Issues

 / 

2025

 / 

June

  

Conferences and symposia


Quantum computing with trapped ions: principles, achievements, and prospects

 a, b,  a, b,  a, b,  a, b,  a, b,  a, b,  a, b,  a, b,  a, b,  a, b,  a, b,  a, b,   a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation

Ultracold ions are among the most thriving physical platforms in the field of quantum computing: the long coherence time and the high gate fidelity lead in quantum volume (221) over other systems, including the superconducting platform (whose maximum demonstrated quantum volume is 29). Ion quantum computers have allowed implementing the deepest benchmarking algorithms to date and successfully demonstrating error correction codes, which opens up the prospect of moving from the current era of noisy quantum processors (NISQ) to the next era. In Russia, the field of ion quantum computers began to actively develop with the "Quantum Computing" Roadmap launched in 2020. In this review, we present the basic principles of operation of an ion quantum computer and discuss recent achievements in this area worldwide, along with the main results of our group obtained in implementing the Roadmap.

Fulltext pdf (5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.12.039884
Keywords: quantum computing, ions, Paul traps, qudits, quantum computers, surface traps
PACS: 03.67.−a, 03.67.Lx, 32.30.−r, 37.10.De, 37.10.Ty, 42.62.Fi (all)
DOI: 10.3367/UFNe.2024.12.039884
URL: https://ufn.ru/en/articles/2025/6/c/
001570951300002
2-s2.0-105011687031
2025PhyU...68..552Z
Citation: Zalivako I V, Semenin N V, Zhadnov N O, Galstyan K P, Kamenskikh P A, Smirnov V N, Korolkov Andrey Evgenyevich, Sidorov Pavel Leonidovich, Borisenko A S, Anosov Yu P, Semerikov I A, Khabarova K Yu, Kolachevsky N N "Quantum computing with trapped ions: principles, achievements, and prospects" Phys. Usp. 68 552–583 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, December 2024, 9th, December 2024

Îðèãèíàë: Çàëèâàêî È Â, Ñåìåíèí Í Â, Æàäíîâ Í Î, Ãàëñòÿí Ê Ï, Êàìåíñêèõ Ï À, Ñìèðíîâ Â Í, Êîðîëüêîâ À Å, Ñèäîðîâ Ï Ë, Áîðèñåíêî À Ñ, Àíîñîâ Þ Ï, Ñåìåðèêîâ È À, Õàáàðîâà Ê Þ, Êîëà÷åâñêèé Í Í «Êâàíòîâûå âû÷èñëåíèÿ íà  èîíàõ â ëîâóøêàõ: ïðèíöèïû, äîñòèæåíèÿ è ïåðñïåêòèâû» ÓÔÍ 195 585–620 (2025); DOI: 10.3367/UFNr.2024.12.039884

References (216) ↓ Cited by (3) Similar articles (20)

  1. The Nobel Prize in Physics 2012, https://www.nobelprize.org/prizes/physics/2012/summary/
  2. DiVincenzo D P Mesoscopic Electron Transport (NATO ASI Ser. E) Vol. 345 (Eds L L Sohn, L P Kouwenhoven, G Schön) (Dordrecht: Springer, 1997) p. 657
  3. Manin Yu I Vychislimoe I Nevychislimoe (Computable And Non-computable) (Moscow: Sov. Radio, 1980)
  4. Benioff P J. Stat. Phys. 22 563 (1980)
  5. Feynman R P Int. J. Theor. Phys. 21 467 (1982)
  6. Moses S A et al Phys. Rev. X 13 041052 (2023)
  7. Pogorelov I et al PRX Quantum 2 020343 (2021)
  8. Abdurakhimov L "Technology and performance benchmarks of IQM’s 20-qubit quantum computer" arXiv:2408.12433
  9. Acharya R et al (Google Quantum AI and Collab.) Nature 638 920 (2025); Acharya R et al (Google Quantum AI and Collab.) arXiv:2408.13687
  10. Chen J-S et al "Benchmarking a trapped-ion quantum computer with 30 qubits" arXiv:2308.05071
  11. IBM Quantum Platform (Accessed: 2024-10-15), https://quantum.ibm.com/, (IBM cloud platform)
  12. Cirq. An open source framework for programming quantum computers (Accessed: 2024-10-15), https://quantumai.google/cirq, (Google cloud platform cirq)
  13. Microsoft Azure (Accessed: 2024-10-15), https://azure.microsoft.com, (Azure Quantum cloud service)
  14. Lidiruyushchii Issledovatel’skii Tsentr. Kvantovye Vychisleniya (Leading Research Center. Quantum Computing, Accessed: 2024-10-15), https://qexplore-staging.lrc-quantum.ru, (LRC cloud platform)
  15. Cirac J I, Zoller P Phys. Rev. Lett. 74 4091 (1995)
  16. Leibfried D et al Rev. Mod. Phys. 75 281 (2003)
  17. Paul W, Steinwedel H Z. Naturforsch. A 8 448 (1953)
  18. Penning F M Physica 3 873 (1936)
  19. Hänsch T W, Schawlow A L Opt. Commun. 13 68 (1975)
  20. Wang P et al Nat. Commun. 12 233 (2021)
  21. Pino J M et al Nature 592 209 (2021)
  22. Stephenson L J et al Phys. Rev. Lett. 124 110501 (2020)
  23. Happer W Rev. Mod. Phys. 44 169 (1972)
  24. Harty T P et al Phys. Rev. Lett. 113 220501 (2014)
  25. Löschnauer C M et al "Scalable, high-fidelity all-electronic control of trapped-ion qubits" arXiv:2407.07694
  26. Lekitsch B et al Sci. Adv. 3 1601540 (2017); Lekitsch B et al arXiv:1508.00420
  27. Sørensen A, Mølmer K Phys. Rev. Lett. 82 1971 (1999); Sørensen A, Mølmer K quant-ph/9810039
  28. Baldwin C H et al Phys. Rev. A 103 012603 (2021)
  29. Nikolaeva A S et al "Scalable improvement of the generalized Toffoli gate realization using trapped-ion-based qutrits" arXiv:2407.07758
  30. Fang C et al "Realization of scalable Cirac-Zoller multi-qubit gates" arXiv:2301.07564
  31. Turchette Q A et al Phys. Rev. Lett. 81 3631 (1998)
  32. Schmidt-Kaler F et al Nature 422 408 (2003)
  33. Monroe C et al Phys. Rev. Lett. 75 4011 (1995)
  34. Turchette Q A et al Phys. Rev. A 61 063418 (2000); Turchette Q A et al quant-ph/0002040
  35. Lakhmanskiy K et al Phys. Rev. A 99 023405 (2019)
  36. Blümel R et al Phys. Rev. A 40 808 (1989)
  37. Benhelm J et al Phys. Rev. A 77 062306 (2008)
  38. Greenberger D M, Horne M A, Zeilinger A "Going beyond Bell’s theorem" Bell’s Theorem, Quantum Theory And Conceptions Of The Universe (Fundamental Theories of Physics) Vol. 37 (Ed. M Kafatos) (Dordrecht: Springer, 1989) p. 69
  39. Leibfried D et al Nature 422 412 (2003)
  40. Leibfried D et al Science 304 1476 (2004)
  41. Barrett M D et al Phys. Rev. A 68 042302 (2003); Barrett M D et al quant-ph/0307088
  42. Schmidt P O et al Science 309 749 (2005)
  43. Brewer S M et al Phys. Rev. Lett. 123 033201 (2019); Brewer S M et al arXiv:1902.07694
  44. Micke P et al Nature 578 60 (2020)
  45. Brickman K-A et al Phys. Rev. A 72 050306 (2005)
  46. Blatt R, Roos C F Nature Phys. 8 277 (2012); Johanning M, Varón A, Wunderlich C J. Phys. B 42 154009 (2009); Johanning M, Varón A, Wunderlich C arXiv:0905.0118
  47. Lanyon B P et al Science 334 57 (2011)
  48. Monz T et al Phys. Rev. Lett. 106 130506 (2011)
  49. Zhang J et al Nature 551 601 (2017)
  50. Guo S-A et al Nature 630 613 (2024); Guo S-A et al arXiv:2311.17163
  51. Zhu S-L, Monroe C, Duan L-M Phys. Rev. Lett. 97 050505 (2006)
  52. Choi T et al Phys. Rev. Lett. 112 190502 (2014)
  53. Debnath S et al Nature 536 63 (2016); Debnath S et al arXiv:1603.04512
  54. Bluvstein D et al Nature 626 58 (2024)
  55. Wineland D J et al J. Res. Natl. Inst. Stand. Technol. 103 259 (1998)
  56. Kielpinski D, Monroe C, Wineland D J Nature 417 709 (2002)
  57. Lobser D L et al "Precision control of ions in Sandia’s HOA Trap" Technical Report SAND2019-11932C (Albuquerque, NM: Sandia National Lab., 2019)
  58. Lobser D L et al "Quantum and classical control of ions in Sandia’s HOA Trap" Technical Report SAND2017-8584C (Albuquerque, NM: Sandia National Lab., 2017)
  59. Moehring D L et al New J. Phys. 13 075018 (2011); Moehring D L et al arXiv:1105.1834
  60. Shu G et al Phys. Rev. A 89 062308 (2014)
  61. Maunz P L et al "Ion traps for logical qubits" Technical Report SAND2017-1453C (Albuquerque, NM: Sandia National Lab., 2017)
  62. Cross A W et al Phys. Rev. A 100 032328 (2019); Cross A W et al arXiv:1811.12926
  63. Aaronson S, Chen L "Complexity-theoretic foundations of quantum supremacy experiments" arXiv:1612.05903
  64. Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume, https://www.quantinuum.com/blog/quantinuum-extends-its-significant-lead-in-quantum-computing-achieving-historic-milestones-for-hardware-fidelity-and-quantum-volume
  65. Zalivako I V et al Front. Quantum Sci. Technol. 2 1228208 (2023)
  66. Zalivako I V et al Quantum Rep. 7 (2) 19 (2025); Zalivako I V et al arXiv:2402.03121
  67. Zalivako I V et al JETP Lett. 114 59 (2021); Zalivako I V et al Pis’ma Zh. Eksp. Teor. Fiz. 114 53 (2021)
  68. Zalivako I V et al Phys. Rev. A 111 052436 (2025); Zalivako I V et al arXiv:2406.12007
  69. Nikolaeva A S, Kiktenko E O, Fedorov A K Phys. Rev. A 109 022615 (2024)
  70. Podlesnyy A et al "Parallel coupling of trapped ions in multiple individual wells" arXiv:2211.07121v1, (14 Nov. 2022); Podlesnyy A et al https://arxiv.org/pdf/2211.07121v1
  71. Anikin E et al Phys. Rev. A 108 022402 (2023)
  72. Aksenov M A et al Phys. Rev. A 107 052612 (2023)
  73. Kazmina A S et al Phys. Rev. A 109 032619 (2024)
  74. Floquet G Ann. Sci. L’École Normale Supérieure 12 47 (1883)
  75. Brouard S, Plata J Phys. Rev. A 63 043402 (2001)
  76. Dubin D H E Phys. Rev. Lett. 71 2753 (1993)
  77. Manning T A "Quantum information processing with trapped ion chains" PhD Thesis (College Park, MD: Univ. of Maryland, 2014); https://duke.app.box.com/s/7425eold3cfnodaklmec52xcp62kgtxs
  78. James D F V Appl. Phys. B 66 181 (1998)
  79. Schmidt-Kaler F et al Appl. Phys. B 77 789 (2003)
  80. Pagano G et al Quantum Sci. Technol. 4 014004 (2019)
  81. Monroe C et al Phys. Rev. A 89 022317 (2014)
  82. Rowe M A et al Quantum Inform. Comput. 2 (4) 257 (2002)
  83. Chiaverini J et al Quantum Inform. Comput. 5 419 (2005)
  84. Seidelin S et al Phys. Rev. Lett. 96 253003 (2006)
  85. House M G Phys. Rev. A 78 033402 (2008)
  86. Littich G "Electrostatic control and transport of ions on a planar trap for quantum information processing" Master’s Thesis (Berkeley, CA: Univ. of California, 2011)
  87. Kaushal V et al AVS Quantum Sci. 2 014101 (2020)
  88. Kaufmann H et al Phys. Rev. A 95 052319 (2017)
  89. Brownnutt M et al Rev. Mod. Phys. 87 1419 (2015)
  90. Brown K R et al Nat. Rev. Mater. 6 892 (2021)
  91. Romaszko Z D et al Nat. Rev. Phys. 2 285 (2020)
  92. Bruzewicz C D et al Appl. Phys. Rev. 6 021314 (2019)
  93. Revelle M C "Phoenix and peregrine ion traps" arXiv:2009.02398
  94. Gerasin I et al Quantum Rep. 6 442 (2024)
  95. Suleimen Y et al Phys. Rev. A 109 022605 (2024)
  96. Abbasov T, Zibrov S, Sherstov I JETP Lett. 118 215 (2023); Abbasov T, Zibrov S, Sherstov I Pis’ma Zh. Eksp. Teor. Fiz. 118 212 (2023)
  97. Ryan-Anderson C et al Phys. Rev. X 11 041058 (2021)
  98. Ballance T G et al Rev. Sci. Instrum. 89 053102 (2018)
  99. Leibrandt D R et al Phys. Rev. A 76 055403 (2007)
  100. DeVoe R G, Kurtsiefer Ch Phys. Rev. A 65 063407 (2002)
  101. Daniilidis N et al New J. Phys. 13 013032 (2011)
  102. Krutyanskiy V et al Phys. Rev. Lett. 130 050803 (2023)
  103. Lucas D M et al Phys. Rev. A 69 012711 (2004)
  104. Kjærgaard N et al Appl. Phys. B 71 207 (2000)
  105. Gulde S et al Appl. Phys. B 73 861 (2001)
  106. Wells J E et al Phys. Rev. A 95 053416 (2017)
  107. Cetina M et al Phys. Rev. A 76 041401 (2007)
  108. Lucas D M et al "A long-lived memory qubit on a low-decoherence quantum bus" arXiv:0710.4421
  109. Wright K et al Nat. Commun. 10 5464 (2019)
  110. Leu A D et al Phys. Rev. Lett. 131 120601 (2023)
  111. Nikolaeva A S, Kiktenko E O, Fedorov A K EPJ Quantum Technol. 11 43 (2024)
  112. Ralph T C, Resch K J, Gilchrist A Phys. Rev. A 75 022313 (2007)
  113. Nikolaeva A S, Kiktenko E O, Fedorov A K Phys. Rev. A 105 032621 (2022)
  114. Nikolaeva A S, Kiktenko E O, Fedorov A K Entropy 25 387 (2023)
  115. Low P J, White B, Senko C "Control and readout of a 13-level trapped ion qudit" arXiv:2306.03340
  116. Ruster T et al Appl. Phys. B 122 254 (2016)
  117. Blakestad R B et al Phys. Rev. A 84 032314 (2011)
  118. Merkel B et al Rev. Sci. Instrum. 90 044702 (2019)
  119. Viola L, Lloyd S Phys. Rev. A 58 2733 (1998)
  120. Valahu C H et al J. Phys. B 55 204003 (2022)
  121. Ringbauer M et al Nat. Phys. 18 1053 (2022)
  122. Olmschenk S et al Phys. Rev. A 76 052314 (2007)
  123. Christensen J E et al Npj Quantum Inform. 6 35 (2020)
  124. An F A et al Phys. Rev. Lett. 129 130501 (2022)
  125. Crain S et al Commun. Phys. 2 97 (2019)
  126. Zalivako I V et al Quantum Electron. 47 426 (2017); Zalivako I V et al Kvantovaya Elektron. 47 426 (2017)
  127. Koo K et al Phys. Rev. A 69 043402 (2004)
  128. Sugiyama K Jpn. J. Appl. Phys. 38 2141 (1999)
  129. Goodwin J F et al Phys. Rev. Lett. 116 143002 (2016)
  130. Han D-J et al Phys. Rev. Lett. 85 724 (2000)
  131. Che H et al Phys. Rev. A 96 013417 (2017)
  132. Sidorov P L et al Bull. Lebedev Phys. Inst. 46 138 (2019); Sidorov P L et al Kratk. Soobsch. Fiz. FIAN (4) 46 (2019)
  133. Semenin N V et al JETP Lett. 116 77 (2022); Semenin N V et al Pis’ma Zh. Eksp. Teor. Fiz. 116 74 (2022)
  134. King B E et al Phys. Rev. Lett. 81 1525 (1998)
  135. Roos Ch et al Phys. Rev. Lett. 83 4713 (1999)
  136. Letchumanan V et al Phys. Rev. A 75 063425 (2007)
  137. Chen J-S et al Phys. Rev. A 102 043110 (2020)
  138. Lechner R et al Phys. Rev. A 93 053401 (2016)
  139. Zhang J et al Phys. Rev. Applied 18 014022 (2022)
  140. Lin Y et al Phys. Rev. Lett. 110 153002 (2013)
  141. Jordan E et al Phys. Rev. Lett 122 053603 (2019)
  142. Semerikov I A et al J. Russ. Laser Res. 39 568 (2018)
  143. Feng L et al Phys. Rev. Lett. 125 053001 (2020)
  144. Mao Z-C et al Phys. Rev. Lett. 127 143201 (2021)
  145. Wübbena J B et al Phys. Rev. A 85 043412 (2012)
  146. Barrett M D et al Phys. Rev. A 68 042302 (2003)
  147. Yum D et al J. Korean Phys. Soc. 77 1143 (2020)
  148. Tanaka U et al Appl. Phys. B 121 147 (2015)
  149. Cui K et al J. Phys. B 51 045502 (2018)
  150. Todaro S L et al Phys. Rev. Lett. 126 010501 (2021)
  151. Semenin N V et al JETP Lett. 114 486 (2021); Semenin N V et al Pis’ma Zh. Eksp. Teor. Fiz. 114 553 (2021)
  152. Chen J-S et al Quantum 8 1516 (2024)
  153. Quantinuum System Model H2. Product Data Sheet, Version 2.00, October 15, 2024, https://docs.quantinuum.com/systems/data_sheets/Quantinuum%20H2%20Product%20Data%20Sheet.pdf
  154. Myerson A H et al Phys. Rev. Lett. 100 200502 (2008); Myerson A H et al arXiv:0802.1684
  155. Hampel B et al Appl. Phys. Lett. 122 174001 (2023)
  156. Nielsen M A, Chuang I L Quantum Computation And Quantum Information (Cambridge: Cambridge Univ. Press, 2010)
  157. Srinivas R et al Nature 597 209 (2021)
  158. Johanning M et al Phys. Rev. Lett. 102 073004 (2009)
  159. Abdel-Hafiz M et al "Guidelines for developing optical clocks with 10−18 fractional frequency uncertainty" arXiv:1906.11495
  160. Lee P J et al J. Opt. B 7 (10) S371 (10)
  161. McKay D C et al Phys. Rev. A 96 022330 (2017)
  162. Hrmo P et al Nat. Commun. 14 2242 (2023)
  163. Riebe M et al Phys. Rev. Lett. 97 220407 (2006)
  164. Mohseni M, Rezakhani A T, Lidar D A Phys. Rev. A 77 032322 (2008)
  165. Knill E et al Phys. Rev. A 77 012307 (2008)
  166. Arute F et al Nature 574 505 (2019)
  167. Greenbaum D "Introduction to quantum gate set tomography" arXiv:1509.02921
  168. Campbell W C et al Phys. Rev. Lett. 105 090502 (2010)
  169. Smith M C et al Phys. Rev. Lett. 134 230601 (2025); Smith M C et al arXiv:2412.04421
  170. Bermudez A et al Phys. Rev. X 7 041061 (2017)
  171. Ballance C J et al Phys. Rev. Lett. 117 060504 (2016)
  172. Gaebler J P et al Phys. Rev. Lett. 117 060505 (2016)
  173. Keselman A et al New J. Phys. 13 073027 (2011)
  174. Ospelkaus C et al Nature 476 181 (2011)
  175. Shappert C M et al New J. Phys. 15 083053 (2013)
  176. Brown K R et al Phys. Rev. A 84 030303 (2011)
  177. Hahn E L Phys. Rev. 80 580 (1950)
  178. Roos C F New J. Phys. 10 013002 (2008)
  179. Wimperis S J. Magn. Reson. A 109 221 (1994)
  180. Brown K R, Harrow A W, Chuang I L Phys. Rev. A 70 052318 (2004)
  181. Low G H, Yoder T J, Chuang I L Phys. Rev. A 89 022341 (2014)
  182. Cummins H K, Llewellyn G, Jones J A Phys. Rev. A 67 042308 (2003)
  183. Bando M et al J. Phys. Soc. Jpn. 82 014004 (2013)
  184. Kabytayev C et al Phys. Rev. A 90 012316 (2014)
  185. Paz-Silva G A, Viola L Phys. Rev. Lett. 113 250501 (2014)
  186. Ball H, Biercuk M J EPJ Quantum Technol. 2 11 (2015)
  187. Mount E et al Phys. Rev. A 92 060301 (2015)
  188. Soare A et al Nature Phys. 105 825 (2014)
  189. DiVincenzo D P Fortschr. Phys. 48 771 (2000)
  190. Diedrich F et al Phys. Rev. Lett. 62 403 (1989)
  191. Morigi G, Eschner J, Keitel C H Phys. Rev. Lett. 85 4458 (2000)
  192. Evers J, Keitel C H Europhys. Lett. 68 370 (2004)
  193. Kranzl F et al Phys. Rev. A 105 052426 (2022)
  194. Wang K et al Quantum Sci. Technol. 7 044005 (2022)
  195. Gunton W, Semczuk M, Madison K M Opt. Lett. 40 4372 (2015)
  196. Aolita L et al Phys. Rev. A 76 040303 (2007)
  197. Blinov B B et al Quantum Inform. Process. 3 45 (2004)
  198. Sackett C A et al Nature 404 256 (2000)
  199. IonQ Forte, https://ionq.com/quantum-systems/forte
  200. Erhard A et al Nat. Commun. 10 5347 (2019)
  201. Zhang S et al Nat. Commun. 11 587 (2020)
  202. Schäfer V M et al Nature 555 75 (2018)
  203. Hughes A C et al Phys. Rev. Lett. 125 080504 (2020)
  204. Clark C R et al Phys. Rev. Lett. 127 130505 (2021)
  205. Johnson K G et al Rev. Sci. Instrum. 87 053110 (2016)
  206. Berkeland D J, Boshier M G Phys. Rev. A 65 033413 (2002)
  207. Zalivako I V et al Quantum Electron. 50 850 (2020); Zalivako I V et al Kvantovaya Elektron. 50 850 (2020)
  208. Galstyan K P, Zalivako I V, Kryuchkov D S, Kolachevsky N N Radiophys. Quantum Electron. 67 13 (2024); Galstyan K P, Zalivako I V, Kryuchkov D S, Kolachevsky N N Izv. Vyssh. Uchebn. Zaved. Radiofiz. 67 (1) 15 (2024)
  209. Benhelm J et al Nature Phys. 4 463 (2008)
  210. Bharti K, Haug T Phys. Rev. A 104 L050401 (2021)
  211. Bharti K, Haug T Phys. Rev. A 104 042418 (2021)
  212. Haug T, Bharti K Quantum Sci. Technol. 7 045019 (2022)
  213. Bharti K et al Phys. Rev. A 105 052445 (2022)
  214. Zalivako I V et al "Experimental factoring integers using fixed-point-QAOA with a trapped-ion quantum processor" arXiv:2503.10588
  215. Main D et al Nature 638 383 (2025); Main D et al arXiv:2407.00835
  216. Mintert F, Wunderlich C Phys. Rev. Lett. 87 257904 (2001)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions