PACS numbers

02.30.Em Potential theory 02.30.Hq Ordinary differential equations 45.20.−d Formalisms in classical mechanics 45.50.−j Dynamics and kinematics of a particle and a system of particles
  1. S.F. Garanin, S.D. Kuznetsov “Irrotational flow (of a magnetic field or incompressible fluid) around a screen with a slot63 1037–1042 (2020)
    02.30.Em, 41.20.Cv, 41.20.Gz, 47.15.Hg, (all)
  2. A.G. Shalashov “Can we refer to Hamilton equations for an oscillator with friction?61 1082–1088 (2018)
    45.05.+x, 45.20.−d (all)
  3. E.A. Arinstein “Relation between energy conservation and dynamics (Comment on "Analytical mechanics and field theory: derivation of equations from energy conservation" by N.A. Vinokurov (Usp. Fiz. Nauk 184 641 (2014) [Phys. Usp. 57 593 (2014)]))58 309–310 (2015)
    02.30.Em, 02.30.Hq, 45.20.−d, 45.50.−j (all)
  4. N.A. Vinokurov “Relation between energy conservation and equations of motion (A reply to the comment by E A Arinshtein (Usp. Fiz. Nauk 185 333 (2015) [Phys. Usp. 58 (3) (2015)]) on "Analytical mechanics and field theory: derivation of equations from energy conservation" (Usp. Fiz. Nauk 184 641 (2014) [Phys. Usp. 57 593 (2014)]))58 311–312 (2015)
    45.20.−d, 45.20.Jj, 45.20.dh, 45.50.−j (all)
  5. V.A. Saranin “Electrostatic oscillators55 700–708 (2012)
    01.50.Pa, 41.20.Cv, 45.50.−j (all)
  6. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)
    05.45.−a, 45.50.−j, 84.30.−r (all)
  7. A.I. Lavrova, E.B. Postnikov, Yu.M. Romanovsky “Brusselator: an abstract chemical reaction?52 1239–1244 (2009)
    02.30.Hq, 82.39.−k, 82.40.Bj (all)
  8. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativity46 1099–1103 (2003)
    03.30.+p, 45.50.−j (all)
  9. A.V. Kukushkin “An invariant formulation of the potential integration method for the vortical equation of motion of a material point45 1153–1164 (2002)
    45.20.−d, 45.50.Pk (all)
  10. S.V. Vonsovskii, M.S. Svirskii “The Klein paradox and the zitterbewegung of an electron in a field with a constant scalar potential36 (5) 436–439 (1993)
    03.65.Pm, 02.30.Em (all)
  11. S.P. Efimov “Fock theory modification into 4-d coordinate space. Harmonic tensors in quantum Coulomb problem”, accepted
    02.30.Em, 03.65.Ge, 03.65.Db (all)
© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions