Выпуски

 / 

2022

 / 

Ноябрь

  

Конференции и симпозиумы. Форум "USPEKHI-2021: Изменение климата и проблемы глобальной энергетики


Интеграция климатической вариабельности и глобального изменения климата в планирование использования возобновляемых источников энергии

 ,
Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Ecole Polytechnique, IP Paris, ENS, PSL Université, Sorbonne Université, CNRS, France, Paris, France

Обозначенная в Парижском соглашении траектория удержания глобального потепления на уровне ниже 2 $^\circ$C диктует не только сроки, но и скорость, с которой должна меняться наша энергетическая система для декарбонизации производства энергии. Соблюдение Парижского соглашения требует снижения использования углерода в производстве энергии примерно на 75 % и, следовательно, быстрого перехода от добычи ископаемых энергоносителей к производству, основанному на низкоуглеродных технологиях. Среди таких технологий есть технологии, основанные на возобновляемых источниках энергии. Климатическая вариабельность приводит к нестабильности источников возобновляемой энергии (солнечной, ветровой, морской), что является проблемой для баланса энергосистемы. В данном контексте говорить о переходе в энергетике означает столкнуться с проблемой продвижения на рынок низкоуглеродного производства энергии при одновременном ограничении последствий климатической вариабельности для обеспечения социально-технической осуществимости экономической жизнеспособности. Проблема не является простой, и необходимо чётко определить тонкий баланс между срочностью (резкое сокращение выбросов) и оптимальностью (выбор стратегии производства низкоуглеродной энергии, анализ возможностей и препятствий).

Текст: pdf (Полный текст предоставляется по подписке)
English fulltext is available at DOI: 10.3367/UFNe.2021.07.039080
Ключевые слова: изменение климата, смягчение последствий изменения климата, энергетический переход, возобновляемые источники энергии, интеграция возобновляемых источников энергии
PACS: 92.60.Ry
DOI: 10.3367/UFNr.2021.07.039080
URL: https://ufn.ru/ru/articles/2022/11/d/
001100185900005
2-s2.0-85182916855
Цитата: Дробински Ф, Танте А "Интеграция климатической вариабельности и глобального изменения климата в планирование использования возобновляемых источников энергии" УФН 192 1191–1202 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Поступила: 30 мая 2021, 7 июля 2021

English citation: Drobinski P, Tantet A “Integration of climate variability and climate change in renewable energy planningPhys. Usp. 65 1119–1128 (2022); DOI: 10.3367/UFNe.2021.07.039080

Список литературы (103) ↓ Похожие статьи (13)

  1. Knutson T R et al Bull. Am. Meteorol. Soc. 99 S11 (2018)
  2. Wang C et al Coral Reefs of the Eastern Pacific: Persistence and Loss in a Dynamic Environment (Eds P W Glynn, D P Manzello, I C Enochs) (Dordrecht: Springer, 2016) p. 85
  3. Hurrell J W, Kushnir Y, Ottersen G The North Atlantic Oscillation: Climatic Significance and Environmental Impact (Geophysical Monograph) Vol. 134 (Eds J W Hurrell et al) (Washington, DC: American Geophysical Union, 2003) p. 1
  4. Bellouin N et al Earth Syst. Sci. Data 12 1649 (2020)
  5. Smith C J et al Atmos. Chem. Phys. 20 9591 (2020)
  6. Houghton J T et al (Eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge Univ. Press, 2001) p. 881 pp.
  7. Solomon S et al (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge Univ. Press, 2007)
  8. Stocker T F et al (Eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge Univ. Press, 2013)
  9. Knutson T R, Zeng F, Wittenberg A T J. Climate 26 8709 (2013)
  10. Kam J et al Bull. Am. Meteorol. Soc. 97 S4 (2016)
  11. Thorne P W et al J. Geophys. Res. 110 D18105 (2005)
  12. Haimberger L, Tavolato C, Sperka S J. Climate 25 8108 (2012)
  13. Free M et al J. Geophys. Res. 110 D22101 (2005)
  14. Christy J R et al J. Atmos. Ocean Technol. 20 613 (2003)
  15. Mears C A, Wentz F J J. Atmos. Ocean Technol. 26 1040 (2009)
  16. Mears C A, Wentz F J J. Atmos. Ocean Technol. 26 1493 (2009)
  17. Zou C Z, Wang W H J. Geophys. Res. 116 D23113 (2011)
  18. Ningombam S S, Vemareddy P, Song H J Atmos. Res. 23 2 (2020)
  19. van Vuuren D P et al Climatic Change 109 5 (2011)
  20. Nakicenovic N, Swart R (Eds) Emissions Scenarios (Cambridge: Cambridge Univ. Press, 2000)
  21. Moss R H et al Nature 463 747 (2010)
  22. Fuss S et al Nat. Clim. Change 4 850 (2014)
  23. Knutti R, Hegerl G C Nat. Geosci. 1 735 (2008)
  24. Held I M, Soden B J J. Clim. 19 5686 (2006)
  25. MacDougall A, Avis C, Weaver A Nat. Geosci. 5 719 (2012)
  26. Jiménez-de-la-Cuesta D, Mauritsen T Nat. Geosci. 12 902 (2019)
  27. Bjordal J et al Nat. Geosci. 13 718 (2020)
  28. Liu Z et al Nat. Commun. 11 5172 (2020)
  29. Tollefson J Nature 589 343 (2021)
  30. Reilly J M, Chen Y H H, Jacoby H D Humanit. Soc. Sci. Commun. 8 16 (2021)
  31. IPCC, 2018: Global Warming of 1,5°C. An IPCC Special Report on the impacts of global warming of 1,5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (Eds V Masson-Delmotte et al) (Geneva: World Meteorological Organization, 2018)
  32. United Nations Climate Change, Paris Agreement (2018)
  33. Kaya Y, Yokoburi K (Eds) Environment, Energy, and Economy: Strategies for Sustainability (Tokyo: United Nations Univ. Press, 1997)
  34. "World Population Prospects 2019: Highlights" ST/ESA/SER.A/423 Report (New York: United Nations Department of Economic and Social Affairs, Population Division, 2019)
  35. Guillemette Y, Turner D "The Long View: Scenarios for the World Economy to 2060" OECD Economic Policy Papers, No. 22 (Paris: OECD, 2018) p. 51
  36. Edenhofer O et al (Eds) IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (Cambridge: Cambridge Univ. Press, 2011)
  37. Edenhofer O et al (Eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge Univ. Press, 2014)
  38. Ли Н УФН 192 1231 (2022); Li N Phys. Usp. 65 (11) (2022)
  39. Таджима Т и др УФН 192 1280 (2022); Tajima T et al Phys. Usp. 65 (11) (2022)
  40. Grill G et al Nature 569 215 (2019)
  41. Poff N L et al BioScience 47 769 (1997)
  42. Sterman J D, Siegel L, Rooney-Varga N Environ. Res. Lett. 13 015007 (2018)
  43. REN21, Renewables 2020. Global Status Report, REN21 Ed. (2020) p. 367
  44. Suchet D et al Energies 13 3366 (2020)
  45. IEA Monthly Energy Review (U.S. Energy Information Administration, 2020)
  46. Kumar G V B et al Energies 12 1996 (2019)
  47. Abrell J, Rausch S, Streitberger C Energy Economics 84 104463 (2019)
  48. DOE DOE, Quadrennial Technology Review 2015 (Washington, DC: U.S. Department of Energy, 2015) p. 504
  49. van Zalk J, Behrens P Energy Policy 123 83 (2018)
  50. Hassan R, Scholes R, Ash N (Eds) Ecosystems and Human Well-Being : Current State and Trends: Findings of the Condition and Trends Working Group of the Millennium Ecosystem Assessment (Washington, DC: Island Press, 2005) p. 47
  51. Solaun K, Cerdá E Renewable Sustainable Energy Rev. 116 109415 (2019)
  52. International Energy Statistics, U.S. Energy Information Administration (2015)
  53. van Vliet M T H et al Nat. Clim. Change 6 375 (2016)
  54. Deroubaix A et al Nat. Commun., ubmitted
  55. Drobinski P et al Climate and Environmental Change in the Mediterranean Basin. Current Situation and Risks for the Future. First Mediterranean Assessment Report (Eds W Cramer, J Guiot, K Marini) (Marseille: Union for the Mediterranean, Plan Bleu, UNEP/MAP, 2020) p. 265
  56. Cochran J Technical ReportNREL/TP-6A20-62607 (Golden, CO: National Renewable Energy Laboratory, NREL, 2015) p. 30
  57. Alboaouh K A, Mohagheghi S J. Renewable Energy 2020 2314 (2020)
  58. Heptonstall P J, Gross R J K Nat. Energy 6 72 (2021)
  59. World Energy Outlook 2018 (U.S. Energy Information Administration, IEA, 2018) p. 661; https://www.iea.org/reports/world-energy-outlook-2018
  60. Sijm J P M ECN-E-14-022 Report (Petten: ECN, 2014) p. 52
  61. Roulston M S et al Renew. Energy 28 585 (2003)
  62. Usaoloa J et al Wind Eng. 28 119 (2004)
  63. Pinson P, Chevallier C, Kariniotakis G N IEEE Trans. Power Syst. 22 1148 (2007)
  64. Dupré A et al Energies 13 5266 (2020)
  65. Alonzo B et al Energies 13 4888 (2020)
  66. Apt J J. Power Sources 169 369 (2007)
  67. Frunt J, Kling W L, van den Bosch P P J Electric Power Syst. Res. 80 1528 (2010)
  68. Huber M, Dimkova D, Hamacher T Energy 69 236 (2014)
  69. van Stiphout A, Vos K D, Deconinck G IEEE Trans. Power Syst. 32 378 (2017)
  70. U.S. Electric Utility Demand-Side Management 2000. IEA, U.S. Energy Information Administration, DOE/EIA-0589(00, 2020)
  71. Spiecker S, Weber C Energy Policy 65 185 (2014)
  72. Heard B P et al Renew. Sustain. Energy Rev. 76 1122 (2017)
  73. Hansen K, Breyer C, Lund H Energy 175 471 (2019)
  74. Widén J et al Renew. Sustain. Energy Rev. 44 356 (2015)
  75. Graabak I, Korpâs M Energies 9 449 (2016)
  76. Tantet A et al Energies 12 4299 (2019)
  77. Bouramdane A A et al Energies 13 5087 (2020)
  78. Maimó-Far A et al Energies 13 5132 (2020)
  79. James I N Introduction to Circulating Atmospheres (Cambridge: Cambridge Univ. Press, 1994)
  80. Holton J R An Introduction to Dynamic Meteorology (Burlington, MA: Elsevier Academic Press, 2004)
  81. Duffie J, Beckman W A Solar Engineering of Thermal Processes (Hoboken, NJ: John Wiley and Sons, 2013)
  82. Holttinen H Wind Energy 8 173 (2005)
  83. Giebel G Wind Energy 10 69 (2007)
  84. Kempton W et al Proc. Natl. Acad. Sci. USA 107 7240 (2010)
  85. Katzenstein W, Fertig E, Apt J Energy Policy 38 4400 (2010)
  86. Tarroja B et al Renew. Energy 36 3424 (2011)
  87. Gueymard C A, Wilcox S M Solar Energy 85 1068 (2011)
  88. Marcos J et al Prog. Photovolt. Res. Appl. 20 226 (2012)
  89. Buttler A et al Energy 106 147 (2016)
  90. Heide D et al Renew. Energy 35 2483 (2010)
  91. Bett P E, Thornton H E Renew. Energy 87 96 (2016)
  92. Coker P et al Renew. Energy 53 111 (2013)
  93. Widén J IEEE Trans. Sustain. Energy 2 177 (2011)
  94. Miglietta M M, Huld T, Monforti-Ferrario F J. Appl. Meteorol. Climatol. 56 217 (2016)
  95. Santos-Alamillos F J et al J. Appl. Meteorol. Climatol. 51 2005 (2012)
  96. Carrara S et al "Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system" EUR 30095 EN Report (Luxembourg: Publication Office of the European Union, 2020)
  97. Vörösmarty C J et al Global Planet. Change 39 169 (2003)
  98. Zarfl C et al Aquat. Sci. 77 161 (2015)
  99. Winemiller K O et al Science 351 128 (2016)
  100. Armaroli N, Balzani V Angew. Chem. Int. Ed. 46 52 (2006)
  101. Naylor R L et al Environment Sci. Policy Sustainable Development 49 30 (2007)
  102. von Möllendorff C, Welsch H "Measuring renewa" SOEP papers on Multidisciplinary Panel Data Research, No. 779 (Berlin: Deutsches Institut für Wirtschaftsforschung, DIW, 2015); von Möllendorff C, Welsch H http://hdl.handle.net/10419/115874
  103. Bulavskaya T, Reynès F Renewable Energy 119 528 (2018)

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение