Issues

 / 

2025

 / 

April

  

On the 270th Anniversary of the M.V. Lomonosov Moscow State University (MSU). Instruments and methods of investigation


Effect of increasing the coefficient of backscattered electrons for multilayer nanostructures and image contrast inversion in scanning electron microscopy

 ,  
Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

We discuss the reasons for an increase in the coefficient of backscattered electrons (BSEs) for multilayer film nanostructures during their study with a scanning electron microscope (SEM) and consider the conditions for the occurrence of contrast inversion of their images. A complete analytical expression for the signal detected in the BSE regime by an SEM is derived for the first time for multilayer nanostructures. Solving direct and inverse problems relating the signal values to the composition of a three-dimensional sample as a function of the energy of probe electrons allows the thicknesses and depths of nano-objects to be determined in a matrix array with high spatial resolution. The main calculations in this paper are performed using refined empirical formulas corresponding to the experimental data obtained by the authors or presented in the cited literature.

Fulltext pdf (698 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.01.039838
Keywords: scanning electron microscopy, backscattered electrons, multilayer thin-film structures, image contrast
PACS: 68.37.−d, 68.37.Hk (all)
DOI: 10.3367/UFNe.2025.01.039838
URL: https://ufn.ru/en/articles/2025/4/g/
001513421700006
2-s2.0-105006653901
2025PhyU...68..401R
Citation: Rau E I, Zaitsev S V "Effect of increasing the coefficient of backscattered electrons for multilayer nanostructures and image contrast inversion in scanning electron microscopy" Phys. Usp. 68 401–407 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, June 2024, revised: 5th, December 2024, 13th, January 2025

Оригинал: Рау Э И, Зайцев С В «Эффект увеличения коэффициента обратно рассеянных электронов на многослойных наноструктурах и инверсия контраста изображений в сканирующей электронной микроскопии» УФН 195 425–431 (2025); DOI: 10.3367/UFNr.2025.01.039838

References (39) ↓ Cited by (1)

  1. Reimer L Scanning Electron Microscopy. Physics Of Image Formation And Microanalysis (Springer Series in Optical Sciences) Vol. 45 2nd ed. (Berlin: Springer, 1998)
  2. Goldstein J I et al Scanning Electron Microscopy And X-Ray Microanalysis (New York: Springer, 1981); Translated into Russian, Goldstein J I et al Rastrovaya Elektronnaya Mikroskopiya I Rentgenovskii Mikroanaliz ((Moscow: Mir, 1984)
  3. DeNee P B Scanning Electron Microscopy Vol. 1 (Ed. O Johari) (AMF O’Hare (Chicago), IL: Scanning Electron Microscopy, Inc., 1978) p. 479
  4. Dapor M Phys. Rev. B 43 10118 (1991)
  5. Dapor M Phys. Rev. B 48 3003 (1993)
  6. Assa’d A M D Appl. Phys. A 124 699 (2018)
  7. Afanas’ev V P, Kaplya P S, Kostanovskii I A Poverkhnost’ Rentgen. Sinkhrotron. Neitron. Issled. (2) 30 (2013)
  8. Mikheev N N Poverkhnost’ Rentgen. Sinkhrotron. Neitron. Issled. (12) 70 (2020)
  9. Zaitsev S V, Kupreenko S Yu, Rau E I, Tatarintsev A A Instrum. Exp. Tech. 58 757 (2015); Zaitsev S V, Kupreenko S Yu, Rau E I, Tatarintsev A A Prib. Tekh. Eksp. (6) 51 (2015)
  10. Niedrig H Optica Acta Int. J. Opt. 24 679 (1977)
  11. Zaitsev S V, Zykova E Yu, Rau E I, Tatarintsev A A, Kiselevskii V A Instrum. Exp. Tech. 66 1058 (2023); Zaitsev S V, Zykova E Yu, Rau E I, Tatarintsev A A, Kiselevskii V A Prib. Tekh. Eksp. (6) 167 (2023)
  12. Jackson A R et al Surf. Interface Analysis 25 (5) 341 (1997)
  13. Karavaev M B et al Semiconductors 51 54 (2017); Karavaev M B et al Fiz. Tekh. Poluprovodn. 51 (1) 56 (2017)
  14. August H-J, Wernisch J J. Microscopy 157 (2) 247 (1990)
  15. Rau E I, Zaitsev S V, Karaulov V Yu Tech. Phys. Lett. 48 (23) 18 (2022); Rau E I, Zaitsev S V, Karaulov V Yu Pis’ma Zh. Tekh. Fiz. 48 (23) 22 (2022)
  16. Fitting H-J et al J. Electron Spectrosc. Related Phenom. 159 (1-3) 46 (2007)
  17. Aristov V V, Dremova N N, Likharev S K, Rau E I Elektron. Promyshlennost’ (2) 44 (1990)
  18. Aristov V V et al Acta Phys. Polon. A 83 (1) 81 (1993)
  19. Hejna J Scanning 14 256 (1992)
  20. Orlikovsky N A, Rau E I Bull. Russ. Acad. Sci. Phys. 75 1234 (2011); Orlikovsky N A, Rau E I Izv. Ross. Akad. Nauk Ser. Fiz. 75 1305 (2011)
  21. Kowoll T et al Scanning 4907457 (2017)
  22. Lutter F et al Nucl. Instrum. Meth. Phys. Res. B 500-501 10 (2021)
  23. Zschech E, Yun W, Schneider G Appl. Phys. A 92 423 (2008)
  24. Zegenhagen J Synchrotron Light Sources And Free-Electron Lasers. Accelerator Physics, Instrumentation And Science Applications (Eds E J Jaeschke et al.) 2nd ed. (Cham: Springer, 2020) p. 1825
  25. Matveevskii K et al J. Appl. Crystallogr. 57 1288 (2024)
  26. Kim H et al J. Electron Microsc. 59 (5) 379 (2010)
  27. Sánchez E, Torres Deluigi M, Castellano G Microscopy Microanalysis 18 1355 (2012)
  28. Wilson D J, Curzon A E Thin Solid Films 165 217 (1988)
  29. Arnal F, Verdier P, Vincensini P C. R. Acad. Sci. 268 1526 (1969)
  30. Hunger H J, Küchler L Phys. Status Solidi A 56 (1) K45 (1979)
  31. Staub P-F J. Phys. D 27 1533 (1994)
  32. Bronstein I M, Freiman B S Vtorichnaya Elektronnaya Emissiya (Secondary Electron Emission) (Moscow: Nauka, 1969)
  33. Joy D C Scanning 17 (5) 270 (1995)
  34. Frank L et al Microchim. Acta 132 179 (2000)
  35. Fitting H-J J. Electron Spectrosc. Related Phenom. 136 (3) 265 (2004)
  36. Fitting H-J J. Phys. D 8 1480 (1975)
  37. Cosslett V E, Thomas R N Br. J. Appl. Phys. 15 883 (1964)
  38. August H-J, Wernisch J Ultramicroscopy 32 (2) 113 (1990)
  39. Reimer L, Senkel R Optik 98 (3) 85 (1995)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions