Issues

 / 

2025

 / 

June

  

Instruments and methods of investigation


Scaling of anomalous Hall effect as a method to determine percolation threshold and metal—insulator transition in magnetic nanocomposites with intergranular interaction

  a,  b,  b, c,  a,  a, d,  a,  a, e,  f,  f,  f,  f, g,   a, g, h
a National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
b P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
c HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
d Voronezh State Technical University, Moskovskii prosp. 14, Voronezh, 394026, Russian Federation
e Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
f Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
g Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
h Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences, ul. Mokhovaya 11, kor. 7, Moscow, 125009, Russian Federation

Using the example of nanocomposite (NC) films (CoFeB)x(LiNbO3)100−x, in which at relatively high temperatures of T ≿ 10 K a 'weakly insulating' regime is observed in the logarithmic temperature dependence of the conductivity σ ∝ ln T, characteristic of a strong tunnel coupling between granules, the scaling in the behavior of the anomalous Hall effect (AHE) resistance as a function of the longitudinal resistance ρAHE was studied in detail. The studies were carried out in fields up to 14 T at temperatures T = 0.4—200 K in the range of metallic phase content x ≈ 35—60 at.%, covering the percolation transition. It was found that the power n in the scaling dependence ρAHE ∝[ρ(T)]n behaves nonmonotonically. In the ranges x ≈ 35—44 at.% and x ≈ 50—60 at.%, an increase in the power is clearly observed, whereas in the interval x ≈ 44—50 at.%, the value of n remains practically unchanged. We believe that the kink regions in the dependence n(x) indicate a change in the NC conductivity mechanism and determine the percolation threshold (at xp ≈ 50 at.%) and the metal—insulator transition (xc ≈ 43—44 at.%), which do not coincide in these systems. The results of an analysis of the behavior of σ (T) at subhelium temperatures T = 0.4—3 K confirm this conclusion. Studies of the magnetic properties of NCs vs the metallic phase content x using ferromagnetic resonance and magneto-optical spectroscopy methods also indicate the pres„ence of specific features in the vicinity of concentrations x ≈ 44 and 50 at.%.

Fulltext pdf (987 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.11.039814
Keywords: anomalous Hall effect, nanocomposites, metal—insulator transition, percolation threshold
PACS: 64.60.ah, 71.30.+h, 75.47.−m (all)
DOI: 10.3367/UFNe.2024.11.039814
URL: https://ufn.ru/en/articles/2025/6/f/
001570951300008
2-s2.0-105011964867
2025PhyU...68..617N
Citation: Nikolaev S N, Drovosekov A B, Dmitrieva M Yu, Chernoglazov K Yu, Sitnikov A V, Taldenkov A N, Vasiliev A L, Gan’shina E A, Pripechenkov I M, Simdyanova M A, Granovsky A B, Rylkov V V "Scaling of anomalous Hall effect as a method to determine percolation threshold and metal—insulator transition in magnetic nanocomposites with intergranular interaction" Phys. Usp. 68 617–626 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, August 2024, 23rd, November 2024

Оригинал: Николаев С Н, Дровосеков А Б, Дмитриева М Ю, Черноглазов К Ю, Ситников А В, Талденков А Н, Васильев А Л, Ганьшина Е А, Припеченков И М, Симдянова М А, Грановский А Б, Рыльков В В «Cкейлинг аномального эффекта Холла как метод определения порога перколяции и перехода металл—изолятор в магнитных нанокомпозитах с межгранульным взаимодействием» УФН 195 658–668 (2025); DOI: 10.3367/UFNr.2024.11.039814

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions