Accepted articles

Reviews of topical problems

Superconducting quantum fluctuations in one dimension

 a, b,  b, c
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
c Forschungszentrum Karlsruhe, Institute of Nanotechnology, Karlsruhe, Germany

We review some recent developments in the field of quasi-one-dimensional superconductivity. We demonstrate that low temperature properties of superconducting nanowires are essentially determined by quantum fluctuations. Smooth (Gaussian) fluctuations of the superconducting phase (also associated with plasma modes propagating along the wire) may significantly affect the electron density of states in such nanowires and induce persistent current noise in superconducting nanorings. Further interesting phenomena such as, e.g., non-vanishing resistance and shot noise of the voltage in current-biased superconducting nanowires, are caused by non-Gaussian fluctuations of the order parameter -- quantum phase slips (QPS). Such phenomena may be interpreted in terms of tunneling of fluxons playing the role of effective quantum "particles" dual to Cooper pairs and obeying complicated full counting statistics which reduces to Poissonian one in the low frequency limit. We also demonstrate that QPS effects may be particularly pronounced in thinnest wires and rings where quantum phase slips remain unbound and determine a non-perturbative length scale $L_c$ beyond which the supercurrent gets suppressed by quantum fluctuations. Accordingly, for $T \to 0$ such nanowires should become insulating at scales exceeding $L_c$, whereas at shorter length scales they may still exhibit superconducting properties. We argue that certain non-trivial features associated with quantum fluctuations of the order parameter may be sensitive to specific circuit topology and may be observed in structures like, e.g., a system of capacitively coupled superconducting nanowires.

Keywords: superconductivity, low-dimensional systems, quantum fluctuations, quantum phase slips
DOI: 10.3367/UFNe.2021.04.038962
Citation: Semenov A G, Zaikin A D "Superconducting quantum fluctuations in one dimension" Phys. Usp., accepted

Received: 24th, August 2020, revised: 5th, March 2021, 7th, April 2021

Оригинал: Семенов А Г, Заикин А Д «Сверхпроводящие квантовые флуктуации в одном измерении» УФН, принята к публикации; DOI: 10.3367/UFNr.2021.04.038962

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions