Выпуски

 / 

2009

 / 

Ноябрь

  

75 лет Физическому институту им. П.Н. Лебедева РАН


Излучение Вавилова — Черенкова: открытие и применение


Физический институт им. П.Н. Лебедева РАН, Ленинский проспект 53, Москва, 119991, Российская Федерация

Излагается история открытия эффекта Вавилова — Черенкова. Рассмотрены некоторые важные приложения этого эффекта.

Текст pdf (502 Кб)
English fulltext is available at DOI: 10.3367/UFNe.0179.200911c.1161
PACS: 01.30.Bb, 01.65.+g, 29.40.Ka, 41.60.Bq (все)
DOI: 10.3367/UFNr.0179.200911c.1161
URL: https://ufn.ru/ru/articles/2009/11/c/
000285142100002
2-s2.0-77249144937
2009PhyU...52.1099B
Цитата: Болотовский Б М "Излучение Вавилова — Черенкова: открытие и применение" УФН 179 1161–1173 (2009)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

English citation: Bolotovskii B M “Vavilov-Cherenkov radiation: its discovery and applicationPhys. Usp. 52 1099–1110 (2009); DOI: 10.3367/UFNe.0179.200911c.1161

С.И. Вавилов — автор УФН

Список литературы (23) Статьи, ссылающиеся на эту (85) ↓ Похожие статьи (20)

  1. Bogdanov O V, Rozhkova E I J. Inst. 19 C11011 (2024)
  2. Xue Sh, Xu Ya et al Sci. China Phys. Mech. Astron. 67 (1) (2024)
  3. Bobylev D A, Siomash M D et al Instrum Exp Tech 67 82 (2024)
  4. Zhu J -F, Zhang Z -W et al 2024 IEEE International Conference on Plasma Science (ICOPS), (2024) p. 1
  5. Morrison A H E, Landry C, Ghandi K Can. J. Chem. (2024)
  6. Chaikovskaia A D, Karlovets D V, Serbo V G Phys. Rev. A 109 (1) (2024)
  7. Corbin B A, Lutter Ja C et al Comprehensive Inorganic Chemistry III (2023) p. 407
  8. Sorokin D A, Burachenko A G et al XVI International Conference on Pulsed Lasers and Laser Applications, (2023) p. 13
  9. Wang L, Song L et al J Radioanal Nucl Chem 332 143 (2023)
  10. Zhu Ju-F, Zhang Z-W et al 2023 24th International Vacuum Electronics Conference (IVEC), (2023) p. 1
  11. Zhang L, Yu Z, Liu W IEEE Trans. Plasma Sci. 51 104 (2023)
  12. Bianfei Sh, Fang L et al Future Oncol. 18 3101 (2022)
  13. Zhu Ju-F, Du Ch-H et al 2022 Photonics & Electromagnetics Research Symposium (PIERS), (2022) p. 736
  14. Xue Sh, Zeng Ya et al Opt. Lett. 47 2458 (2022)
  15. Baskov V A, Polyanskii V V Phys. Atom. Nuclei 85 1902 (2022)
  16. Tao Zh, Liu W 2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), (2022) p. 1
  17. Jia Ch, Liang Zh Entropy 24 1789 (2022)
  18. Ellingwood E, Benmansour H et al Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1039 167119 (2022)
  19. Morana A, Marin E et al Sensors 22 8175 (2022)
  20. Fares H Opt. Lett. 47 2915 (2022)
  21. Salas-Montiel R 129 (23) (2021)
  22. COLLAMATI Francesco, van OOSTEROM Matthias N et al Q J Nucl Med Mol Imaging 65 (3) (2021)
  23. Sun L, Liu W et al New J. Phys. 23 063031 (2021)
  24. Pakhomov A, Arkhipov R Phys. Rev. A 104 (3) (2021)
  25. Seetharam K, Shchadilova Yu et al Phys. Rev. Lett. 127 (18) (2021)
  26. Pratt E C, Tamura R, Grimm Ja Molecular Imaging (2021) p. 383
  27. Gevorkyan E A 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW), (2021) p. 83
  28. Liu Yu, Zhang L et al IEEE Trans. Plasma Sci. 49 3682 (2021)
  29. Potylitsyn A, Kube G et al Physics Letters A 417 127680 (2021)
  30. Pan Y, Gover A New J. Phys. 23 063070 (2021)
  31. Tarasenko V F, Baksht E Kh et al Opt. Spectrosc. 129 707 (2021)
  32. Lin Yu-Ch, Liu F, Huang Y-D Acta Phys. Sin. 69 154103 (2020)
  33. Korotchenko K B, Rozhkova E I, Dabagov S B Eur. Phys. J. C 80 (10) (2020)
  34. Liu W, Yu Z et al Phys. Rev. Applied 14 (1) (2020)
  35. Peshkov A A Can. J. Phys. 98 660 (2020)
  36. Clement S, Campbell Ja M et al Advanced Science 7 (24) (2020)
  37. Tarasenko V F, Baksht E Kh et al Jpn. J. Appl. Phys. 59 SHHD01 (2020)
  38. Korotchenko K B, Eikhorn Yu, Dabagov S B Radiation Physics and Chemistry 171 108719 (2020)
  39. L’Annunziata Michael F, Grahek Ž, Todorović Nataša Handbook of Radioactivity Analysis: Volume 2 (2020) p. 393
  40. Tao J, Wu L et al Carbon 150 136 (2019)
  41. Bolotovskii B M, Malykin G B Phys.-Usp. 62 1012 (2019)
  42. Leonhardt U, Rosenberg Yu Phys. Rev. A 100 (6) (2019)
  43. Korotchenko K B, Pivovarov Yu L et al Physics Letters B 795 592 (2019)
  44. Stater E P, Skubal M et al Topics in Medicinal Chemistry Vol. Fluorescent Imaging in Medicinal ChemistryThe Present and Future of Optical Imaging Technologies in the Clinic: Diagnosis and Therapy34 Chapter 84 (2019) p. 203
  45. Churyumov G, Qiu J, Wang N Electromagnetic Fields and Waves Chapter 2 (2019)
  46. Lin Yu, Liu F et al 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), (2019) p. 1
  47. Gevorkyan E A 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), (2018) p. 67
  48. Liu Yu, Liu W et al 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2018) p. 1
  49. Liu Yu, Liu W et al Opt. Express 26 34994 (2018)
  50. Kuzelev M V, Rukhadze A A Phys.-Usp. 61 748 (2018)
  51. Tamura R, Pratt E C, Grimm Ja Seminars in Nuclear Medicine 48 359 (2018)
  52. Lu L, Simpson R E, Valiyaveedu S K J. Opt. 20 103001 (2018)
  53. Liu F, Huang Y et al Smart Photonic and Optoelectronic Integrated Circuits XX, (2018) p. 14
  54. Grimm Ja Nat Biomed Eng 2 205 (2018)
  55. Gevorkyan E A Opt. Spectrosc. 125 227 (2018)
  56. Arkhipov R M, Zhiguleva D O et al Opt. Spectrosc. 124 536 (2018)
  57. Shaffer T M, Pratt E C, Grimm Ja Nature Nanotech 12 106 (2017)
  58. Gevorkyan E A 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW), (2017) p. 361
  59. Velazquez C A, Reyes J A, Vazquez G J Liquid Crystals 44 1104 (2017)
  60. Liu F, Xiao L et al Nature Photon 11 289 (2017)
  61. Arkhipov R M, Pakhomov A V et al Laser Phys. 27 053001 (2017)
  62. Liu W Sci Rep 7 (1) (2017)
  63. Liu F, Xiao L et al Conference on Lasers and Electro-Optics, (2017) p. FM4G.1
  64. Kryuchkov S I, Lanfear N A, Suslov S K Springer Proceedings in Mathematics & Statistics Vol. Analytic Number Theory, Modular Forms and q-Hypergeometric SeriesComplex Form of Classical and Quantum Electrodynamics221 Chapter 24 (2017) p. 409
  65. Bliokh K Y, Ivanov I P et al Physics Reports 690 1 (2017)
  66. Arkhipov R M, Pakhomov A V Opt. Spectrosc. 122 768 (2017)
  67. Liu W, Liang L, Jia Q Opt. Express 25 18216 (2017)
  68. Gevorkyan E A Opt. Spectrosc. 122 276 (2017)
  69. Barrera-Figueroa V, Rabinovich V S Russ. J. Math. Phys. 23 139 (2016)
  70. Ivanov I P, Serbo V G, Zaytsev V A Phys. Rev. A 93 (5) (2016)
  71. Pardy M Results in Physics 5 69 (2015)
  72. Burlak G, Rabinovich V Math Methods in App Sciences 38 2012 (2015)
  73. Grimm Ja Imaging and Visualization in The Modern Operating Room Chapter 8 (2015) p. 107
  74. Averkov Yu O, Prokopenko Yu V, Yakovenko V M J. Exp. Theor. Phys. 121 699 (2015)
  75. Blumenthal D T, Corn B W, Shtraus N Radiotherapy and Oncology 116 331 (2015)
  76. Bashmakov Yu A Успехи физических наук 185 502 (2015) [Bashmakov Yu A Phys.-Usp. 58 467 (2015)]
  77. Gevorkyan E A 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), (2015) p. 5
  78. Gevorkyan E A Opt. Spectrosc. 119 286 (2015)
  79. Arkhipov R M, Arkhipov M V et al Quantum Electron. 45 590 (2015)
  80. Gevorkyan E A Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, (2014) p. 793
  81. Gevorkyan E A 2014 XIXth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), (2014) p. 33
  82. Anishchenko S V, Baryshevsky V G, Gurinovich A A Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 293 35 (2012)
  83. Rabinovich V Russ. J. Math. Phys. 19 107 (2012)
  84. Arkhipov M V, Arkhipov R M, Tolmachev Yu A Opt. Spectrosc. 112 243 (2012)
  85. Malykin G B, Romanets E A Opt. Spectrosc. 112 920 (2012)

© Успехи физических наук, 1918–2024
Электронная почта: ufn@ufn.ru Телефоны и адреса редакции О журнале Пользовательское соглашение