ± disorder first-order phase

transitions in titanium carbide are listed in Table 4. On the
whole, ordering in titanium carbide TiCy takes place at
T < 1000 K.

Let us compare the calculated phase diagram of the Ti ±C
system (Fig. 4) with the results of experiments. According to
the experimental data, the ordered phases of Ti2C with cubic
(space group Fd3m) [34, 35, 130 ± 132] and trigonal (space
groupR�3m) [36, 37] structures are formed in titanium carbide
TiCy in the range 0:54 y4 0:65 at T < 1100 K. Reports on
the trigonal phase Ti2C (Ti6C3�x) with the space group P3121
resulted from an error that wasmade byKhaenko andKukol'
[133] and was later uncritically repeated by other researchers;
we will not go any further into this problem so as not to
promote erroneous information. Indeed, if we assume that
the base structure is of the B1 type, such a trigonal (space
group P3121) phase of type M2C with lattice parameters
a � b � aB1=

���
2
p �a � f1=2 1=2 0gB1� and c � 3

���
2
p

aB1
�c � f2 2 2gB1� is impossible in principle, since the sites of
the metallic and nonmetal sublattices partially coincide.

Analysis of structural experiments [34 ± 38, 130 ± 135]
implies that the cubic (space group Fd3m) superstructure of
Ti2C is usually detected in annealed samples of TiCy with
y < 0:55 ± 0.56, while trigonal ordering is usually observed in
annealed titanium carbide TiCy with 0:584 y4 0:65. Note
that in a powder diffraction experiment the powder patterns
of the cubic (space group Fd3m) and trigonal (space group
R�3m) ordered phases of Ti2C contain the same set of
superlattice reflections [29] and can be separated if there are
noticeable trigonal distortions in the phase with the space
group R�3m and with allowance for the directions of static
atomic displacements. This may be the reason why in earlier
works [35, 130 ± 132], where only the cubic model of ordering
was discussed [34], even in annealed titanium carbide TiCy

(y5 0:59) the observed superlattice reflections were ascribed
to the cubic phase Ti2C. In later papers [36 ± 38, 134, 135], it
was shown that the main ordered phase in TiCy (y5 0:6) is
the trigonal phase Ti2C.

The ordered phase Ti3C2 is assumed to exist in the
TiC0.60 ± TiC0.70 range, and there are some experimental
indications of this:

(1) the presence of superlattice reflections (2/3 2/3 0)
observed by Moisy-Maurice [38] in studies of annealed
single-crystal TiC0.61 by the method of elastic neutron
scattering;

(2) weak superlattice reflections with a diffraction vector
jqj � 2:03 characteristic of the orthorhombic (space group
C2221) phase Ti3C2 were observed by Lipatnikov et al. [136]
in the X-ray pattern of annealed titanium carbide TiC0.70;

(3) diffuse neutron scattering maxima caused by the
presence of short-range order in TiC0.76 and corresponding
in position to the reflections (2/3 2/3 0) were detected by
Moisy-Maurice et al. [137]; and

(4) an estimate of the short-range order parameters [36] in
single-crystal TiC0.64 made on the basis of diffuse neutron
scattering data has shown that agreement between theory and
experiment is the best when annealed titanium carbide TiC0.64

contained two ordered phases, Ti2C and Ti3C2.
The existence of a trigonal ordered phase Ti2C and an

orthorhombic ordered phase Ti3C2 also follows from Monte
Carlo calculations of de Novion et al. [36] and Priem [138] for
the concentration range TiC0.57 ± TiC0.70 (Fig. 5). Landesman
et al. [139] found that short-range order and order ± disorder
transitions in nonstoichiometric carbides and nitrides can be
described by using the IsingHamiltonian for the nonmetal fcc
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sublattice. In this case the Hamiltonian is determined as the
sum of effective energies Vn of the pairwise interactions
between the sites of the nonmetal sublattice that are the nth

neighbors. De Novion et al. [36], Priem [138], and Priem et al.
[140] calculated the energies Vn of the pairwise interactions in
the nonmetal sublattice of the titanium carbides TiC0.76 and
TiC0.65 not only for the nearest (V1) and next-nearest (V2)
neighbors but also formore distant sites positioned in relation
to each other on the third (V3) and fourth (V4) coordination
shells. The energies of the pairwise interactions were calcu-
lated by the following three methods on the basis of the data
of Priem et al. [140] gathered in the process of high-
temperature experiments on diffuse scattering of neutrons:
the mean-field approximation [97, 141, 142], the inverse
Monte Carlo method [143], and the cluster variation method
[100, 102, 144, 145]. The best agreement with the experimental
data was achieved when the phase diagram was calculated by
the Monte Carlo method. According to de Novion et al. [36]
and Priem et al. [140], the formation of the orthorhombic
ordered phase Ti3C2 is a first-order phase transition. This
conclusion is corroborated by the results of OPF calculations
of ordering in TiCy [40].

A certain difference in the mutual positions of the ordered
phases of Ti2C and Ti3C2 in the phase diagrams of the Ti ±C
system calculated by the OPF method [40] (see Fig. 4) and by
the Monte Carlo method [36, 138] (see Fig. 5) is due to the
following. While in OPF calculations the free energy of the
ordering compound is a function of the compound's
composition and the long-range order parameters, in Monte
Carlo calculations the energies of the interatomic interactions
are extracted from the data on short-range order parameters.
Obviously, the observed slight differences in the results of

Table 4. Thermodynamic characteristics of order ± order and order ± disorder phase transition in nonstoichiometric titanium carbide TiCy.

y

Ti2C ëTi3C2 Ti3C2 ëTi6C5 Ti6C5 ëTiCy

Ttrans, K DStrans,
kJ (mol K)ÿ1

DHtrans,
kJ molÿ1

Ttrans, K DStrans,
J (mol K)ÿ1

DHtrans,
kJ molÿ1

Ttrans, K DStrans,
J (mol K)ÿ1

DHtrans,
kJ molÿ1

0.52
0.53
0.54
0.55
0.56
0.58
0.60
0.62
0.63
0.64
0.65
0.66
0.68
0.70
0.72
0.73
0.74
0.75
0.76
0.78
0.80
0.82
0.83
0.84
0.85
0.86
0.88
0.90
0.92
0.94
0.95

948
926
893
853
795
460
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

0.09
0.15
0.25
0.28
0.32
0.29
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

0.08
0.14
0.22
0.24
0.25
0.13
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
961
959
956
951
940
924
902
891
877
860
841
794
733
639
566
472
320
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
0.003
0.013
0.03
0.05
0.12
0.19
0.29
0.35
0.41
0.48
0.56
0.74
0.91
0.99
1.00
0.90
0.69
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
0.003
0.013
0.03
0.05
0.12
0.18
0.26
0.31
0.36
0.42
0.47
0.59
0.66
0.63
0.57
0.42
0.22
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
962
961
960
959
955
949
942
938
934
929
924
912
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882
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864
854
843
818
789
755
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662
601
528
444
348
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ì
0.02
0.03
0.04
0.06
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0.50
0.62
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calculations can be diminished if in eachmethod the long- and
short-range order parameters are taken into account simulta-
neously. However, in the theory of phase transformations a
method by which long- and short-range order parameters
would be taken into account simultaneously has yet to be
developed.

On the whole, the experimental and theoretical studies
[34 ± 38, 130 ± 138, 140] corroborate the results (presented in
Ref. [40]) of calculations of the phase diagram of the Ti ±C
system (see Fig. 4). According to these results, at tempera-
tures below 1000 K ordered phases Ti2C and Ti3C2 can form
in nonstoichiometric titanium carbide. The existence of an
ordered phase Ti2C at temperatures above 2150 K, as
tentatively shown in Enomoto's [128] phase diagram for the
Ti ±C system, is more than doubtful. According to the
calculations done in Ref. [40], an ordered phase Ti6C5 can
also form in titanium carbide TiCy with 0:78 < y < 0:88. This
phase belongs to the class of ordered phases M6X5 that is
common for all nonstoichiometric interstitial compounds.
Recently, Dzhalabadze et al. [146] detected ordered phase
Ti6C5 with hexagonal symmetry in thin Ti ±C films. The films
were prepared by electron-beam sputtering of sintered
titanium carbide TiC0.9, magnetron sputtering of titanium
and carbon, and laser sputtering of titanium and graphite or
titanium carbide TiC0.9. According to Dzhalabadze et al.
[146], the ordered phase Ti6C5 corresponds to disordered
carbide TiC0.83. However, the lattice parameters of the
hexagonal ordered phase found by Dzhalabadze et al. [146]
correspond to disordered titanium carbide TiCy with a period
a0 � 0:4319 nm of the basic cubic lattice; according to the
most reliable data, this period corresponds to the carbide
TiC0.68 ± 0.70, while for the disordered carbide TiC0.83 the value
of this period is 0.4326 nm. The understated value of the
period of cubic titanium carbide in the film may be due to an
admixture of oxygen.

The temperature of the disorder ± order transition for the
ofTi3C2 andTi6C5 phases calculated inRef. [40] do not exceed
950 K. Note that the phase diagram of the Ti ±C system
calculatedwith y < 0:5 contains a broad two-phase region [(a-
Ti+Ti2C) at T < 919 K and (a-Ti+TiCy) at T > 919 K] (see
Fig. 4),which is absent in themodel phase diagram (seeFig. 1).
The presence of this two-phase region is due to the allowance
for equilibrium boundary conditions. In nonstoichiometric
titanium carbide TiCy there can be no complete replacement
of carbon atoms by structural vacancies, since the symmetries
of the crystal lattices of titanium and titanium carbide are
different (metallic a-Ti has a hexagonal close-packed struc-
ture, while nonstoichiometric titanium carbide TiCy has aB1-
type cubic structure). As a result, the lower boundary of the
homogeneity tange of titanium carbide corresponds (depend-
ing on the temperature) to TiC0.4 ± 0.5, while at a lower carbon
content the two-phase mixture of titanium and titanium
carbide is in equilibrium. The model phase diagram (see Fig.
1) was built for the ideal case of complete replacement of
interstitial atoms by structural vacancies, which is possible
only if the metal and the nonstoichiometric compound are of
the same symmetry (in this case there is no two-phase region).
The symmetries of the crystal lattices of the transition metal
and the nonstoichiometric compound are the same only in the
Th ±C system at temperatures above 1500 K, and in such a
system there is indeed no two-phase region between thorium
and thorium carbide.

A recent study of ordering in titanium carbide TiCy

carried out by Lipatnikov et al. [39] is of interest. The

researchers used data on the structure and electrical resistiv-
ity of annealed and quenched samples of TiCy and found that
the cubic (space group Fd3m) ordered phase Ti2C has a
homogeneity region extending from TiC0.49 ± 0.51 to TiC0.54 ±

0.55, while the trigonal (space group R�3m) superstructure of
Ti2C is formed in the TiC0.55 ± TiC0.59 range. The TiC0.59 ±
TiC0.63 range corresponds to a two-phase region [Ti2C (space
group R�3m) + Ti3C2 (space group C2221)]. The range of
existence of the orthorhombic (space group C2221) ordered
phase Ti3C2 is fairly narrow and does not exceed TiC0.63 ±
TiC0.67. The lowest annealing temperature used by Lipatni-
kov et al. [39] was 770 K. Since as a result of even such low-
temperature annealing of the titanium carbides TiC0.83 and
TiC0.85 no ordered phase of the Ti6C5 typewas discovered, the
researchers assumed that the transition temperature of this
phase is below 770 K. The portion of the equilibrium phase
diagram of the Ti ±C system built by Lipatnikov et al. [39],
where the ordering of nonstoichiometric titanium carbide
TiCy takes place, is depicted in Fig. 6.

Figure 6 shows that in the range 0:544 y4 0:57 the
following sequential transitions are possible: disordered
(space group Fm�3m) titanium carbide TiCy  !990�20 K cubic
(space group Fd3m) ordered phase Ti2C  !960�20 K trigonal
(space group R�3m) ordered phase Ti2C. The orthorhombic
ordered phase Ti3C2 is most likely to form via the peritectoid
transformation Ti2C� TiCy ! Ti3C2 at 990� 10 K in the
interval 0:614 y4 0:63. The portion of the phase diagram of
the Ti ±C system shown in Fig. 6 suggests that the ordered
phase Ti2C with cubic or trigonal symmetry can be observed
over a broad composition range of nonstoichiometric
titanium carbide, from TiC0.40 to TiC0.63. However, only the
interval TiC0.49 ± 0.50 ± TiC0.58 ± 0.59 constitutes the single-
phase range of existence of ordered phase. The range in
which the formation of an ordered Ti6C5-type phase is
possible is depicted tentatively, since experiments have yet to
prove that such a range exists. The hysteresis in the
temperature dependence of the electrical resistivity (Fig. 7)
suggests that the TiCy $ Ti2C and TiCy $ Ti3C2 transfor-
mations are first-order phase transitions with Ttrans � 980 ±
1000 K [39]. This is in good agreement with the value
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Ttrans � 1000 K found for titanium carbide TiC0.55 in
measurements of electrical resistivity in [147].

Measurements of the heat capacity of the titanium
carbides TiC0.54, TiC0.58, and TiC0.62 [148] revealed that
there is a sharp jump, related to an equilibrium order ±
disorder phase transition, at the transition temperature
Ttrans. The peak of heat capacity near Ttrans is symmetric
(Fig. 8) rather than l-shaped; this symmetry is more
characteristic of first-order phase transitions than of second-
order. Moreover, when the sample is cooled, there is a weak
hysteresis in the heat capacity, which also supports the idea
that the transition is close to a first-order one. According to
Ref. [148], the reversible order ± disorder transformationTi2C
(space group Fd3m)$TiC0.54 can be considered to be a weak
first-order phase transition with a small latent heat of
transition, while the Ti3C2 $ TiCy is an ordinary first-order
phase transition. Figure 8 depicts the variations in the
enthalpy H 0

TÿH 0
298 and heat capacity Cp�T � of nonstoichio-

metric titanium carbide TiC0.62 in the vicinity of the phase
transition. We see that at the transition temperature Ttrans

there is a jump in the temperature dependence of the enthalpy
H 0

TÿH 0
298. According toRef. [148], the temperatureTtrans and

the heats DHtrans of the phase transitions Ti2C (space group
Fd3m) $ TiC0.54, Ti2C (space group R�3m) $ TiC0.58, and
Ti3C2 (space group C2221) $ TiC0.62 are, respectively, 100,
980, and970Kand1.5� 0.2, 1.5� 0.2, and1.8� 0.2kJmolÿ1.
According to the data of Emel'yanov [149] and Karpov and
Kobyakov [150, 151], the temperatures of the disorder±order
transitions for the titanium carbides TiC0.49, TiC0.55, TiC0.60,
and TiC0.63 are somewhat higher and are equal to 1040 ±
1070 K.

Thus, experiments have shown that the ordering of
titanium carbide in the intervals 0:524 y4 0:55,
0:564 y4 0:58, and 0:624 y < 0:68 at T < 1000 K leads,
respectively, to the formation of the cubic (space group Fd3m)
and trigonal (space group R�3m) ordered phases of Ti2C and
the orthorhombic (space group C2221) ordered phase Ti3C2.

This agrees with the phase diagram of Ti ±C (see Fig. 4)
calculated inRef. [40] by the OPFmethod (note that for Ti2C-
type superstructures the OPFmethod yields a common range
of existence, from TiC0.46 to TiC0.58, without separation into
the cubic and trigonal phases).

The Ti ±C system contains, in addition to nonstoichio-
metric cubic titanium carbide, a Ti8C12 compound [152]. This
compound was discovered in 1992 and was the first
compound belonging to a new class of molecular clusters
known as metallocarbohedrens. A detailed description of
metallocarbohedrens M8C12 can be found in the review by
Eletski|̄ and Smirnov [153]. Ti8C12 molecules have the almost
perfect spherical shape of a slightly distorted pentagonal
dodecahedron. The atoms of the metal and carbon are
located at the vertices of the dodecahedron, with each
titanium atom bonded to three carbon atoms and each
carbon atom bonded to the nearest carbon atom and two
titanium atoms. The lengths of the Ti ±C and C±C bonds in
Ti8C12 differ by roughly 40% and are 1.99 and 1.39 nm,
respectively, but the carbon and titanium atoms are located at
almost equal distances from the cluster's center. The structure
of metallocarbohedrens M8C12 is highly symmetric: its point
symmetry group incorporates 24 symmetry elements of the
cubic group. In view of the high symmetry of the molecule,
metallocarbohedrens are expected to be extremely stable.

Ti8C12 clusters were obtained by plasmochemical gas-
phase synthesis combined with laser heating of the metal and
the hydrocarbon (methane, ethylene, propylene, benzene,
etc.) plasma. The molecular clusters M8C12 (M=Ti, Zr, Hf,
V, Nb, and Ta) are formed when a plasma with high
hydrocarbon content is heated by high-power laser radiation
[152 ± 157], while ordinary plasmochemical synthesis can
produce particles of the cubic carbide MCy. The atoms in

r,
m
O
cm

220

200

180

160

140
400 600 800 1000 T, K

TiC0.54

TiC0.58

TiC0.62

Figure 7. Reversible changes in the electrical resistivity r of the ordered

titanium carbides TiC0.54, TiC0.58, and TiC0.62 induced by heating, an

order ± disorder transition, and cooling.

70

C
p
,J

(m
o
lK

)ÿ
1

50

30

40

H
0 T
ÿ
H

0 2
9
8
,k

J
m
o
lÿ

1

30

950 1000 1050 1100
T, K

1150

Figure 8.Variations in the heat capacityCp�T� and enthalpyH0
T ÿH0

298 of

nonstoichiometric titanium carbide TiC0.62 in the vicinity of the reversible

order ± disorder Ti3C2 (space group C2221)$TiC0.62 phase transforma-

tion with Ttrans � 970� 10K and DHtrans � 1:8� 0:2 kJ molÿ1 [148].

16 A I Gusev Physics ±Uspekhi 43 (1)



metallocarbohedrens M8C12 form strong bonds; e.g., the
binding energy per atom of the Ti8C12 molecule amounts to
6.1 ± 6.7 eV, while for the carbide TiCwith aB1-type structure
this binding energy per atom is only somewhat larger and
equal to 7.2 eV [158]. The Ti8C12 compound is not shown in
the phase diagram of the Ti ±C system (Fig. 4), since it lies
beyond the boundaries of the ordering region under con-
sideration.

5.2.2 The Zr ± C system. This system contains only one
compound in the nonmetallic sublattice of which ordering
can occur, and this is nonstoichiometric zirconium carbide
ZrCy with a broad homogeneity region and a B1-type
structure. The phase diagram of the Zr ±C system (Fig. 9)
closely resembles that of the Ti ±C system. Calculations have
revealed [2, 43 ± 46] that at temperatures below 1200 K and
under conditions of thermodynamic equilibrium, ordered
phases Zr2C, Zr3C2, and Zr6C5 form in different concentra-
tion intervals. The disorder ± order ZrCy ±Zr2C transforma-
tion can occur as a second-order phase transition, while all the
other transformations, related to the ordering of nonstoichio-
metric zirconium carbide (Zr2C! Zr3C2, Zr3C2 ! Zr6C5,
and Zr6C5 ! ZrCy), are first-order phase transitions. The
direct disorder ± order ZrCy ! Zr3C2 transformation is
possible only in a narrow range of compositions, ZrC0.505 ±
ZrC0.522, atT � 1217K (see Fig. 9).When the carbon content
in ZrCy is different, the Zr3C2 superstructure can form only as
a result of the order ± order phase transition Zr2C! Zr3C2

or Zr6C5 ! Zr3C2. Note also that in the ordering region of
zirconium carbide at T � 1216:7 K and y � 0:524 there is a
peritectoid transformation, Zr3C2 � ZrCy ! Zr6C5 (see the
inset in Fig. 9).

Experiments have revealed the existence in zirconium
carbide near the lower boundary of the homogeneity range
in the interval ZrC0.63 ± ZrC0.74 of cubic (space group Fd3m)

[34, 35] and trigonal (space group R�3m) [41] ordered phases,
which can be identified as superstructures on the basis of
Zr2C. For zirconium carbide ZrC0.63, the temperature of
transition to the cubic (space group Fd3m) ordered phase is
1170 K [35], which is in good agreement with the calculated
phase diagram of the Zr ±C system (see Fig. 9). Studies of the
electrical resistivity of ZrC0.70 in the 300 ± 1500K temperature
range [42] have shown that at a heating and cooling rate of 2K
per minute there is a weak jump in electrical resistivity at a
temperature in the 1330 ± 1350 K range. According to Obata
and Nakasawa [42], this jump corresponds to the transition,
upon cooling, from the high-temperature disordered state to a
low-temperature ordered state; the ordered phase has a cubic
structure with a doubled (compared to that of disordered
zirconium carbide) lattice parameter. The space group and
the type of structure of the ordered zirconium carbide were
not determined by Obata and Nakasawa [42]. Lorenzelli and
de Dieuleveult [159] suggested that the ordered phase of
zirconium carbide has a structure of the ThC0.76 type and is
formed in the interval ZrC0.69 ± ZrC0.79, and that its stoichio-
metric composition corresponds to ZrC0.75. The validity of
this statement on the strict stoichiometric composition
ZrC0.75 of the ordered phase is doubtful.

According to de Novion et al. [36] and Lipatnikov et al.
[39], in the Ti ±C system, which is similar to the Zr ±C system,
a superstructure of the M3X2 is formed. We may, therefore,
expect that the ordered phase Zr3C2 also forms in the Zr ±C
system. However, discovering the ordered phases Zr3C2 and
Zr6C5 of the nonstoichiometric carbide ZrCy (whose exis-
tence was predicted theoretically in Refs [43, 44]) requires
conducting thorough structural investigations of this com-
pound.

The values of Ttrans, DStrans, and DHtrans calculated for the
first-order phase transitions Zr2C ±Zr3C2, Zr3C2 ±Zr6C5, and
Zr6C5 ±ZrCy, which are related to the ordering of ZrCy, can
be found in Ref. [26]. Note that for zirconium carbide ZrCy

with y � 0:52ÿ0:54 the order ± order and order ± disorder
transition temperatures are approximately 250 K higher
than those of similar transitions in titanium carbide; for
y4 0:6 the transition temperatures for ZrCy are approxi-
mately 100 K higher than those for TiCy. The heats of the
order ± order and order ± disorder transitions in zirconium
carbide are, on the average, 20 ± 25% higher than in titanium
carbide.

In 1992, Guo et al. [154] and Wei et al. [155] obtained the
compound Zr8C12 in the Zr ±C system. This compound has
no homogeneity range, belongs to the group of M8C12

metallocarbohedrens, and is similar in structure to the
molecular cluster Ti8C12, which was described in Section
5.2.1 devoted to the Ti ±C system.

5.2.3 The Hf ±C system. In the disordered state, in the Hf ±C
system there is only one compound on the basis of which
ordering can take place, and that is the nonstoichiometric
hafnium carbide HfCy with a B1-type structure (NaCl) and a
fairly wide homogeneity range. According to Refs [46, 47],
Hf3C2 and Hf6C5 phases can form in the process of ordering
of this hafnium carbide under conditions of thermodynamic
equilibrium (Fig. 10). The ordered phase of type M2C is not
formed in hafnium carbide, since the carbon content in such a
phase is beyond the lower boundary of the homogeneity
region of disordered hafnium carbide HfCy. According to
Refs [2, 14, 28, 160], at the lower boundary of the homo-
geneity range the composition of hafnium carbide isHfC0.54 ±
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HfC0.56, while according to the calculations done in Ref. [47]
at 1000 K the lower boundary of the homogeneity range of
disordered cubic hafnium carbide corresponds to HfC0.54.
The phase diagram of the Hf ±C system (see Fig. 10) also
contains a new compound Hf8C12 (which belongs to the

M8C12 group of metallocarbohedrens) discovered by Guo et
al. [154] and Wei et al. [155].

Calculations of the phase diagram of the Hf ±C system
have shown that themain ordered phase of nonstoichiometric
hafnium carbide is the Hf6C5 phase with a broad homo-
geneity region; the Hf3C2 phase has a narrower homogeneity
range HfC0.65 ±HfC0.70, is a lower-temperature phase in
comparison to Hf6C5, and can form only as a result of the
sequential transformations HfCy ! Hf6C5 ! Hf3C2 (see
Fig. 10). The formation of the Hf3C2 and Hf6C5 phases
occurs as a first-order phase transition and is accompanied
by a thermal effect DHtrans. The values of Ttrans, DStrans, and
DHtrans for the phase transformations associated with order-
ing of the nonstoichiometric cubic hafnium carbide HfCy are
listed in Table 5.

Figure 10 shows that the ordered phases of hafnium
carbide form below 800 K. When T < 800 K, the diffusion
rate is low and experimentally it is extremely difficult to
achieve an equilibrium ordered state in the Hf ± C system via
prolonged annealing. It seems logical to assume that the
prolonged absence of experimental data on ordering of
hafnium carbide in the literature is an indication that
achieving an equilibrium disordered state is difficult and
that studying the structure of ordered phases by X-ray and
neutron diffraction is virtually impossible. Indeed, in X-ray
experiments the relative intensity of possible superlattice
reflections is very low because of the large difference in the
scattering amplitudes for hafnium and carbon atoms; in
neutron-diffraction experiments the high absorption of
neutrons by massive hafnium nuclei leads to a substantial
drop in the overall intensity of the diffraction spectrum, with
the result that it is almost impossible to determine the
superlattice reflections. Note that studying the distribution
of atoms in the crystal lattice of HfCy by NMR methods is
also impossible, since themost abundant isotopes of hafnium,

HfCy

HfCy+C

HfCy+LiqLiq+HfCy

a-Hf+Hf3C2

a-Hf+Hf6C5
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Hf6C5
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4000

3500
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Figure 10. Equilibrium phase diagram of the Hf ±C systemwith allowance

for atomic ordering of the nonstoichiometric cubic hafnium carbideHfCy.

The compound Hf8C12 has no homogeneity range and is not an ordered

phase of hafnium carbide HfCy. The position of the phase boundaries

beyond the ordering region at y < 1:2 is depicted in accordance with

Rudy's data [94].

Table 5. Thermodynamic characteristics of order ± order and order ± disorder phase transition in nonstoichiometric hafnium carbide HfCy.

y Hf3C2 ëHf6C5 Hf6C5 ëHfCy

Ttrans,
¬

DStrans,
J (mol ¬)ÿ1

DHtrans,
kJ molÿ1

Ttrans,
¬

DStrans,
J (mol ¬)ÿ1

DHtrans,
kJ molÿ1

0.62
0.63
0.64
0.65
0.66
0.68
0.70
0.72
0.73
0.74
0.75
0.76
0.78
0.80
0.82
0.83
0.84
0.85
0.86
0.88
0.90
0.92
0.94
0.95

ì
ì
775
767
758
734
700
641
589
511
363
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
ì
0.77
0.89
1.02
1.28
1.46
1.47
1.37
1.11
0.73
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
ì
0.59
0.68
0.77
0.94
1.02
0.94
0.81
0.57
0.26
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

805
803
801
799
797
792
785
778
774
769
764
759
747
731
712
697
688
673
656
614
559
486
392
335

0.44
0.52
0.60
0.69
0.78
0.98
1.19
1.42
1.54
1.67
1.9
1.91
2.14
2.33
2.44
2.42
2.40
2.31
2.18
1.81
1.38
0.98
0.63
0.49

0.36
0.42
0.48
0.55
0.62
0.77
0.94
1.11
1.19
1.28
1.37
1.45
1.60
1.70
1.73
1.69
1.65
1.55
1.43
1.11
0.77
0.47
0.25
0.17
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180Hf, 176Hf, and 174Hf, and carbon, 12C, have nuclei with
zero spin, or zero magnetic moments.

It is only recently that the first experimental study of
ordering in hafnium carbide HfCy by the magnetic suscept-
ibility method took place [48, 161, 162]. The results in Ref.
[161] suggest that the Hf3C2-type phase is formed within a
range of compositions that is wider than that calculated in
Refs [46, 47]: from HfCy (with 0:62 < y < 0:71) to HfC0.78,
while the range of existence of the Hf6C5 phase is no wider
than 0:80 < y < 0:87. The results of Ref. [161] do not allow
the determination of whether the formation of the Hf3C2

phase involves the formation of an intermediate phase,
Hf6C5, or whether the process begins directly from HfCy,
since the temperature interval between two successive
measurements of w is too large and the accuracy of measuring
w is too low to fix an intermediate phase with a temperature
range of existence no wider than 30 ± 50 K [from approxi-
mately 760 to 806 K (see Fig. 10)]. The temperatures,
measured by Zyryanova et al. [48, 161, 162], of the equili-
brium disorder ± order transition HfCy ±Hf3C2 for HfC0.71

and HfC0.78 are 870 ± 980 K and 970 ± 1000 K, respectively.
This is approximately 100 ± 110 K and 220 ± 230 K higher
than the disorder ± order transition temperatures for HfC0.71

and HfC0.78 calculated in Ref. [46].
The study of the magnetic susceptibility of nonstoichio-

metric hafnium carbide HfCy and the calculation of short-
range order parameters [48, 161] corroborate the formation of
ordered phases of the Hf3C2 and Hf6C5 types. According to
the data of Zyryanova et al. [48, 161, 162], the main ordered
phase of hafnium carbide is Hf3C2, which forms as a result of
a first-order phase transition.

5.3 Phase diagrams of the V ±C, Nb±C,
and Ta ±C systems
5.3.1 The V ±C system.This is one of the best-studied systems.
However, as far as ordering is concerned, the phase diagram
of this system established by Carlson et al. [96] repeats the
estimates made by Billingham et al. [55], while Huang [163]
did not discuss ordering at all, with the result that the
phenomenon was not reflected in the V ±C diagram. The
main difficulty in building the phase diagram of the V ±C
system consists in the fact that the upper boundary of the
homogeneity range of disordered cubic vanadium carbide
VCy is represented by the carbide VC0.875 rather than the
compound MC1.0 of stoichiometric composition (as is the
case with other transitionmetals). The unusual position of the
upper boundary of the homogeneity range of the carbide VCy

explains a boundary effect that manifests itself in the
formation of an ordered phase of the M8C7 type, which does
not exist in other carbides.

New experimental data [51, 52] on the temperatures and
heats of the phase transformations V6C5 $ VCy and
V8C7 $ VCy made it possible [164, 165] to take into account
the ordering of the carbide VCy in the phase diagram of the
V ±C system.

Phase equilibria in the region of ordering of the non-
stoichiometric cubic vanadium carbide VCy were calculated
by the OPF method [2].

The first variant of these calculations assumed that the
ordered phase V8C7 has no homogeneity range. Indeed,
single-phase samples with a cubic superstructure V8C7 form
only within the composition range VC0.87 ± 0.875, while at a
lower carbon content (0:83 < y < 0:875) samples with the
ordered phase V8C7 always contain the V6C5 phase, which

has a broad homogeneity range [5, 52, 58, 166]. Moreover,
according to the data of Volkova and Gel'd [121], Emmons
and Williams [167], and Shacklette and Williams [168], the
temperature of the V8C7 $ VCy transition is virtually
independent (within experimental errors) of the composition
of the carbide VCy. To allow for the specific features of the
ordered phase V8C7 (VC0.875), which has no homogeneity
range, the free energy of this phase was written not in the
standard form (12) but in the form

FV8C7�VC0;875��T � � F�T � ÿ TSc � DHtrans

Ttrans
�Tÿ Ttrans� ; �33�

where F�T ��F0�T � � xF1�T �� x2F2�T � at x� 0:875 (the
parameters F0�T �, F1�T �, and F2�T � are the same as for the
disordered carbide VCy), Sc � 3:132� 10ÿ3 kJ molÿ1 is the
configurational entropy of the carbide VC0.875, and
DHtrans � 3 kJ molÿ1 and Ttrans � 1380 K are the heat and
temperature of the V8C7 ! VC0:875 transition estimated on
the basis of the experimental data of Lipatnikov et al. [51, 52],
Volkova and Gel'd [121], and Emmons and Williams [167].

The phase boundary that separates the homogeneity
region of the disordered carbide VCy and the two-phase
region VCy � V8C7 was found by solving the equation

FV8C7�VC0;875��T � � F�y; 0;T � ÿ �yÿ yb� qF�y; 0;T �qy
; �34�

where yb � 0:875, and

F�y; 0;T � ÿ �yÿ yb� qF�y; 0;T �qy

� F0�T � � ybF1�T � � y�2yb ÿ y�F2�T �

� kBT

�
ln�1ÿ y� � yb ln

y

1ÿ y

�
: �35�

Similarly, the position of the phase boundary that
separates the homogeneity region of the ordered phase
V2tC2tÿ1 (V6C5) and the two-phase region V2tC2tÿ1 � V8C7

is described by the equation

FV8C7�VC0;875��T �� F�y; Z;T � ÿ �yÿ yb� qF�y; Z;T �qy
; �36�

where yb � 0:875, and

F�y; Z;T � ÿ �yÿ yb� qF�y; Z;T �qy

� F0�T � � ybF1�T � � y�2yb ÿ y�F2�T �

� a�s�

4t 2
Z2equil F2�T � � kBT

2t

�
ln n

yb
1 �1ÿ n1�1ÿyb

h i
� �2tÿ 1� ln �nyb

2 �1ÿ n2�1ÿyb
�	
: �37�

Here, the quantities n1, n2, Zequil, t, and a�s� refer to the phase
V2tC2tÿ1 (V6C5).

Phase equilibria with the participation of the lower
hexagonal carbide b-V2C (V2Cy) were calculated without
taking the homogeneity range of this carbide into account,
i.e., at a fixed carbon content y � 0:5. The calculations were
done by equation (31).

The phase diagram of the V ±C system is depicted in
Fig. 11. The calculations done in Ref. [165] show that there
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are three ordered phases, vis., V3C2, V6C5, and V8C7, that can
form because of ordering of the nonstoichiometric cubic
carbide VCy in different temperature and concentration
ranges.

The main ordered phase of vanadium carbide is V6C5,
which forms below 1485 K, and at 1100 K has a homogeneity
region extending from VC0.745 to VC0.831. This phase can also
be observed in two-phase regions, in view of which it exists in
almost the entire homogeneity region ofVCy (see Fig. 11). The
ordered phase V8C7 forms at a lower temperature, 1380 K,
and at 1330K canbe observed togetherwith theV6C5 phase in
the two-phase region extending fromVC0.83 to VC0.875, which
is in good agreementwith the experimental data ofArbuzov et
al. [58], Emmons andWilliams [167], andHiraga [169]. As the
temperature lowers, the two-phase region V6C5+V8C7 where
the ordered phase V8C7 exists narrows. The ordered phases
V6C5 and V8C7 form a eutectic with Te � 1331 K and
ye � 0:852; this result is very close to the estimate made by
Athanassiadis et al. [59], according to whichTe � 1300K and
ye � 0:852. The calculations also imply that under equili-
brium conditions in vanadium carbide there can form, via
the peritectoid reaction V2Cy � V6C5 ! V3C2, an ordered

phase V3C2 with a narrow homogeneity range (from VC0.667

toVC0.710 at 800K); no experimental evidence of this has been
found so far. According to the calculations, the range of
existence of the ordered phase V3C2 is close to the concentra-
tion range within which the orthorhombic phase z-V4C3ÿx is
actually observed. In the calculations of the ordering of the
carbide VCy the existence of the z-V4C3ÿx phase was ignored,
since the thermodynamic characteristics of this phase are
unknown. If the free energy of the z-phase at T < 1150 K is
smaller than that of the ordered phase V3C2, the V3C2 phase
cannot exist. Taking into account this fact, we depicted the
range of existence of the ordered phase V3C2 only tentatively.

The position of the z-V4C3ÿx phase is given in accordance
with the most recent experimental data of Wiesenberger et al.
[170]; earlier, the range of existence of this phase was depicted
only tentatively. The phase contains 37.9% carbon and has a
very narrow (about 0.4 at.%C) homogeneity range, VC0.605 ±
VC0.615. The lowest temperature at which the presence of this
phase was ever recorded after a 78-annealing was 1540 K
[170]. This is close to the calculated maximum temperature of
the disorder ± order transition VCy ±V6C5, which is equal to
1485 K and is assumed to be the lower temperature limit of
existence of the z-V4C3ÿx phase. The temperature of the
peritectoid decomposition of the z phase upon heating is
2150 K.

In the homogeneity region of the lower carbide V2Cy

(b-V2C) an ordered orthorhombic phase a-V2C is formed
[171]. The exact ordering temperature is unknown; according
toCarlson et al. [96] and Smith [172], it is below 1870K. So far
no structural phase transition a-V2C! V2Cy (b-V2C) has
been detected at temperatures as high as 1300 K in measure-
ments of the magnetic susceptibility of the ordered carbide a-
V2C in the 300±1300 K temperature range [173]. With
allowance for the results of Refs [172, 173], the temperature
of the a-V2C! V2Cy (b-V2C) order ± disorder phase transi-
tion can be tentatively set at roughly 1600 K in the phase
diagram of the V ±C system (see Fig. 11). In 1992, a new
compound, V8C12, was found in the V ±C system [154]. This
compound is not depicted in the phase diagram of the V ±C
system, since it occupies a position beyond the composition
range in question.

The phase diagram of the V ±C system clearly shows (see
Fig. 11) that the disorder ± order phase transitions in the
vanadium carbide VCy are of the first order. Such a
conclusion was drawn by Lipatnikov et al. [51, 52], who
studied the variation of the heat capacity of the VC0.79,
VC0.83, and VC0.87 carbides upon heating and cooling; a
typical temperature dependence of the heat capacity is
shown in Fig. 12. Indeed, the presence in the temperature
dependence Cp�T � of the VC0.79, VC0.83, and VC0.87 carbides
of jumps in the region of reversible disorder ± order transi-
tions and the fact that the peaks are symmetric rather than l-
shaped (see Fig. 12) suggest that the V6C5 $ VCy and
V8C7 $ VC0:875 transformations are first-order phase transi-
tions.Moreover, there is aweak hysteresis in the heat capacity
(see Fig. 12), which indicates the proximity to a first-order
phase transition.

The calculated values of Ttrans, DStrans, and DHtrans for the
phase transformations related to ordering in the nonstoichio-
metric vanadium carbide VCy are listed in Table 6. For the
sake of comparison, the experimental data of Lipatnikov et
al. [51, 52] onTtrans andDHtrans are also listed. For VC0.79, the
calculated temperature Ttrans and heat DHtrans of the
V6C5 ! VC0:79 transition are 1450 K and 2.84 kJ molÿ1,

V2Cy{+
VCy

V6C5+V8C7

Liq+VCy

2438K

2150KLiq+V2Cy

V+a-V2C

V

a-V2C

V+V2Cy

V2Cy

V3C2

+
V6C5

V2Cy

+
V3C2

V3C2

V6C5

z-V4C3ÿx
VCy+C

VCy

V6C5+V8C7

V6C5+C

V8C7+C

V2Cy+V6C5

Liquid

1331K

640K

2940K

1925K

� 1600K

1155K

1485K
1380K

1360K

4000

3500

T, K

3000

2500

2000

1500

1000

500

0 0.2 0.4 0.6 0.8 1.0 1.2
y=C/V

VCy

1485K

Ã VCy

+
C

V8C7

V6C5 V8C7+C

1380K

1340K
1360K

0.75 0.80 0.85 0.90 y

1500

1400

1300

T, KÂ VCy

1485K

1380K

1360K

V6C5

V8C7
+
C

VCy

+
C

1331K

0.75 0.80 0.85 0.90 y

1500

1400

1300

T, K

Figure 11. Equilibrium phase diagram of the V ±C system [165] with

allowance for atomic ordering of the nonstoichiometric cubic vanadium

carbide VCy (the phase boundaries beyond the ordering region are given in

accordance with the data of Carlson et al. [96] and Smith [172], and the

position of the z-V4C3ÿx phase is given according to the data of

Wiesenberger et al. [170]): V8C7, V6C5, and V3C2 are the ordered phases

of the cubic vanadium carbide VCy; and a-V2C is the ordered phase of the

lower hexagonal vanadium carbide V2Cy (b-V2C). Inset (a) depicts an

enlarged area of the ordering region near the upper boundary of the

homogeneity range of VCy (calculations were carried out under the

assumption that the V8C7 phase has no homogeneity range). Inset (b)

depicts an enlarged area of the ordering region ofVCy calculated under the

assumption that the V8C7 phase has a narrow homogeneity range.
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respectively; the experimental value of DHtrans (see Table 6) is
somewhat smaller since, according to the calorimetric
measurements of Lipatnikov et al. [51], a small fraction of
the z-V4C3ÿx phase is formed in VC0.79.

An additional model calculation was carried out to
establish the shape of the phase diagram of the V ±C system
for the case where the V8C7 phase has a narrow homogeneity
range. In this variant of the calculations the free energy of
ordering of the V8C7 phase was represented in the form

FV8C7�VC0:875��T � � F�T � ÿ TSc

� DHtrans�y�
Ttrans�y�

�
Tÿ Tmax

trans�a� by� cy2�� ; �38�

where F�T ��F0�T �� xF1�T �� x2F2�T � at x� 0:875 (the
parameters F0�T �, F1�T �, and F2�T � are the same as for the

disordered carbide VCy); Sc � 3:132� 10ÿ3 kJ molÿ1 is the
configurational entropy of the carbide VC0.875;
DHtrans�y�=Ttrans�y� � DStrans � 2:174 J (mol K)ÿ1, Tmax

trans �
1380 K is maximum temperature of the V8C7 ! VCy

transition corresponding to the carbide VC0.875;
a � 40:7455, b � ÿ93:367, and c � 54:793.

The phase boundaries of the two-phase region
VCy � V8C7 in the case where the V8C7 phase has a
homogeneity region were found by solving the equations

y21F2�T � ÿ kBT�1ÿ y1� � y22F2�T � ÿ kBT ln�1ÿ y2�
ÿ DStrans

�
Tÿ �aÿ cy22�Tmax

trans

�
;

y1�2ÿ y1�F2�T � � kBT ln y1 � y2�2ÿ y2�F2�T �
� kBT ln y2 � DStrans

�
Tÿ �a� b� 2cy2 ÿ cy22�Tmax

trans

�
:

�39�
Similarly, the phase boundaries of the V6C5+V8C7 two-

phase region in the case where the V8C7 phase has a
homogeneity range were found by solving the equations

y21F2�t� ÿ a�s�

4t 2
Z2equilF2�T � ÿ kBT

2t

�
ln�1ÿ n

� d�
1 �

� �2tÿ 1� ln�1ÿ n
� d�
2 �
�
Z�Zequil � y22F2�T �

ÿ kBT ln�1ÿ y2� ÿ DStrans

�
Tÿ �aÿ cy22�Tmax

trans

�
;

y1�2ÿ y1�F2�T � � a�s�

4t 2
Z2equilF2�T � � kBT

2t

�
ln n

�d�
1

� �2tÿ 1� ln n�d�2

�
Z�Zequil � y2�2ÿ y2�F2�T �

� kBT ln y2 � DStrans

�
Tÿ �a� b� 2cy2 ÿ cy22�T max

trans

�
:
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Figure 12. Variations in the heat capacity Cp of annealed vanadium

carbide VC0.87 for heating (1) and cooling (2). The symmetric shape of

the peaks and the hysteresis of heat capacity in the vicinity of the order ±

disorder transition temperature suggest that the phase transition is first-

order [52].

Table 6. Temperatures Ttrans (K), entropies (J (mol K)ÿ1), and heats DStrans (kJ molÿ1) of the order ± order and order ± disorder phase transitions in
nonstoichiometric vanadium carbide VCy.

y V3C2 ëV6C5

(theory [52, 165])
V6C5 ëVCy V8C7 ëVCy

Ttrans DStrans DHtrans Ttrans DStrans

(theory
[52, 165])

DHtrans Ttrans DStrans

(theory
[52, 165])

DHtrans

Theory
[52, 165]

E xp e r i -
ment
[51, 52]

Theory
[52, 165]

Experiment
[51, 52]

Theory
[52, 165]

E xp e r i -
ment
[51, 52]

Theory
[52, 165]

Experiment
[51, 52]

0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.875

1138
993
728
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

1.38
1.17
0.82
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

1.57
1.16
0.60
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
ì
ì
ì
1481
1466
1450
1433
1413
1391
1366
1338
1307
1272
ì
ì

ì
ì
ì
ì
ì
ì
1430� 5
ì
ì
ì
1442� 5
ì
ì
ì
ì
ì

ì
ì
ì
ì
1.75
1.85
1.96
2.05
2.13
2.19
2.21
2.20
2.15
2.06
ì
ì

ì
ì
ì
ì
2.59
2.72
2.84
2.94
3.01
3.04
3.02
2.95
2.81
2.62
ì
ì

ì
ì
ì
ì
ì
ì
2.16� 0.1
ì
ì
ì
1.26� 0.1*
ì
ì
ì
ì
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
1380

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
1334� 5
ì
ì
ì
1355� 5
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
2.17

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
3.00

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
0.70� 0.1*
ì
ì
ì
2.30� 0.1
ì

*For transformations in the carbide VC0.83 initiated by cooling, Lipatnikov et al. [51] gives the value of the overall thermal effect DHtrans � 2:11 kJ
molÿ1. This thermal effect incorporates the thermal effects of two transformations: VC0:83 ! V6C5 (DHtrans � 1:37 kJ molÿ1), and VC0:83 ! V8C7

(DHtrans � 0:75 kJ molÿ1).
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Here the quantities n1, n2, t, Zequil, and a�s� refer to the ordered
phase V6C5.

The portion of the phase diagram of the V ±C system
calculated with allowance for the existence of a homogeneity
range of the V8C7 phase is depicted in inset (b) in Fig. 11.
According to the calculations, the homogeneity range of the
V8C7 phase is very narrow: its maximum width is from
VC0.852 to VC0.875 at 1340 K. As the temperature drops
below 1340 K, the homogeneity range of the V8C7 phase
narrows even more. The V6C5 and V8C7 phases form a
eutectic at 1340 K with ye � 0:8476. The two-phase region
V6C5+V8C7, which exists at T < 1340 K, is almost twice as
narrow as in the first variant of the calculation. In all other
respects, however, the phase diagram of the V ±C system is
the same. The final solution of the problem of whether the
V8C7 phase has a homogeneity range requires very thorough
experimental investigations of the structure of vanadium
carbide in the narrow composition range VC0.85 ±VC0.875.

On the whole, the calculations have shown that three
phases are formed as a result of ordering of vanadium
carbide: a monoclinic or trigonal ordered phase V6C5 with a
homogeneity range VC0.75 ±VC0.83 (at 1100 K); a cubic
ordered phase V8C7, which may exist together with the V6C5

phase in the two-phase region; and an ordered phase V3C2,
which is formed below 1150 K and has a very narrow
homogeneity range. The temperatures of the V6C5 $ VCy

and V8C7 $ VC0:875 transformations are 1400 ± 1450 K and
1360 ± 1380 K, respectively.

5.3.2 The Nb ±C system. The first variant of the phase
diagram of the Nb±C system in which the ordered phase
Nb6C5 was depicted tentatively was suggested by Smith et al.
[174]. A more exact and correct phase diagram of the Nb ±C
system was built in Refs [26, 27] on the basis of the
calculations done in Ref. [43].

The Nb ±C system contains not only the cubic carbide
NbCy with an extended homogeneity range but also a lower
hexagonal carbide b-Nb2Cwith a narrow homogeneity range,
whose presence was ignored in the calculations done in Refs
[43 ± 46]. The calculated phase diagram of the Nb ±C system
in which ordering of the nonstoichiometric niobium carbide
NbCy is observed is depicted in Fig. 13; the position of the
phase boundary beyond the ordering range is depicted in
accordance with the data of Rudy [94] and Storms et al. [175].

As Fig. 13 shows, below 900 K under conditions of
thermodynamic equilibrium there exists an ordered phase,
Nb3C2, with a very narrow homogeneity region
(0:67 < y < 0:71 at 400 K). There are still no experimental
indications of the existence of an orderedM3C2-type phase in
niobium carbide. It is extremely difficult to detect this low-
temperature phase since below 900K the diffusionmobility of
the atoms is low, and achieving a thermodynamically
equilibrium structural state requires prolonged annealing of
the NbCy sample; moreover, the composition of the non-
stoichiometric carbide NbCy must correspond exactly to the
concentration range of existence of the superstructure Nb3C2.

The main ordered phase of niobium carbide is the Nb6C5

phase, which forms as a result of a disorder ± order transition
below 1594K and has a sufficiently wide range of existence: at
T � 800 K the ordered phase Nb6C5 has a homogeneity
region 0:804 y4 0:88. The results of calculations for the
Nb6C5 phase are in good agreement with the experimental
data described in Refs [54, 63, 67 ± 69, 176]. The Ttrans

temperature for the carbide NbC0.63 measured in the

experiments is 1304 K [67 ± 69]. When the temperature is
above 800 K, the calculated range of existence of the Nb6C5

superstructure is somewhat larger than the one obtained in
experiments [14, 63, 67 ± 69]. The ordered phase Nb6C5 was
also observed by Lewis et al. [62], Christensen [64], Rempel' et
al. [65, 66], and Khaenko and Sivak [70].

The transformation of the disordered phaseNbCy into the
ordered phase Nb6C5 at the transition temperature Ttrans is
accompanied by a jump in the long-range order parameter Z
from 0 to Ztrans, which is an indication that the disorder ±
order transition is of the first order. As the temperature
decreases from Ttrans to absolute zero, the long-range order
parameter of the carbide gradually increases from Ztrans, and
at 300 K it almost reaches Zmax�y� (Fig. 14). At the
temperatures of the Nb3C2 ±Nb6C5 and Nb6C5 ±NbCy

transitions, the temperature dependence of the free energy,
F�T�, exhibits a break, while the temperature dependence of
the enthalpy and entropy exhibits pronounced jumps char-
acteristic of first-order phase transitions. The calculated
values ofTtrans, DStrans, and DHtrans for the phase transforma-
tions related to the ordering of the nonstoichiometric cubic
niobium carbide NbCy are listed in Table 7.

The calculated values of the transition temperatures are in
good agreement with the values ofTtrans found experimentally
by differential thermal analysis [65, 67]. For NbC0.81 and
NbC0.83, the calculated temperatures of the Nb6C5 ±NbCy

transition are 1375 and 1288K, respectively; the experimental
values of Ttrans are 1258� 10 and 1304� 10 K, respectively.
According to Venables and Meyerhoff [176] and Dy and
Williams [177], the experimental values of Ttrans for the
order ± disorder transition Nb6C5 ±NbC0.83 are 1298� 25
and 1303� 50 K, respectively. The neutron-diffraction

Nb2Cy{+
NbCy

Liq+NbCy

NbCy+Liq

2800K

900K

Liq+b-Nb2C

Nb+b-Nb2C

Nb b-Nb2C

b-Nb2C
+
Nb3C2 Nb6C5

+
Nb3C2

Nb3C2

Nb6C5

z-Nb4C3ÿx

NbCy+CNbCy

NbCy{+
Nb6C5

b-Nb2C
+
Nb6C5

Liquid

3570K

2610K

1850K

1594K

4000

3500

T, K

3000

2500

2000

1500

1000

500

0 0,2 0,4 0,6 0,8 1,0 1,2
y=C/Nb

Figure 13.Equilibrium phase diagramof theNb ±C systemwith allowance

for atomic ordering of the nonstoichiometric cubic niobium carbide NbCy

(Nb3C2 and Nb6C5 are ordered phases of NbCy). The position of the

rhombohedral phase z-Nb4C3, which is not an ordered phase of NbCy, is

depicted in accordance with the data of Wiesenberger et al. [170].
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study conducted by Landesman [178] has shown that for
NbC0.83 the temperatures Ttrans of the order ± disorder and
disorder ± order transformations are 1298� 5 and 1273� 10
K, respectively. Niobium carbide NbCy is the first nonstoi-
chiometric compound in which disorder±order transforma-
tions were detected [179] by measuring the magnetic suscept-
ibility (Fig. 15).

The phase diagram of the Nb ±C system (see Fig. 13)
depicts, with the use of the data of Wiesenberger et al. [170],
the position of the z-Nb4C3ÿx phase existing at temperatures
from 1600 to 1850 K. The homogeneity range of the z-
Nb4C3ÿx phase extends from 40.1 to 40.7 at.% C. The
rhombohedral carbide z-Nb4C3 [180] is not an ordered
phase of the nonstoichiometric niobium carbide NbCy. Note
that the calculated concentration range of existence of the
ordered phase Nb3C2 is close to the concentration range in
which the z-Nb4C3ÿx phase is actually observed. In the
calculations of the ordering of NbCy the existence of the z-
Nb4C3ÿx phase was ignored, since the thermodynamic
characteristics of this phase are unknown.

Wei et al. [157] used plasmochemical gas-phase synthesis
combined with laser heating to synthesize an entirely new

compound, Nb8C12, in the Nb ±C system (similar synthesis
was carried out in the Ti ±C, Zr ±C, andHf ±C systems). This
compound is a molecular cluster and belongs to the group of
metallocarbohedrens M8C12. It is stable below 1500 K; in the
phase diagram of the Nb ±C system given in Fig. 13 this
compound is not shown, since it exists at y � C=Nb > 1:2.

As noted earlier, the disordered state of highly nonstoi-
chiometric carbides can easily be preserved as a metastable
state at temperatures below Ttrans. The analysis of the
difference DCp�T� of the heat capacities of a nonstoichio-
metric compound in the equilibrium nonstoichiometric state
and the quenched nonequilibrium disordered states [181, 182]
has shown that DCp�T� may change sign upon temperature
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Table 7. Thermodynamic characteristics of order ± order and order ± disorder phase transition in the nonstoichiometric niobium carbide NbCy and
nonstoichiometric tantalum carbide TaCy.

y Nb3C2 ëNb6C5 Nb6C5 ëNbCy Ta6C5 ëTaCy

Ttrans,
¬

DStrans,
J (mol ¬)ÿ1

DHtrans,
kJ molÿ1

Ttrans,
¬

DStrans,
J (mol ¬)ÿ1

DHtrans,
kJ molÿ1

Ttrans,
¬

DStrans,
J (mol ¬)ÿ1

DHtrans,
kJ molÿ1

0.74
0.75
0.76
0.78
0.80
0.82
0.83
0.84
0.85
0.86
0.88
0.90
0.92
0.94
0.95

761
505
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

0.81
0.67
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

0.62
0.34
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
1575
1547
1485
1415
1333
1272
1239
1186
1129
1004
864
711
549
463

ì
0.70
0.76
0.88
1.01
1.11
1.16
1.17
1.18
1.16
1.07
0.92
0.75
0.56
0.47

ì
1.10
1.17
1.31
1.42
1.48
1.47
1.45
1.40
1.31
1.07
0.79
0.53
0.31
0.22

ì
ì
ì
ì
1399
1325
1270
1239
1190
1137
1020
887
738
576
489

ì
ì
ì
ì
1.10
1.22
1.26
1.28
1.28
1.26
1.15
0.98
0.79
0.58
0.49

ì
ì
ì
ì
1.54
1.61
1.60
1.58
1.52
1.43
1.17
0.87
0.58
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variations. Figure 16 depicts the calculated [2, 181] tempera-
ture curvesDCp�T� for the equilibrium ordered and quenched
disordered carbide NbC0.85 (at T < Ttrans � 1186 K) and for
the equilibrium ordered carbide of the same composition at
T > Ttrans. At 300 K, the difference DCp > 0, but, as the
temperature grows, the difference decreases, and at
900 K< T < Ttrans it is already negative. Clearly, at Ttrans

the heat capacity undergoes a discontinuity, which is an
indication that the order ± disorder phase transition is of the
first order.

5.3.3 The Ta ±C system.Nonstoichiometric tantalum carbide
TaCy is complex object for experimental studies of ordering,
with the result that building the phase diagram of the Ta ±C
system with allowance for ordering of the carbide TaCy done
in Refs [43 ± 46] by theoretical means has attracted much
attention. In addition to the cubic carbide TaCy, which has a
wide homogeneity range, the Ta ±C system contains a lower
hexagonal carbide a-Ta2Cy with a narrow homogeneity
range. Since the literature contains only the thermodynamic
characteristics for the stoichiometric composition of the
lower tantalum carbide, i.e., for a-Ta2Cy, equation (31) was
used to calculate the phase equilibria involving this com-
pound.

Earlier we noted that, generally speaking, ordered phases
of types M2X, M3X2, M4X3, M6X5, and M8X7 may form
(from the crystallographic viewpoint) in a nonstoichiometric
compound MXy. To determine the ordered phases that can
actually form in tantalum carbide TaCy, the free energies of
disordered tantalum carbide TaCy and the possible ordered
phases Ta2C, Ta3C2, Ta4C3, Ta6C5, and Ta8C7 (Fig. 17) were
calculated at 700 and 1600 K using equations (3), (4), (10) ±
(13), and (17). The ordered phase Ta4C3 cannot exist at 700K,
since in the interval 0:54 y4 1:0 its transition temperature
Ttrans < 600 K. At 700 K, the ordered phases Ta2C, Ta3C2,
and Ta6C5 and the disordered carbide TaCy (with y > 0:96)
have the smallest free energy in different concentration
ranges. The free energy of the possible ordered phase Ta8C7

is larger than the free energies of the other ordered phases in
the entire interval 0:54 y4 1:0. Above 1430 K only the
disordered phase can exist over the entire homogeneity
region.

The points I and II on the vertical axis (at y � 0:5) in
Fig. 17 correspond to the free energies 0:5Fa-Ta2C at 700 and
1600 K, respectively. At 700 K the tangent to the free energy
F�y; 700 K) passing through point I determines the width of
the possible two-phase region (a-Ta2C� Ta2tC2tÿ1 or a-
Ta2C+TaCy) and the free energy of the two-phase mixture.
Clearly, at 700 K the two-phase mixture (a-Ta2C+Ta6C5)
has the lowest free energy, with the result that no ordered
phases of type Ta2C or Ta3C2 can exist.

The equilibrium phase diagram of the Ta ±C system
calculatedwith allowance for atomic ordering of nonstoichio-
metric cubic tantalum carbide TaCy is depicted in Fig. 18. The
position of the phase boundary beyond the ordering range is
given according to Storms [93]. The position of the rhombo-
hedral phase z-Ta4C3ÿx [180] is depicted according to
Wiesenberger et al. [170]. This z phase is not an ordered
phase of the carbide TaCy, has a narrow homogeneity range
(carbon content ranges from 38.2 to 39.0 at.%), and is formed
below 2450K [170]. The free energy of z-Ta4C3ÿx is unknown,
so that in calculations of the phase diagram of the Ta ±C
system the existence of this phase is ignored. Not so long ago
Guo et al. [154] and Wei et al. [155] synthesized a new
compound Ta8C12 in the Ta ±C system. This compound is a
molecular cluster and belongs to the group of metallocarbo-
hedrens M8C12 (M = Ti, Zr, Hf, V, Nb, Ta, and Cr). The
relative carbon content in the Ta8C12 compound (y � 1:5) is
beyond the limits of the part of the diagram considered here
and, therefore, is not shown in the phase diagram of the Ta ±
C system given in Fig. 18.

Figure 18 shows that the only ordered phase of non-
stoichiometric tantalum carbide is the Ta6C5 phase. It has a
narrower homogeneity region than the similar ordered phase
Nb6C5. Venables and Meyerhoff [176] studied the carbide
TaC0.83 by the electron-diffraction method and detected a
diffuse band whose geometry corresponds to ordering of a
phase of the M6C5 type with a very small order parameter.
Rempel et al. [74 ± 76] and Lipatnikov et al. [183] used the
neutron-diffraction method to do the most thorough investi-
gation, which was actually the first of this type, of the
structure of the ordered tantalum carbide. Their studies
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showed that as a result of prolonged slow cooling of the
nonstoichiometric tantalum carbide TaCy from 1600 to 750K
there was formed an incommensurate ordered phase with
properties close to those of the known superstructures of the
M6C5 type. The studies of magnetic susceptibility conducted
by Lipatnikov et al. [72, 73] also corroborated the fact of
formation in tantalum carbide of an ordered M6C5-type
phase; for the carbides TaC0.83 and TaC0.85, the values of
Ttrans of the Ta6C5 ±TaCy transition found from magnetic-
susceptibility measurements are 1110 and 1130 K, respec-
tively.

The calculated values of Ttrans, DStrans, and DHtrans for the
phase transformations related to the ordering of the non-
stoichiometric cubic tantalum carbide TaCy are listed in
Table 7.

Measurements of the heat capacity of the nonstoichio-
metric tantalum carbide in the temperature range of 80 ±
300 K showed that the ordered carbides have a greater heat
capacity than the disordered carbides with the same carbon
content [181, 182]. Figure 19 depicts the variations of the free
energy F, the enthalpyH, the entropy S, and the heat capacity
of the tantalum carbide TaC0.83 near the temperature of the
order ± disorder Ta6C5 ±TaC0.83 transition. At the transition
temperature Ttrans � 1284 K, the free energy undergoes a
break, the temperatures curves of the enthalpy and entropy
exhibit jumps, and the temperature curve of the heat capacity
has a discontinuity, which is characteristic of first-order phase
transitions.

5.4 The Ti ±N system
There are two stable compounds in the Ti ±N system, the
nonstoichiometric titanium nitride TiNy with a B1-type base
structure (NaCl), which has a wide homogeneity range (from

TiN0.38 to TiN1.00 at T5 1350 K), and the lower tetragonal
(space group P42=mnm) titanium nitride e-Ti2N, which has
almost no homogeneity range and is not an interstitial
compound. The e-Ti2N nitride exists only below 1300 ±
1350 K [126]. Lengauer and Ettmayer [184] found that e-
Ti2N forms at the boundary of two phases, a-Ti and TiNy,
with no direct phase transformation of the nonstoichiometric
cubic titanium nitride TiN0.50 into the e-Ti2N phase being
possible. Lengauer and Ettmayer [185 ± 188] discovered two
new (probably metastable) high-temperature phases in the
Ti ±N system: Z-Ti3N2ÿx and z-Ti4N3ÿx. Both are trigonal
(rhombohedral), have a space group R�3m, and exist within
narrow temperature ranges, 1335 ± 1374Kand 1344 ± 1570K,
respectively [187]. The z-Ti4N3ÿx phase is isostructural to the
z carbides of vanadium, niobium, and tantalum. It should
particularly be noted that the Z-Ti3N2ÿx and z-Ti4N3ÿx
phases have no homogeneity ranges and are not ordered
phases of the cubic titanium nitride TiNy.

Calculations have revealed (see Ref. [47]) that in the
ordering of TiNy the ordered Ti2N, Ti3N2, and Ti6N5 phases
form in different temperature and concentration ranges
(Fig. 20). The positions of the phase boundaries beyond the
ordering range are shown in accordance with the data of
Wriedt and Murray [126], and the positions of the Z-Ti3N2ÿx
and z-Ti4N3ÿx phases are shown in accordance with the data
of Lengauer and Ettmayer [184, 185, 187]. The ordered phase
Ti2N has a narrow homogeneity range (TiN0.51 ± TiN0.53 at
1000 K and TiN0.52 ± TiN0.57 at 800 K); to the left and right of
the Ti2N phase, there are two-phase regions e-Ti2N+Ti2N
and Ti2N+Ti3N2, respectively. The direct disorder ± order
TiNy ±Ti2N transition is possible only for the nitride TiN0.51,
and the temperature of the TiN0.51 ± Ti2N transition is about
1068 K. The ordered Ti2N phase with a higher nitrogen
content, y > 0:51, forms as the temperature lowers as a result
of the following sequence of transformations: TiN0:511ÿ0:524!
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Ti3N2 ! Ti2N and TiN0:525ÿ0:570Ti6N5 ! Ti3N2 ! Ti2N.
According to the results of calculations, the main ordered
phase that can be formed in the cubic titanium nitride TiNy is
the Ti6N5 phase, which is formed as a result of the direct first-
order disorder ± order phase transition TiNy ±Ti6N5. We also
note that in the ordering range of the nonstoichiometric
titanium nitride TiNy there is a peritectoid transformation,
Ti3N2 � TiNy ! Ti6N5 at T � 1073:4 K and y � 0:524 (see
the inset in Fig. 20). The TiNy ±Ti2N transformation is a
second-order phase transition, while all the other disorder ±
order and order ± order phase transitions are of the first order.
The values of Ttrans, DStrans, and DHtrans for the disorder ±
order and order ± order phase transitions of the first order can
be found in Ref. [26].

The fact of the formation of the ordered tetragonal (space
group I41=amd) phase Ti2N (d0-TiN0.50) in the nitride TiNy

was established in the experiments of Lobier andMarcon [78]
and later corroborated by Nagakura and Kusunoki [79],
Christensen et al. [81], and Alamo and de Novion [189].
According to Alamo and de Novion [189], the temperature
of the transition Ti2N ±TiN0.50 is 1070 ± 1140 K and this
phase transition is of the first order. According to Etchessa-
har et al. [85], the ordered phase Ti2N has no homogeneity
region and its composition corresponds, in nitrogen content,
to TiN0.51; the transition from the disordered cubic nitride
TiNy to the ordered phase Ti2N takes place within the range
TiN0.5 ± TiN0.6 at 1070� 10 K. Below this temperature (at
roughly 1000 ± 1070 K) to the left and right of the ordered
phase with the composition TiN0.51 there are two-phase
regions e-Ti2N+Ti2N and Ti2N+TiNy, respectively.
According to the data of Lengauer and Ettmayer [84] on
thermal decomposition, the ordered phase Ti2N exists at
temperatures no higher than 1140 ± 1180 K.

The results of calculations (see Refs [40, 47]) of the phase
diagram of the Ti ±N system imply that the ordered phase
Ti2N has a small homogeneity region and that the presence of
the two-phase region Ti2N+TiNy at 1000K is possible only if
there is noway inwhich an equilibrium state can be reached in
which there are two more ordered phases of titanium nitride,
Ti3N2 and Ti6N5. The ordered phase Ti6N5 has yet to be
observed in experiments. However, the formation of the
superstructure Ti6N5 also follows from the results of calcula-
tions of Priem et al. [86, 138] done by the Monte Carlo and
cluster variation methods (Fig. 21). According to Priem [138],
the temperature of the transition Ti6N5 ±TiN0.83 is roughly
560 K; probably, this value of Ttrans is understated. Interest-
ingly, in their calculations of the phase diagram of the Ti ±N
system, Priem et al. [86, 138] arrived at a structure of the
ordered phase Ti6N5 in which the arrangement of atoms is
identical to that of the monoclinic (space group C2=m)
superstructure Nb6C5 [65 ± 69].

6. Phase diagrams of pseudobinary systems

An important feature of highly nonstoichiometric com-
pounds is that they form solid solutions by mutual substitu-
tion of atoms of the metal or the nonmetal or both
simultaneously. The degree of mutual solubility of nonstoi-
chiometric compounds varies within broad limits and
depends on the features of their crystalline and electronic
structure and on external conditions. The distribution of the
mutually substituting components in the lattice of solid
solutions can be either statistical or ordered.

Atomic ordering in the crystal lattice of a solid is an
isobaric process, so that the common approach in the
thermodynamic analysis of ordering is to use the free energy
F. Indeed, for solids the pressure p � 0. In this case the
internal (configurational) energy E of the lattice coincides
with the enthalpy H of the crystal, since H � E� pV � E
(pV � 0 at p � 0), and the isobaric potential (Gibbs free
energy G) coincides with the free energy F, since
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Figure 21. Portion of the phase diagram of the Ti ±N system calculated by

the Monte Carlo method with allowance for ordering of the nonstoichio-

metric titanium nitride TiNy in the TiN0.80 ± TiN0.87 range [86, 138]
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G � F� pV � F. The Gibbs free energy is used directly in the
thermodynamic analysis of equilibria with allowance for
possible changes in the aggregate state, e.g., melting or
solidification.

Experimental investigations of the phase diagrams of
pseudobinary systems formed by nonstoichiometric com-
pounds are extremely difficult. It is almost impossible to
find by experimental means the position of the liquidus line in
a system formed by compounds withmelting points of 3000K
and higher or to find in such a system a latent solid-phase
decomposition region. At the same time, calculations make it
possible to establish the shape of the phase diagram to a
sufficient degree of accuracy if the dependence on tempera-
ture and composition of the parameters describing the
interaction in the system is known. Systems based on
nonstoichiometric compounds do not obey the models of
ideal or regular solutions. For this reason, a model of
subregular solutions [190 ± 193], which takes into account
the dependence on temperature and composition of the
interchange energies in the different phases, was proposed in
order to calculate the phase diagrams of such systems.

With the pressure remaining constant, the Gibbs free
energy of the jth phase in a multicomponent system can be
written as follows:

DGj�fxig;T� �
X
i

xiDGj�xi � 1;T�

� RT
X
i

xi lnxi � Ge
j �fxig;T� ; �41�

where xi is the concentration of the ith component in the jth
phase, DGj �xi � 1;T� are the free energies of the components
of the system, and Ge

j �fxig;T� is the excess free energy of
mixing for the jth phase. The conditions of phase equilibrium
are invariant on adding to the free energy of mixing

DGmix
j �

X
i

xi DGj�xi � 1;T � � RT
X
i

xi lnxi

any linear function of the composition, with the result that
phase equilibria can be described by a relation linking the free
energies of mixing of the phases in equilibrium.

The extent to which a system differs from an ideal one is
determined by the value of the excess free energy of mixing
G e

j � Bj�fxig;T�
Q

x
�j�
i , where Bj�fxig;T� is the energy of

interchange in the jth phase, i.e., an energy parameter that
characterizes the interaction of the components in the jth
phase and is a function of composition and temperature. In a
binary system A±B the interchange energy is assumed to be
the difference of energies of pairwise interactions of unlike
(eAB) and like (eAA and eBB) atoms, i.e., the quantity
B � NA�eAB ÿ �eAA � eBB�=2�. In the ideal solution model,
the interchange energy Bj � 0, with the result that the excess
free energy of mixing of an ideal solution, G e

j , is zero. In the
regular solution model, the interchange energy Bj � const,
i.e., is a finite constant and does not depend on temperature
and composition. In accordance with this fact, when the
regular solution model is used, the excess free energy of
mixing of a binary solid solution is given by the relationship
G e

j � xAxBBj. Finally, in the more complicated model of
subregular solutions, the interchange energy Bj depends on
the temperature and composition of the solid solutions, so
that for a binary solution the excess free energy of mixing has
the form G e

j � xAxBBj�xA; xB;T�.

To calculate the phase boundaries in the subregular
solution model, one must know the interchange energies of
all the phases in equilibrium. According to Kaufman and
Bernstein [194], the interchange energy of the liquid phase,
Bl � e0 � ep, is the sum of the electron interaction parameter
e0 and the internal pressure parameter ep; the interchange
energy of the solid phase also includes (in addition to e0 and
ep) the parameter of electron interaction in the solid phase, e1,
and the parameter of elastic distortions of the crystal lattice,
e2, i.e., Bs � e0 � ep � e1 � e2.

In the subregular solution model [192], when calculating
the interaction parameters in pseudobinary carbide systems,
the quantity that characterizes the strength of the interatomic
bonds is assumed to be the atomization energy (enthalpy)E at,
i.e., the energy required to separate the compound into
individual atoms and to take these atoms to distances at
which their separation is infinite (in other words, the energy
spent on transferring the compound from the standard state
to an atomic gas). For the nonstoichiometric compound
MXy, the atomization energy E at�y� � DH0

s;M � yDH0
s;Xÿ

DH0
f;298�y� [195 ± 197], where DH0

s are the evaporation heats
of the components, and DH0

f;298�y� is the enthalpy of
formation of the compound MXy. According to Refs [198 ±
200], in this case the internal pressure parameter ep with
allowance for variations in the system's volumes due to
changes in temperature and composition can be written as
follows:

ep �
�Xn

i�1
xiVi�T �

��Xn
i�1

E at
i

Vi�T � ÿ n

�Yn
i�1

E at
i

Vi�T �
�1=n�

:

�42�
The internal pressure parameter in the liquid phase, ep, is
related to the difference in the cohesion energies of the atoms
in the components of the liquid solution and to the difference
in the molar volumes (or atomic volumes in the case of
elements) of these components. The parameter is always
positive and characterizes the degree of immiscibility of the
solution's components in the liquid state.

The electron interaction parameter for the liquid phase,
e0, is defined as follows:

e0 �
�Xn

i�1
xiVi�T �

��Yn
i�1

��
E at
i

Vi�T �
�1=2
ÿ
� P

E at
iP

Vi�T �
�1=2��2=n

:

�43�
Clearly, in two-component systems (binary or pseudobinary)
the parameter e0 is always negative.

In addition to e0 and ep, the interchange energy of the solid
phase contains the electron interaction parameter e1 and the
elastic distortion parameter e2. In liquids there are no elastic
distortions, thus the only quantity that can be directly related
to a solid ± liquid transition is the parameter e1, which is
negative (just as the parameter e0 is). The electron interaction
parameters e0 and e1 reflect the phenomenon of charge
redistribution between unlike atoms and the Coulomb
interaction of the atoms. The parameter e1 can be calculated
by the formula

e1 � ÿ 1

C 2
n

�Xn
i�1

xiVi�T �
�� Xk�n; i�nÿ1

i; k>1

���� DHi

Vi�T � ÿ
DHk

Vk�T�
����� :
�44�
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The parameter of elastic distortion of the crystal lattice,
e2, characterizes the deformation of the lattice of the solid
solution and the stresses generated in this solution by the
difference in molar volumes and elasticity moduli of the
components of the solid solution. The parameter e2 usually
introduces the largest positive contribution to the overall
energy of the system and is, therefore, responsible for solid-
solution decomposition. The parameter e2 can be calculated
by the formula

e2 � 1

3

�Xn
i�1

xi
Gi�T �
Vi�T �

��Xn
i�1

�
Vi�T �

�2 ÿ n

�Yn
i�1

Vi�T �
�2=n�

:

�45�
In equations (42) ± (45), xi is the concentration of the ith
component (in molar fractions); n is the number of compo-
nents in the phase; Vi�T � � Vi�300��1�3ai�Tÿ 300�� is the
molar (or atomic for elements) volume of the ith component
at the temperature T; the quantities Vi�300� and ai are the
molar volume of the ith component at 300 K and the average
linear thermal expansion coefficient of the ith component;E at

i

is the energy of atomization of the ith component (for
elements, the atomization energy coincides with the heat of
evaporation);DHi is the heat of melting of the ith component;
and Gi�T � � Gi�300��1ÿ bi�Tÿ 300�� and Gi�300� are shear
moduli of the ith component at the temperaturesT and 300K,
respectively, with bi being the average temperature coefficient
of the shear modulus of the ith component.

The electron interaction parameters e0 and e1 are negative
and describe the bonding part of the interchange energy,
while the positive parameters ep and e2 describe the antibond-
ing part of this energy. Depending on the ratio of the bonding
and antibonding parameters, the interchange energy may be
positive, zero (in the case of ideal solutions), or negative. In
turn, the interchange energies that differ in sign and absolute
value result in different types of phase diagrams, e.g., phase
diagrams with complete mutual solubility of the components
in the liquid and solid states, diagrams with phase-separation
(solution-decomposition) regions in the liquid or solid states,
and diagrams with a eutectic.

The conditions for the equilibrium of the phases j1 and j2
are described by an ordinary set of equations of the type

qDGj1

qxi
� qDGj2

qxi
�46�

written for all components of these phases. Let us examine
these conditions in relation to a two-component system.

In the subregular solutionmodel, the free energy (41) for a
two-component system becomes

DGj�x;T � � �1ÿ xj�DGj�0;T � � xjDGj�1;T �
� RT

�
xj ln xj � �1ÿ xj� ln�1ÿ xj�

�
� DG e

j �x;T � ; �47�
where xj is the concentration of the second component in the
jth phase, DGj�0;T � and DGj�1;T � are the free energies of the
initial components of the system, and
DG e

j �x;T � � xj�1ÿ xj�Bj�x;T � is the excess mixing energy
of the jth phase. In the particular case of equilibrium of the
solid and liquid phases with the free energies (47), the
equilibrium conditions (46) can be written, after performing
certain transformations, in the form of equations for

calculating the positions of the liquidus and solidus lines:

RT ln�1ÿ xl� � x2l Bl�xl;T � ÿ x2l �1ÿ xl� qBl�xl;T�
qxl

� RT ln�1ÿ xs� � x2sBs�xs;T �

ÿ x2s �1ÿ xs� qBs�xs;T �
qxs

� DH1
Tÿ T1

T1
;

RT ln xl � �1ÿ xl�2Bl�xl;T � � xl�1ÿ xl�2 qBl�xl;T �
qxl

� RT lnxs � �1ÿ xs�2Bs�xs;T �

� xs�1ÿ xs�2 qBs�xs;T �
qxs

� DH2
Tÿ T2

T2
; �48a�

where xl and xs are the concentrations of the second
component in the liquid and solid phases, respectively.

To describe the decomposition of solid solutions in the
subregular approximation, it is assumed that in the diffusion-
decomposition process the transition from one phase to the
other is a second-order phase transition without a jump in
entropy and that the phases that form as result of decomposi-
tion with concentrations x1 and x2 of the second component
have equal interchange energies:
B1�x1;T � � B2�x2;T � � Bs�x;T �. In this case the system of
equations (48a) becomes

RT ln�1ÿ x1� � x21Bs ÿ x21�1ÿ x1� qBs

qx1

� RT ln�1ÿ x2� � x22Bs ÿ x22�1ÿ x2� qBs

qx2
;

RT ln x1 � �1ÿ x1�2Bs � x1�1ÿ x1�2 qBs

qx1

� RT ln x2 ��1ÿ x2�2Bs � x2�1ÿ x2�2 qBs

qx2
: �48b�

The various features of the description of the decomposi-
tion of binary solid solutions in the subregular solutionmodel
have been studied in Refs [201, 202]. Let us examine a system
with a concentration x of the second component in the solid
phase. According to Refs [2, 190], in systems based on
nonstoichiometric compounds the interchange energy is
given by the formula B�xi� � B0 � xB1. Adding this fact to
the subregular solution model yields an expression for the
excess free energy of mixing in the solid phase in the form
G e � x�1ÿ x��B0 � xB1�, with the result that the free energy
of mixing in the solid phase, G�x�, is given by the formula

G�x� � x�1ÿ x��B0 � xB1�
� RT

�
x ln x� �1ÿ x� ln�1ÿ x�� : �49�

In a theoretical analysis of the dependence of the free energy
of the solid phase on the values of the parametersB0 andB1, it
is more convenient to use (49) in the form

G ��x� � x�1ÿ x��b0 � xb1�
� Tr

�
x lnx� �1ÿ x� ln�1ÿ x�� ; �50�

where G ��x� � G�x�=RT �, b0 � B0=RT
�, b1 � B1=RT

�, and
Tr � T=T � are dimensionless quantities.

Figure 22 demonstrates how the concentration depen-
dence of the free energy of mixing, G ��x�, of the solid phase
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changes with temperature at fixed values of the parameters b0
and b1. At sufficiently high temperatures (Tr > 0:6) the free-
energy curve has one minimum, which corresponds to a
single-phase state of the pseudobinary system, i.e., unlimited
mutual solubility of the components. The fact that when
Tr < 0:6 the curve G ��x� acquires a second minimum means
that in this temperature range the homogeneous solid
solution decomposes into two phases of different composi-
tions. As Fig. 22 shows, in the subregular solution model
(b1 6� 0) the curvesG ��x� are asymmetric, while in the regular
solution approximation (b1 � 0) the curves G ��x� are sym-
metric with respect to x � 0:5. Note that the symmetry of the
concentration curves for the free energy of mixing, G ��x�,
also determines the symmetry of the boundaries of the
decomposition region in the phase diagram, which is far
from the real situation and points to the limited applicability
of the regular solution approximation.

The conditions for equilibrium of phases 1 and 2 into
which the solid solution decomposes are given by two
equations: qG1�x�=qx � 0 and qG2�x�=qx � 0. Allowing for
the fact that B�xi��B0�xB1 and subjecting these equations
or equations (48) to standard transformations, we arrive at
the following conditions for equilibrium:

RT ln�1ÿ x1� � x21�B0 � x1B1� ÿ x21�1ÿ x1�B1

� RT ln�1ÿ x2� � x22�B0 � x2B1� ÿ x22�1ÿ x2�B1 ;

RT ln x1 � �1ÿ x1�2�B0 � x1B1� � x1�1ÿ x1�2B1

� RT ln x2 � �1ÿ x2�2�B0 � x2B1� � x2�1ÿ x2�2B1 ;

�51�

where x1 and x2 are the concentrations of the second
component in phases 1 and 2 into which the solid solution
decomposes. By solving the set of equations (51) we can

determine the position of the boundary of the decomposition
region. The results of model calculations with different b0-to-
b1 ratios show that these boundaries are asymmetric, with the
top of the dome shifted to the left or right depending on the
value of the b0-to-b1 ratio (Fig. 23): xmax < 0:5 if b0=b1 < 0,
and xmax > 0:5 if b0=b1 > 0 (xmax is the composition of the
solid solution corresponding to the top of the decomposition
dome).

The conditions for critical miscibility reduce to the second
and third composition derivatives of the free energy of mixing
being equal to zero:

qG 2�x�
qx2

� 0 ;
qG 3�x�
qx3

� 0 ; �52�

which yields the maximum temperature of decomposition of
the solid solution, i.e., the immiscibility temperature Tmax

decomp

above which the components form unbounded solid solutions
and below which an immiscibility region emerges. The same
equations make it possible to determine the composition of
the solid solution corresponding to the top of the decomposi-
tion dome, xmax. Solving the set of equations (52) combined
with (49), we obtain

Tmax
decomp � 6B1x

2
max

�1ÿ xmax�2
�2xmax ÿ 1�R ; �53�

xmax � 1

9

�
4ÿ B0

B1
�
�
7� B0

B1
�
�
B0

B1

�2�1=2�
: �54�

The physically meaningful solutions of equations (53) and
(54) are those for which Tmax

decomp 5 0 and 15 xmax 5 0.
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Figure 22. Isotherms of the free energy ofmixing,G ��x� � G�x�=RT �, of a
binary system in the subregular solution model at fixed values of the

parameters b0 � 1 and b1 � 0:2. The isotherms are built for the tempera-

ture Tr � T=T � varying from 0.3 to 0.8. For the sake of comparison, the

solid curve depicts G ��x� calculated at Tr � 0:4 in the regular solution

approximation (b1 � 0) [202].
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Figure 23. Position of the decomposition regions in the phase diagram of a

binary system for b0 � 1 and different values of the parameter b1. (�) shift
of the position of the top of the dome caused by variations in b0=b1 from
ÿ1=3 to +1 (or within ÿ34 b1 4 1 and b0 � 1). For the sake of

comparison, the boundaries of the decomposition region calculated in

the regular solution approximation (H) at b0 � 1 and b1 � 0 (or at

b0=b1 � 0) are depicted [201, 202].
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Analysis of equations (53) and (54) suggests that

T max
decomp 5 0 at

04 xmax 5 0:5; B1 5 0 and

xmax � 1

9

�
4ÿ B0

B1
ÿ
�
7� B0

B1
�
�
B0

B1

�2�1=2�
;

0:55 xmax 4 1:0 ; B1 4 0 and

xmax � 1

9

�
4ÿ B0

B1
�
�
7� B0

B1
�
�
B0

B1

�2�1=2�
:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
�55�

Analysis of equation (54) shows that the limiting values of
xmax equal to 1 and 0 are attained at B0=B1 � ÿ2 and
B0=B1 � 1, respectively (note that B0=B1 � b0=b1). The limit-
ing values xmax � 0 (for B1 < 0) and xmax � 1 (for B1 > 0)
correspond to Tmax

decomp � 0, i.e., the decomposition region
degenerates. As B0=B1 ! �1, the value of xmax asymptoti-
cally tends to 0.5 (Fig. 24). Clearly,B0=B1 ! �1 if B1 � 0 at
the limit, which is equivalent to the regular solution approx-
imation with xmax � 0:5. Thus, the regular solution approx-
imation is a particular case of the subregular solution model
with B1 � 0.

The dependence of the maximum temperature of decom-
position of the solid solution, Tmax

r � Tmax
decomp=T

�, on xmax is
depicted in Fig. 25. Three regions are clearly visible in the
diagram. The left region corresponds to b0 < 0, b1 < 0 and
b0=b1 > 0 (the left branch in Fig. 25 corresponds to b0 � ÿ1,
while b1 varies from ÿ7 to ÿ1). In this case, the value of xmax

varies from 0 to �4ÿ ���
7
p �=9 � 0:150. The value xmax � 0:150

is asymptotically attained as b0=b1 ! 0, i.e., at b0 � 0. The
middle branch of the Tmax

r vs. xmax dependence corresponds
to b0 > 0, while the parameter b1 may be either positive or
negative (in Fig. 25 this branch corresponds to b0 � 1, while
b1 varies from ÿ3 to +3). Analysis shows that at
b0 � const > 0 and all other things being equal the smallest
value Tmax

decomp � ÿ8B1=9R � 4B0=9R is attained when B1 < 0
and B0=B1 � b0=b1 � ÿ2, which corresponds to xmax � 1=3.
For themiddle branch, �4ÿ ���

7
p �=9 < xmax < �4�

���
7
p �=9; the

limiting values of xmax, equal to 0.150 and
�4� ���

7
p �=9 � 0:738, are asymptotically attained when

b0 � 0 and b1 < 0 or when b0 � 0 and b1 > 0. Finally, the
right branch of the Tmax

r vs. xmax dependence corresponds to
b0 < 0 and b1 > 0, i.e., b0=b1 < 0 (in Fig. 25 this branch
corresponds to b0 � ÿ1, while b1 varies from 4.5 to 0.5).

The elements or compounds forming one or another
phase can have different crystal structures. This difference
must be taken into account in calculations of all interaction
parameters by reducing the volumes. To this end the crystal
structure of one of the components participating in the phase
equilibrium in question is chosen as the base structure, and
the parameters of the unit cells of the other components are
reduced to this structure. This reduction is done in such a way
that the surface areas of the reduced and unreduced unit cells
are the same and the angles and the axial ratios in the reduced
cell are the same as in the unit cell of the base structure.
Bearing all this in mind, we can calculate the lattice
parameters and the unit cell volume V red:c

i of the reduced
unit cell and the reduced molar volume V red

i � NAV
red:c
i =z,

which is needed to calculate the energy parameters ep, e0, e1,
and e2 (here z is the number of formula units in a unit cell). If a
unit cell of the base structure has angles a, b, and g, the axial
ratios are such that a=c � m and b=c � n, and the surface area
of the unreduced unit cell is S, we have

ared �
�

mnS

sin a�m sin b� n sin g

�1=2

�56�

and

V red
i � NAa

3
red sin a sin b sin g

mnz
: �57�

Selection of the base crystal structure is arbitrary, since
the reduction of the molar volumes of the components to any
one crystal structure ensures the same ratio of the reduced
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b0=b1
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Figure 24. Composition of the solid solution corresponding to the top of

the decomposition dome, xmax, as a function of the parameter ratio

b0=b1 � B0=B1: the upper branch corresponds to b1 positive (b1 > 0) and

the lower branch, to b1 negative (b1 < 0) [202].
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Figure 25. Maximum temperature of decomposition of the solid solution,

Tmax
r � Tmax

decomp=T
�, as a function of xmax: the left branch corresponds to

b0 5 0 and b1 < 0, with 04 xmax < 0:150; the middle branch corresponds

to b0 > 0 and the parameter b1 assuming any positive or negative value,

with 0:150 < xmax < 0:738; and the right branch corresponds to b0 < 0

and b1 > 0, with 0:738 < xmax 4 1 [201, 202].
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volumes V red
i , i.e.,

V1 :V
red�1�
2 : . . . : V red�1�

n � V
red�2�
1 :V2 : . . . : V red�2�

n � . . .

. . . � V
red�i�
1 :V

red�i�
2 : . . . :Vi : . . . : V red�i�

n :

Clearly, the absolute values of the interaction energy
parameters and the interchange energies do not depend on
the choice of the specific crystal structure to which the molar
volumes of the phase components are reduced. Indeed, from
equations (42) ± (45) it follows that a k-fold increase in the
molar volume of one component leads to the same value of
the energy parameter e as a k-fold decrease in the molar
volume of the other component.

The above method was used in Refs [190 ± 193, 203] to
determine the interaction energy parameters and the inter-
change energies of 15 pseudobinary carbide systems formed
by carbides of titanium, zirconium, hafnium, vanadium,
niobium, and tantalum. The data on the lattice parameters,
atomization energies, heats of melting, melting points,
thermal expansion coefficients, and shear moduli of these
compounds, needed for the calculations, are given in Refs
[190, 202, 203]. Figures 26 ± 28 depict the phase diagrams of
the pseudobinary carbide systems calculated in Refs [190 ±
193, 201 ± 203]. The monocarbides of titanium, zirconium,

hafnium, vanadium, niobium, and tantalum have the same
B1-type crystal structure, so that no reduction of volumes was
carried out in calculations of the energy parameters.

The results of calculations of the phase diagrams
corroborated the limited solid solubility in the VC0.88 ± ZrC
and VC0.88 ±HfC systems and the formation of continuous
series of solid solutions in the following systems: TiC ±ZrC,
TiC ±HfC, TiC ±NbC, TiC ±TaC, ZrC ±HfC, ZrC ±NbC,
ZrC ±TaC, HfC ±TaC, VC0.88 ± TiC, VC0.88 ±NbC, VC0.88 ±
TaC, NbC±HfC, and NbC±TaC. The calculated positions
of the phase boundaries are in sufficient agreement with the
experimental data of Kieffer et al. [204, 205] (see Fig. 26). The
phase diagrams of 10 pseudobinary carbide systems (see
Figs 27 and 28) were calculated in Refs [190 ± 193, 203] for
the first time; phase diagrams of these systems based on
experimental data have yet to be built.

The shape of the calculated phase diagrams (see Fig. 26)
agrees with the idea of a gradual transition from continuous
solid solutions to systems with limited solubility in the solid
state and a eutectic. The size factor strongly affects mutual
solubility: the VC0.88 ± TaC system is close to an ideal system
due to the proximity of the atomic radii of the mutually
substituting metals, while the VC0.88 ±HfC system exhibits a
very small limited solubility due to the large difference
between the atomic radii of vanadium and hafnium.

20 40 60 80

1000

2000

3000

4000

3322 K

11.8%

Liquid

2075 K

43.7%

HfCTiC

mol.%

T, K

20 40 60 80

1000

2000

3000

4000

3196 K

29.2%

Liquid

2281K

35.2%

ZrCTiC

mol.%

T, K

20 40 60 80

1000

2000

3000

4000

24.5%

91.3%2.0%

Liquid

2750 K

ZrCVC0.88

mol.%

T, K

20 40 60 80

1000

2000

3000

4000 Liquid

1581 K

45.5%

TaCVC0.88

%

T, K

20 40 60 80

1000

2000

3000

4000

2962 K

8.7%

Liquid

1773K

42.1%

NbCVC0.88

mol.%

T, K

20 40 60 80

1000

2000

3000

4000

17.6%

92.5%

Liquid

2840 K

HfCVC0.88

mol.%

T, K

4.9%
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solid curves are the results of calculations in Refs [190, 193, 203], and the dashed curves are the results of calculations in Refs [204, 205]).

January, 2000 Order ë disorder transformations and phase equilibria in strongly nonstoichiometric compounds 31



Analysis of phase equilibria made it possible to establish
the presence of latent decomposition regions in the solid state
in TiC ±ZrC, TiC ±HfC, VC0.88 ±NbC, andVC0.88 ± TaC (see

Fig. 26) and in ZrC ±TaC, ZrC ±NbC, HfC ±TaC, VC0.88 ±
TiC, NbC±HfC, and TiC ±NbC (see Fig. 27). The tops of the
decomposition domes in these systems correspond to the
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following temperatures: 2281, 2075, 1773, 1581, 1212, 843,
1161, 488, 821, and 316 K. In 1979, Fedorov and Andrievski|̄
[206] estimated the critical temperatures corresponding to the
tops of latent decomposition regions in the solid state for
some pseudobinary systems. To estimate Tdecomp of solid
solutions formed by stoichiometric carbides MC1.0, the
researchers used a relationship similar to that used in
calculating the decomposition temperature of binary metal-
lic alloys. According to Fedorov and Andrievski|̄ [206], the
temperatures Tdecomp for the TiC ±ZrC, TiC ±HfC, TiC ±
NbC, ZrC ±NbC, and NbC±TaC systems are 2530, 2150,
1140, 1260, and 760 K, respectively. The results on Tdecomp

cited in Refs [190 ± 193] and in Ref. [206] are close (to within
calculation errors) for the TiC ±ZrC and TiC ±HfC systems.
The values of Tdecomp given in Ref. [206] for the TiC ±NbC,
ZrC ±NbC, andNbC±TaC systems are probably overstated.
The reason for this may be the fact that Fedorov and
Andrievski|̄ [206] took into account only the difference in
the heats of formation, while in Refs [190 ± 193] the molar
volumes and their variation with temperature and some other
characteristics of the carbides were also taken into account.

The ZrC ±HfC, NbC±TaC, and TiC ±TaC systems
exhibit no decomposition ranges and the solid solutions are
stable from 300 K up to the melting points (see Fig. 28).

The results of experiments conducted by Umanski|̄ and
Myuller [207, 208] (see also Ref. [209]), who studied short-
range order in solid solutions of the TiC ±NbC, TiC ±TaC,
and VC0.88 ±NbC systems by X-ray diffuse scattering, agree
with those of the calculations of the phase diagrams of these
systems. According to [207, 208, 209], the Ti0.5Nb0.5C and
Ti0.5Ta0.5C solid solutions quenched from 2200 K have a
negative short-range order parameter in the first coordination
shell of the metal sublattice (a1 � ÿ0:06), i.e., at this
temperature the solid solutions do not tend to decompose.
On the contrary, in the V0.5Nb0.5C solid solution quenched
from 2100 K, the parameter a1 is positive (a1 � 0:01), which
suggests that such solid solutions tend to decompose. Indeed,
from the calculated phase diagram of VC0.88 ±NbC it follows
that decomposition in this system begins at 1773 K (see Fig.
26).

In their experimental studies of phase equilibria in the
ZrC ±TaC and VC±NbC systems, Shurin et al. [210, 211]
noted that the calculations done in Refs [191, 192, 203] in
terms of the subregular solution model provide precise
predictions of the shape of the phase diagrams of these
carbide systems.

The calculations done in Ref. [191] revealed no maximum
in the melting point of the solid solutions of the ZrC ±TaC
and HfC ±TaC systems formed by carbides with almost
stoichiometric composition. This agrees with the results of
Andrievski|̄ et al. [196], who found that the melting point of
these solid solutions is elevated because they are depleted of
carbon, since carbon easily evaporates at high temperatures.
In other words, a melting-point maximum is observed in solid
solutions of nonstoichiometric carbides, whereas the solid
solutions of stoichiometric carbides exhibit no such maxima.

The subregular solution model was used to calculate the
phase boundaries not only in pseudobinary carbide systems
but also in oxide ± fluoride systems such as MO±Na3AlF6

(MO=Al2O3, BeO, SnO2) [212] and in the ternary Ti ±B ±C
system [198 ± 200, 213].

The schematic calculated phase diagrams of the Ti ±B ±C
system in the 300 ± 3500K temperature range and the liquidus
surfaces for the pseudobinary equilibria TiCy ±TiB2 and

B4Cy ±TiB2 of this system are depicted in Fig. 29 [198 ± 200,
213]. The phase diagram of the binary system Ti ±C was
calculated, with allowance for ordering in nonstoichiometric
titanium carbide TiCy, by the OPF method, and the
pseudobinary equilibria (including TiCy ±TiB2 and B4Cy ±
TiB2) were calculated by the subregular solution model. In
calculations of the equilibria with allowance for compounds
with different crystal structures, reduced molar volumes were
used (see Refs [198 ± 200]).

The composition and temperature of the eutectic of the
pseudobinary TiCy ±TiB2 system depend on the carbon
content in TiCy. As the carbon content changes from TiC0.6

to TiC0.8, the eutectic temperature Te increases from 2910 to
2961K; a further increase in carbon content in TiCy leads to a
drop inTe to 2936K in the TiC1.0 ± TiB2 section (Fig. 30). The
eutectic contains 40.1, 40.5, and 40.2 mol.% of TiB2 for the
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TiC0.6 ± TiB2, TiC0.8 ± TiB2, and TiC1.0 ± TiB2 sections,
respectively. Note that it is only the carbide TiC0.6 that
melts without changes in its composition (congruently); the
titanium carbides with other carbon contents melt incon-
gruently, i.e., with changes in their composition. The result of
this is that in the TiC0.6 ± TiB2 section, the composition of the
titanium carbide in equilibriumwith the liquid changes, as the
temperature increases, from TiC0.6 to TiC0.7 (Fig. 30a). In the
TiC1.0 ± TiB2 section, the composition of the titanium carbide
in equilibrium with the liquid changes, as the temperature
increases from 2936 to 3287 K, from TiC1.0 to TiC0.905

(Fig. 30c).
The eutectic temperature of the pseudobinary system

B4C0.89 (B4.5C) ±TiB2 is 2545 K, and the eutectic contains
29.5 mol.% TiB2 (Fig. 30d). When the carbon content in the
boron carbide B4C0.89 increases or decreases, the eutectic
temperature of the pseudobinary section B4Cy ±TiB2 drops.
The values of the calculated temperatures of the binary
eutectics of the TiCy ±TiB2 and B4Cy ±TiB2 systems are in
good agreement with Rudy's experimental data [94] and are
100 ± 200 K higher than the value of Te reported by
Ordan'yan et al. [214] and Portno|̄ et al. [215].

According to Refs [198 ± 200], the temperature of the
ternary eutectic b-Ti+TiB+TiCy is 1720� 20 K, which is
close to the values of Rudy [94] (1783K) andDuschanek et al.
[216] (1808 K). The temperatures of the ternary eutectics
TiB2+TiC1.0+C and TiB2+B4Cy+C are 2650� 50 K and
2380� 50 K, respectively. Finally, Te of the ternary eutectic
TiB2+TiC1.0+C is 2673 K according to Rudy [94] or 2667 K
according to Duschanek et al [216], while Te of the ternary
eutectic TiB2+B4Cy+C is 2513 K [94] or 2519 K [216].

Introduction of even a small amount (less than 1 at.%) of
boron into nonstoichiometric titanium carbide leads to the
disordering of the carbide. Hence, the titanium borides TiB,
Ti3B4, andTiB2 are in equilibriumwith the disordered carbide
TiCy. The titanium boride TiB2 coexists not only with
titanium carbide TiCy but also with carbon C and the boron
carbide B4C. According to Refs [198, 200], the isothermal

sections of the ternary system Ti ±B ±C retain an almost
unaltered shape from 300K up to 1900K; themost important
changes are related to the disordering of the low-temperature
ordered phases Ti2C, Ti3C2, and Ti6C5 of the carbide TiCy

above 950 K.
The results of the calculations of phase equilibria in the

ternary system Ti ± B ± C (see Refs [198 ± 200]) are in good
agreement with the experimental data of Duschanek et al.
[216], Schouler M et al. [217], and Villars et al. [218] and
corroborate the usefulness of the subregular solution model
in calculating and building phase diagrams of binary,
pseudobinary, and ternary systems containing both stoichio-
metric and nonstoichiometric compounds.

7. Conclusions

The calculation of the phase diagrams of the binary systems
M±C (M=Ti, Zr, Hf, V,Nb, andTa) andTi ±N [26, 40, 43 ±
47, 76] with highly nonstoichiometric ordering compounds is
the main result of employing the OPF method. Indeed, until
recently the literature contained no equilibrium phase
diagrams for these systems within a broad temperature
range from 300 K to the melting point. Bearing this in mind,
we focused in this review on the results of theoretical and
experimental studies of phase equilibria, since the data on
short- and long-range order in nonstoichiometric compounds
and on the structure and properties of the ordered phases of
these compounds have already been generalized in many
reviews (see Refs [28, 29, 31, 33, 36]) and monographs (see
Refs [1, 2, 14, 17]).

The results suggest that the OPF method can be used in
calculating the phase diagrams inmodel and real systems with
atomic ordering. Theoretical analysis has shown that, from
the viewpoint of thermodynamics, in nonstoichiometric
carbides and nitrides MXy with a B1-type base structures,
M2X,M3X2, andM6X5-type superstructures can form; which
superstructure actually forms in the ordering of a specific
nonstoichiometric compound depends on the width of the
homogeneity region of the compound MXy and on which
phases this compound is in equilibrium with. M4X3 and
M8X7-type superstructures cannot form in nonstoichio-
metric cubic carbides and nitrides MXy, with the exception
of the carbide VCy, in which the ordered phase V8C7 forms
because of a boundary effect: in disordered vanadium carbide
the upper boundary of the homogeneity range corresponds to
the carbide MCy with y � 0:88 instead of y � 1:00 (as is the
case in other nonstoichiometric interstitial compoundsMXy).
Recently, the formation of the V8C7 phase was used to obtain
vanadium carbide in the nanocrystalline state [219]. Grain
refinement in vanadium carbide took place due to the sudden
increase in the unit cell volume in the VCy ±V8C7 disorder ±
order transition.

The lowest temperatures of transition to an ordered state
belong to the nonstoichiometric carbides of hafnium, tita-
nium, and zirconium, HfCy, TiCy, and ZrCy. This means that
producing M(IV)Cy carbides of Group IV transition metals is
more difficult than producing carbides of vanadium, nio-
bium, and tantalum since, with the same carbon content, the
annealing temperatures sufficient for ordering the M(IV)Cy

carbides are 300 ± 700 K lower than those required for
ordering of M(V)Cy carbides. As a result, the diffusion
mobility of carbon atoms in the M(IV)Cy carbides is much
lower than in the M(V)Cy carbides. An important factor that
affects the diffusion mobility of interstitial atoms is the
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atomic mass of the metal atoms, since an increase in the
atomic mass of the metal leads to a decrease in the diffusion
rate of the nonmetal atoms. If the transition temperature and
the atomic mass of the metal are taken into account
simultaneously, there are grounds to believe that among the
nonstoichiometric carbides the most complicated for order-
ing is hafnium carbide HfCy, since the time of annealing this
carbide at temperatures no higher than 750 K is several
thousand hours. More than that, as noted in Section 5.2, it
is extremely difficult to determine through measurements
whether hafnium carbide is ordered. It is also very difficult
to achieve ordering in the carbides of tantalum and zirco-
nium, TaCy and ZrCy.

On the whole, the predominantly correct values that were
calculated for the main thermodynamic characteristics of
order ±disorder and order ± order phase transitions in the
nonstoichiometric compounds considered in this review
confirm the correctness of the main ideas of the OPF method
and the approximations used in themethod. The results of the
theoretical analysis and the calculations suggest that this
method can be used to describe both qualitatively and
quantitatively the ordering process in solid substitutional
and interstitial solutions and in nonstoichiometric com-
pounds.

A remark is in order. The variant of the OPFmethod used
in Refs [2, 14, 26, 44] ensures that only the long-range
parameters and the correlations caused by these parameters
(or superstructural short-range order [114, 115]) are taken
into account simultaneously. However, in addition to correla-
tions caused by long-range order, ordered phases contain
short-range correlations, which do not disappear at the
order ± disorder transition temperature but prevail in the
disordered phase within a temperature range above Ttrans,
gradually decreasing as the temperature grows. This implies
that the position of the phase boundaries in the calculated
phase diagrams can be determined more accurately if one
fully accounts for the short-range order of the ordered and
disordered phases. Thus, further improvements of the OPF
method are possible if we fully take into account short-range
order effects.

The results of calculations of the phase diagrams of
pseudobinary carbide systems in the subregular solution
model agree with experimental data and justify the use of
this model in calculating the phase diagrams of other
pseudobinary systems with total or partial substitution of
the atoms.

Financial support for this work was provided by
the Russian Foundation for Basic Research (project no.
98-03-32856a).
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