Выпуски

 / 

2023

 / 

Сентябрь

  

Приборы и методы исследований


Методика термодесорбционного изучения состояний водорода в углеродных материалах и наноматериалах

  а,   б, §  в, *  а, #  г, °  д
а Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина. Научный центр металловедения и физики материалов, ул. Радио, 23/9, стр. 2, Москва, 105005, Российская Федерация
б Санкт-Петербургский государственный университет, Университетская набережная 7–9, Санкт-Петербург, 199034, Российская Федерация
в Тольяттинский государственный университет, Научно-исследовательский институт прогрессивных технологий, ул. Белорусская, 14б, корпус НИЧ, 3 этаж, каб. 308, Тольятти, 445020, Российская Федерация
г Институт прикладных математических исследований, Федеральный исследовательский центр Карельский научный центр Российской академии наук, ул. Пушкинская, 11, Петрозаводск, Республика Карелия, 185910, Российская Федерация
д Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Российская Федерация

Развита эффективная методика обработки, анализа и интерпретации термодесорбционных спектров (ТДС) водорода в углеродных материалах и наноматериалах, полученных с использованием одной скорости нагрева, позволяющая изучать различные состояния водорода и определять отвечающие им характеристики, в том числе константы скорости и энергии активации десорбционных процессов. Методика не менее информативна, но гораздо менее трудоёмка с экспериментальной точки зрения по сравнению с общепринятой (для определения таких характеристик) методикой Киссинджера, требующей использования нескольких скоростей нагрева и имеющей жёсткие границы применимости. Развитая методика основана на аппроксимации ТДС водорода гауссианами и обработке их пиков в приближении реакций первого и второго порядка. Методика включает в себя использование нестандартных критериев "правдоподобия" и/или "физичности" результатов, а также проверку и/или уточнение результатов методами численного моделирования, позволяющими аппроксимировать ТДС не гауссианами, а кривыми, отвечающими реакциям первого или второго порядка.

Текст pdf (461 Кб)
English fulltext is available at DOI: 10.3367/UFNe.2022.11.039274
Ключевые слова: углеродные материалы и наноматериалы, методика десорбционного изучения состояний водорода, аппроксимация десорбционных спектров гауссианами и негауссианами, приближения реакций первого и второго порядка, характеристики десорбционных процессов
PACS: 61.46.−w, 61.48.−c, 68.43.−h, 89.30.−g (все)
DOI: 10.3367/UFNr.2022.11.039274
URL: https://ufn.ru/ru/articles/2023/9/e/
Цитата: Нечаев Ю С, Денисов Е А, Черетаева А О, Шурыгина Н А, Костикова Е К, Давыдов С Ю "Методика термодесорбционного изучения состояний водорода в углеродных материалах и наноматериалах" УФН 193 994–1000 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 4 марта 2022, доработана: 12 ноября 2022, 22 ноября 2022

English citation: Nechaev Yu S, Denisov E A, Cheretaeva A O, Shurygina N A, Kostikova E K, Davydov S Yu “Method of thermal desorption study of hydrogen states in carbon materials and nanomaterialsPhys. Usp. 66 936–942 (2023); DOI: 10.3367/UFNe.2022.11.039274

Список литературы (39) Похожие статьи (10) ↓

  1. А.К. Ребров «Возможности газофазного синтеза алмазных структур» 187 193–200 (2017)
  2. К.Б. Фрицлер, В.Я. Принц «Методы трёхмерной печати микро- и наноструктур» 189 55–71 (2019)
  3. Н.М. Блашенков, Г.Я. Лаврентьев «Исследование неравновесной поверхностной ионизации методом полевой поверхностно-ионизационной масс-спектрометрии» 177 59–85 (2007)
  4. А.Д. Алексеев, Е.В. Ульянова, Т.А. Василенко «Возможности ЯМР в исследовании физических процессов в ископаемых углях» 175 1217–1232 (2005)
  5. Я.С. Гринберг, Ю.А. Пашкин, Е.В. Ильичёв «Наномеханические резонаторы» 182 407–436 (2012)
  6. И.Г. Дьячкова, Д.А. Золотов и др. «Возможности СВЧ-метода активации углеродных материалов в сравнении с традиционным термическим», принята к публикации
  7. В.Г. Лукин, О.Г. Хвостенко «Процессы десорбции при измерении слабых токов» 190 525–538 (2020)
  8. Э.И. Асиновский, А.В. Кириллин, А.В. Костановский «Экспериментальное исследование термических свойств углерода при высоких температурах и умеренных давлениях» 172 931–944 (2002)
  9. С.А. Пшеничнюк, Н.Л. Асфандиаров и др. «Современное состояние и перспективы спектроскопии диссоциативного захвата электронов» 192 177–204 (2022)
  10. В.Ю. Хомич, В.А. Шмаков «Крупногабаритные зеркала в силовой оптике» 189 263–270 (2019)

Список формируется автоматически.

© Успехи физических наук, 1918–2023
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение