Accepted articles

Methodological notes

To the problem of measurement in quantum mechanics

 a, b
a Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), ul. Novaya 100, Skolkovo, Moscow Region, 143025, Russian Federation

The probabilistic nature of measurements in quantum mechanics can be interpreted as because information loss inevitably arising from the chaotic dynamics of measuring devices.

Keywords: measurement in quantum mechanics, chaos, decoherence
PACS: 03.65.−w, 03.65.Yz (all)
DOI: 10.3367/UFNe.2022.07.039219
Citation: Rubtsov A N "To the problem of measurement in quantum mechanics" Phys. Usp., accepted

Received: 20th, November 2021, revised: 28th, June 2022, 10th, July 2022

Оригинал: Рубцов А Н «К вопросу об измерении в квантовой механике» УФН, принята к публикации; DOI: 10.3367/UFNr.2022.07.039219

Similar articles (20) ↓

  1. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherence61 1016–1025 (2018)
  2. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elements36 (9) 851–853 (1993)
  3. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  4. B.B. Kadomtsev “Irreversibility in quantum mechanics46 1183–1201 (2003)
  5. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentally55 796–807 (2012)
  6. A.A. Grib “On the problem of the interpretation of quantum physics56 1230–1244 (2013)
  7. V.Yu. Shishkov, E.S. Andrianov et alRelaxation of interacting open quantum systems62 510–523 (2019)
  8. P. Paradoksov “How quantum mechanics helps us understand classical mechanics9 618–620 (1967)
  9. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanics33 (1) 86–86 (1990)
  10. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron optics39 169–177 (1996)
  11. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’30 644–648 (1987)
  12. E.D. Trifonov “On the spin-statistics theorem60 621–622 (2017)
  13. I.F. Ginzburg “Particles in finite and infinite one-dimensional chains63 395–406 (2020)
  14. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  15. E.V. Shuryak “Stochastic trajectory generation by computer27 448–453 (1984)
  16. K.S. Vul’fson “Angular momentum of electromagnetic waves30 724–728 (1987)
  17. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equation33 (12) 1072–1072 (1990)
  18. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations46 293–307 (2003)
  19. V.K. Ignatovich “The neutron Berry phase56 603–604 (2013)
  20. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particle57 891–896 (2014)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions