Issues

 / 

2025

 / 

July

  

Instruments and methods of investigation


Passive and active laser methods for studying kinetics of nonequilibrium processes in shock tubes

 
Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

A shock tube is one of the most versatile and precise instruments for studying the kinetics of high-temperature reactions in gaseous and heterogeneous media. The possibilities of detailed analyses of nonequilibrium processes occurring behind shock waves are completely determined by the use of a variety of modern diagnostic methods. Among them, various laser methods occupy a special place. As laser technologies develop, their capabilities are significantly expanded and, accordingly, new methods for their application are developed. This review presents the features of using various passive and active laser methods for studying the kinetics of nonequilibrium processes behind shock waves. Examples of the application of various laser methods are given, illustrating the wide possibilities and rich prospects for studying complex nonequilibrium processes that open up when combining a shock tube with modern laser technology.

Fulltext pdf (6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.01.039836
Keywords: shock tubes, shock waves, lasers, diagnostics, passive methods, active methods, nonequilibrium processes, kinetics
PACS: 07.35.+k, 42.62.−b, 47.40.−x (all)
DOI: 10.3367/UFNe.2025.01.039836
URL: https://ufn.ru/en/articles/2025/7/d/
001635891000004
2-s2.0-105013769657
2025PhyU...68..675E
Citation: Eremin A V "Passive and active laser methods for studying kinetics of nonequilibrium processes in shock tubes" Phys. Usp. 68 675–690 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, November 2024, revised: 9th, December 2024, 12th, January 2025

Оригинал: Еремин А В «Пассивные и активные лазерные методы исследования кинетики неравновесных процессов в ударных трубах» УФН 195 721–737 (2025); DOI: 10.3367/UFNr.2025.01.039836

References (75) ↓ Similar articles (20)

  1. Vieille P C.R. Acad. Sci. Paris 129 1228 (1899)
  2. Bazhenova T V, Soloukhin R I Proc. Of The Seventh Intern. Symp. On Combustion (London: Butterworths, 1959) p. 866
  3. Soloukhin R I Sov. Phys. Usp. 2 547 (1959); Soloukhin R I Usp. Fiz. Nauk 68 513 (1959)
  4. Glass I I, Gordon H J "Shock tubes" Handbook Of Supersonic Aerodynamics (Silver Spring, MD, 1959), Sect. 18
  5. Rakhmatullin Kh A, Semenov S S (Eds) Udarnye Truby (Shock Tubes) (Moscow: IL, 1962), Collection of translated articles
  6. Ferri A (Ed.) Fundamental Data Obtained From Shock-Tube Experiments (New York: Pergamon Press, 1961); Translated into Russian, Ferri A (Ed.) Osnovnye Rezul’taty Eksperimentov Na Udarnykh Trubakh (Moscow: Gosatomizdat, 1963)
  7. Losev S A, Osipov A I Sov. Phys. Usp. 4 525 (1962); Losev S A, Osipov A I Usp. Fiz. Nauk 74 393 (1961)
  8. Gaydon A G, Hurle I R The Shock Tube In High-Temperature Chemical Physics (New York: Reinhold Publ. Corp., 1963); Translated into Russian, Gaydon A G, Hurle I R Udarnaya Truba V Khimicheskoi Fizike Vysokikh Temperatur (Moscow: Mir, 1966)
  9. Stupochenko Ye V, Losev S A, Osipov A I Relaxation In Shock Waves (New York: Springer-Verlag, 1967); Translated from Russian, Stupochenko Ye V, Losev S A, Osipov A I Relaksatsionnye Protsessy V Udarnykh Volnakh (Moscow: Nauka, 1965)
  10. Zel’dovich Ya B, Raizer Yu P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover Publ., 2002); Translated from Russian, Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln I Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (Moscow: Nauka, 1966)
  11. Bazhenova T V et al Shock Waves In Real Gases (Washington: National Aeronautics and Space Administration, 1969); Translated from Russian, Bazhenova T V et al Udarnye Volny V Real’nykh Gazakh (Moscow: Nauka, 1968)
  12. National Standard Reference Data Series. National Institute of Standards and Technology, https://www.nist.gov/srd/national-standard-reference-data-series
  13. Fomin N A J. Eng. Phys. Thermophys. 83 1244 (2010); Fomin N A Inzh.-Fiz. Zh. 83 1058 (2010)
  14. Sakthi Balan G, Aravind Raj S Int. J. Impact Eng. 172 104406 (2023)
  15. Kiefer J H, Lutz R W Phys. Fluids 8 1393 (1965)
  16. Kiefer J H, Lutz R W J. Chem. Phys. 44 668 (1966)
  17. Kiefer J H Shock Waves In Chemistry (Ed. A Lifshitz) (New York: M. Dekker, 1981) p. 219
  18. Davidson D F et al Combustion Flame 224 2 (2021)
  19. Hanson R K, Davidson D F Prog. Energy Combust. Sci. 44 103 (2014)
  20. Hanson R K Proc. Combust. Inst. 33 (1) 1 (2011)
  21. Hanson R K, Davidson D F, in Proc. of the 25th Intern. Colloquium on the Dynamics of Explosions and Reactive Systems, ICDERS, August 2-7, 2015, Leeds, UK, Paper 260
  22. Wang S et al Proc. Combust. Inst. 39 755 (2023)
  23. Krish A, Streicher J W, Hanson R K J. Quant. Spectrosc. Radiat. Transfer 280 108073 (2022)
  24. Krish A, Streicher J W, Hanson R K 2021 Intern. Symp. on Molecular Spectroscopy (Virtual) June 21-25, 2021, Talk FF11
  25. Pinkowski N H et al Meas. Sci. Technol. 32 035501 (2021)
  26. Chao X et al Proc. Combust. Inst. 37 1345 (2019)
  27. Bohren C F, Huffman D R Absorption And Scattering Of Light By Small Particles (New York: Wiley, 1983)
  28. Eremin A, Gurentsov E, Mikheyeva E Combust. Flame 162 207 (2015)
  29. Eremin A V Prog. Energy Combust. Sci. 38 1 (2012)
  30. Gurentsov E V et al Kinetics Catalysis 46 309 (2005); Gurentsov E V et al Kinetika Kataliz 46 333 (2005)
  31. Nativel D et al Combust. Flame 243 111985 (2022)
  32. Emelianov A et al Proc. Combust. Inst. 30 1433 (2005)
  33. Emelianov A et al Proc. Combust. Inst. 35 1753 (2015)
  34. Eremin A V et al High Temp. 62 496 (2024); Eremin A V et al Teplofiz. Vys. Temp. 62 563 (2024)
  35. Dörge K J, Tanke D, Wagner H Gg Z. Phys. Chem. 212 219 (1999)
  36. Douce F et al Proc. Combust. Inst. 28 2523 (2000)
  37. Emelianov A et al Proc. Combust. Inst. 29 2351 (2002)
  38. Emel’yanov A V et al JETP Lett. 87 470 (2008); Emel’yanov A V et al Pis’ma Zh. Eksp. Teor. Fiz. 87 556 (2008)
  39. Eremin A V, Fortov V E Phys. Usp. 64 1073 (2021); Eremin A V, Fortov V E Usp. Fiz. Nauk 191 1131 (2021)
  40. Nativel D et al Proc. Combust. Inst. 39 1099 (2023)
  41. Drakon A V et al Kinetika Kataliz 65 609 (2024)
  42. Graham S C, Homer J B Recent Developments In Shock Tube Research, Proc. (Eds D Bershader, W Griffith) (Stanford, CA: Stanford Univ. Press, 1973) p. 712
  43. Graham S C, Homer J B, Rosenfeld J L Proc. R. Soc. London 344 259 (1975)
  44. Kellerer H et al Combust. Sci. Technol. 113 67 (1996)
  45. di Stasio S, Massoli P, Lazzaro M J. Aerosol Sci. 27 6897 (1996)
  46. Kellerer H, Wittig S Proc. of the 21th Intern. Symp. Shock Waves, 1998 p. 177
  47. Kellerer H, Koch R, Wittig S Combust. Flame 120 188 (2000)
  48. Melton L A Appl. Opt. 23 2201 (1984)
  49. Gurentsov E V Nanotechnol. Rev. 7 583 (2018)
  50. Schulz C et al Appl. Phys. B 83 333 (2006)
  51. Eremin A V, Gurentsov E V, Musikhin S A J. Alloy Compd. 727 711 (2017)
  52. Sipkens T A et al Appl. Phys. B 128 72 (2022)
  53. Eremin A V et al Appl. Phys. B 104 285 (2011)
  54. Gurentsov E V, Eremin A V, Mikheyeva E Yu High Temp. 55 723 (2017); Gurentsov E V, Eremin A V, Mikheyeva E Yu Teplofiz. Vys. Temp. 55 737 (2017)
  55. Drakon A V et al Combust. Explosion Shock Waves 58 430 (2022); Drakon A V et al Fiz. Goreniya Vzryva 58 (4) 41 (2022)
  56. Gurentsov E V, Drakon A V, Eremin A V, Kolotushkin R N, Mikheyeva E Yu High Temp. 60 335 (2022); Gurentsov E V, Drakon A V, Eremin A V, Kolotushkin R N, Mikheyeva E Yu Teplofiz. Vys. Temp. 60 374 (2022)
  57. Frenklach M, Wang H Symp. Int. Combust. 23 1559 (1991)
  58. Intern. Discussion Meeting and Workshop on Laser-Induced Incandescence: Quantitative Interpretation, Modelling, Application; http://liiscience.org
  59. Drakon A et al Combust. Flame 232 111548 (2021)
  60. Hanson R K et al NIST Fuel Summit, Sept. 7 - 10, 2008
  61. Mcmillin B K, Lee M P, Hanson R K AIAA J. 30 (2) 436 (1992)
  62. Mcmillin B K et al Proc. of the Twenty-Third Symp. (Intern.) on Combustion, 1990 (Pittsburgh, PA: The Combustion Institute, 1990) p. 1909
  63. Campbell M F et al Shock Waves 25 651 (2015)
  64. Hanson R K Proc. of the 19th Intern. Symp. on Shock Waves, 1993 p. 7
  65. Davidson D F, Chang A Y, Hanson R K Twenty-Second Symp. (Intern.) on Combustion (Pittsburgh, PA: The Combustion Institute, 1988) p. 1877
  66. Koshi M, Yoshimura M, Matsui H Chem. Phys. Lett. 176 519 (1991)
  67. Ohmori K et al Bull. Chem. Soc. Jpn. 65 1317 (1992)
  68. Eremin A V et al Chem. Phys. Rep. 17 1275 (1998); Eremin A V et al Khim. Fiz. 17 (7) 16 (1998)
  69. Bhaskaran K A, Roth P Prog. Energy Combust. Sci. 28 151 (2002)
  70. Bystrov N S et al High Temp. 62 705 (2024); Bystrov N S et al Teplof. Vys. Temp. 62 796 (2024)
  71. Bystrov N S et al Fiz.-Khim. Kinetika Gaz. Dinamike 25 1128 (2024)
  72. Bystrov N S et al Combust. Flame 258 113096 (2023)
  73. Ferris A M et al Combust. Flame 205 241 (2019)
  74. Susa A J, Zheng L, Hanson R K Proc. Combust. Inst. 39 1793 (2023)
  75. Figueroa-Labastida M et al Combust. Flame 260 113256 (2024)

© 1918–2026 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions