Accepted articles

Reviews of topical problems

Baroclinic instability in geophysical hydrodynamics

, ,
A M Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, Moscow, 109017, Russian Federation

Baroclinic instability is the instability of the flows of a stratified rotating fluid medium with a vertical shear of velocity. Large-scale vortex formation in the atmosphere of Earth and other planets is associated with the realization of this instability. The review presents modern theoretical approaches to the study of this baroclinic instability. These include the description of the instability in terms of the interaction of the edge Rossby waves, the study of the problem of the optimal perturbations, namely the perturbations with a maximum rate of growth of energy or other functionals, the analysis of the non-linear dynamics of disturbances using low-mode approximations of the Galerkin method. The classical energy criteria for the stability of the zonal flows obtained by the direct Lyapunov—Arnold method are also considered. The results presented may be of interest to specialists in the field of continuum mechanics and astrophysics.

Keywords: geophysical hydrodynamics, baroclinic instability, energy criteria of stability, nonlinear perturbation dynamics, Galerkin method
PACS: 05.45.−a, 47.10.−g, 47.20.Ft, 47.20.Ky, 47.27.Cn, 47.32.−y, 47.32.Ef,, 47.85.Dh, 92.10.Lq, 92.60.−e, 92.60.Ek (all)
DOI: 10.3367/UFNe.2021.08.039046
Citation: Kalashnik M V, Kurgansky M V, Chkhetiani O G "Baroclinic instability in geophysical hydrodynamics" Phys. Usp., accepted

Received: 2nd, June 2021, revised: 20th, August 2021, 26th, August 2021

Оригинал: Калашник М В, Курганский М В, Чхетиани О Г «Бароклинная неустойчивость в геофизической гидродинамике» УФН, принята к публикации; DOI: 10.3367/UFNr.2021.08.039046

Similar articles (20) ↓

  1. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  2. A. Loskutov “Fascination of chaos53 1257–1280 (2010)
  3. S.V. Dmitriev, E.A. Korznikova et alDiscrete breathers in crystals59 446–461 (2016)
  4. V.B. Efimov “Acoustic turbulence of second sound waves in superfluid helium61 929–951 (2018)
  5. A.S. Monin “Hydrodynamic instability29 843–868 (1986)
  6. L.A. Ostrovskii, S.A. Rybak, L.Sh. Tsimring “Negative energy waves in hydrodynamics29 1040–1052 (1986)
  7. Yu.A. Stepanyants, A.L. Fabrikant “Propagation of waves in hydrodynamic shear flows32 783–805 (1989)
  8. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flows33 (1) 1–35 (1990)
  9. V.F. Kop’ev, S.A. Chernyshev “Vortex ring oscillations, the development of turbulence in vortex rings and generation of sound43 663–690 (2000)
  10. M.I. Rabinovich, M.K. Muezzinoglu “Nonlinear dynamics of the brain: emotion and cognition53 357–372 (2010)
  11. A.A. Makarov, A.L. Malinovsky, E.A. Ryabov “Intramolecular vibrational redistribution: from high-resolution spectra to real-time dynamics55 977–1007 (2012)
  12. V.S. Anishchenko, S.V. Astakhov “Poincaré recurrence theory and its applications to nonlinear physics56 955–972 (2013)
  13. A.V. Slunyaev, D.E. Pelinovsky, E.N. Pelinovsky “Rogue waves in the sea: observations, physics and mathematics”, accepted
  14. N.M. Astaf’eva “Wavelet analysis: basic theory and some applications39 1085–1108 (1996)
  15. A.B. Medvinskii, S.V. Petrovskii et alSpatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics45 27–57 (2002)
  16. F.I. Ataullakhanov, V.I. Zarnitsyna et alA new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation45 619–636 (2002)
  17. V.I. Klyatskin “Clustering and diffusion of particles and passive tracer density in random hydrodynamic flows46 667–688 (2003)
  18. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  19. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov “On the use of chaotic synchronization for secure communication52 1213–1238 (2009)
  20. S.P. Kuznetsov “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics54 119–144 (2011)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions