Issues

 / 

2025

 / 

March

  

Instruments and methods of investigation


Terahertz polarization converters: physical principles, design, and applications

  a,  b
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b Tydex LLC, Domostroitelnaya str. 16, St. Peterburg, 194292, Russian Federation

The paper examines the basic physical principles of the operation of terahertz (THz) polarization converters and discusses the main types of polarizers, including those based on wire girds, films, metamaterials, etc. More sophisticated devices based on polarizers made of stacks of segmented, achromatic, and tunable composite waveplates, including those operating over a wide wavelength range, and on THz polarization filters are considered. The basic principles of their calculation using the Jones formalism are described.

Fulltext pdf (7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2024.09.039770
Keywords: THz polarimetry, waveplates, retardation, quartz optics, Jones formalism
PACS: 07.57.−c, 42.25.Ja, 42.81.Gs (all)
DOI: 10.3367/UFNe.2024.09.039770
URL: https://ufn.ru/en/articles/2025/3/f/
001497810700006
2-s2.0-105003160541
2025PhyU...68..294K
Citation: Kaveev A K, Kropotov G I "Terahertz polarization converters: physical principles, design, and applications" Phys. Usp. 68 294–314 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, May 2024, revised: 28th, July 2024, 24th, September 2024

Оригинал: Кавеев А К, Кропотов Г И «Преобразователи поляризации терагерцового излучения: физические принципы, устройство и применение» УФН 195 311–333 (2025); DOI: 10.3367/UFNr.2024.09.039770

References (130) ↓ Similar articles (9)

  1. Federici J F et al Semicond. Sci. Technol. 20 S266 (2005)
  2. Friederich F et al IEEE Trans. Terahertz Sci. Technol. 1 183 (2011)
  3. Ajito K, Ueno Y IEEE Trans. Terahertz Sci. Technol. 1 293 (2011)
  4. Humphreys K et al The 26th Annual Intern. Conf. of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 2004 p. 1302
  5. Zhang X-C, Xu J Introduction To THz Wave Photonics (New York: Springer-Verlag, 2010) p. 49-52
  6. Taylor Z D et al IEEE Trans. Terahertz Sci. Technol. 1 201 (2011)
  7. Nuss M C, Orenstein J Millimeter And Submillimeter Wave Spectroscopy Of Solids (Topics in Applied Physics) Vol. 74 (Eds G Grüner) (Berlin: Springer, 2007) p. 7
  8. Gong Y et al Microw. Opt. Technol. Lett. 63 1605 (2021)
  9. Bréhat F, Wyncke B Int. J. Infrared Millimeter Waves 18 1663 (1997)
  10. Zubair A et al Appl. Phys. Lett. 108 141107 (2016)
  11. Kyoung J et al Nano Lett. 11 4227 (2011)
  12. Anjali, Varshney R, Kumar S J. Opt. Soc. Am. B 40 1688 (2023)
  13. Zaman A M et al Front. Nanotechnol. 5 1 (2023)
  14. Yan F et al J. Infrared Millimeter Terahertz Waves 34 489 (2013)
  15. TYDEX. THz Film Polarizers, https://www.tydexoptics.com/products/thz_polarizers/thz_polarizers1/
  16. Vickers D G, Robson E I, Beckman J E Appl. Opt. 10 682 (1971)
  17. Martin D H, Puplett E Infrared Phys. 10 105 (1970)
  18. Costley A E et al J. Opt. Soc. Am. 67 979 (1977)
  19. Sentz A et al Rev. Sci. Instrum. 49 926 (1978)
  20. Shapiro J B, Bloemhof E E Int. J. Infrared Millimeter Waves 11 973 (1990)
  21. Hu Y et al J. Aerospace Eng. 233 1916 (2019)
  22. TYDEX. THz Wire Grid Polarizers, https://www.tydexoptics.com/products/thz_polarizers/thz_polarizers/
  23. Moon S, Kim D J. Opt. Soc. Am. A 23 199 (2006)
  24. Liao Y-L, Zhao Y Opt. Quantum Electron. 46 641 (2014)
  25. Lalanne P, Hugonin J-P J. Opt. Soc. Am. A 15 1843 (1998)
  26. Haggans C W, Li L, Kostuk R K J. Opt. Soc. Am. A 10 2217 (1993)
  27. Kim D, Burke K Appl. Opt. 42 6321 (2003)
  28. Thurman S T, Morris G M Appl. Opt. 42 3225 (2003)
  29. Chen C, Lu Z, Zhao B Proc. SPIE 4223 101 (2000)
  30. Boedecker G, Henkel C Opt. Express 11 1590 (2003)
  31. Koschny T et al Phys. Rev. Lett. 93 107402 (2004)
  32. Li L J. Opt. Soc. Am. A 13 1870 (1996)
  33. Dai M et al Opt. Express 23 15390 (2015)
  34. Gorelik G S Kolebaniya I Volny: Vvedenie V Akustiku, Radiofiziku I Optiku (Oscillations And Waves: Introduction To Acoustics, Radiophysics, And Optics) (Moscow: Fizmatgiz, 1959)
  35. Dorn R, Quabis S, Leuchs G J. Mod. Opt. 50 1917 (2003)
  36. Dorn R, Quabis S, Leuchs G Phys. Rev. Lett. 91 233901 (2003)
  37. Quabis S et al Opt. Commun. 179 1 (2000)
  38. Hall D G Opt. Lett. 21 9 (1996)
  39. Zhan Q Adv. Opt. Photon. 1 1 (2009)
  40. Gori F, Guattari G, Padovani C Opt. Commun. 64 491 (1987)
  41. Quabis S, Dorn R, Leuchs G Appl. Phys. B 81 597 (2005)
  42. Novotny L, Hecht B Principles Of Nano-Optics (Cambridge: Cambridge Univ. Press, 2006)
  43. Maekawa A, Uesaka M, Tomizawa H Proc. of the 30th Intern. Free Electron Laser Conf., FEL08, Gyeongju, Korea p. 435-438; https://jacow.org/FEL2008/papers/TUPPH082.pdf
  44. Machavariani G et al Opt. Commun. 281 732 (2008)
  45. TYDEX. THz Waveplates, https://www.tydexoptics.com/products/thz_polarizers/thz_waveplate/
  46. Wikipedia. Wollaston prism, https://en.wikipedia.org/wiki/Wollaston_prism
  47. Azimuth Photonics, Thorlabs’ Wollaston prisms, https://azimp.ru/thorlabs/wollaston-polarizer/
  48. StudFiles. St. Petersburg State Univ. of Information Technologies, Mechanics and Optics. Laboratory work No. 16 "Opredelenie kontsentratsii rastvora sakhara s pomoshch’yu polyarimetra" ("Measuring the concentration of sugar solution with a polarimeter"), https://studfile.net/preview/6074976/
  49. Bennett J M Handbook Of Optics (Ed. in Chief M Bass) 2nd ed. (New York: McGraw-Hill, 1995) p. 3.13-3.14
  50. Archard J F, Taylor A M J. Sci. Instrum. 25 407 (1948)
  51. Wikipedia. Glan—Taylor prism, https://en.wikipedia.org/wiki/Glan%E2%80%93Taylor_prism; https://commons.wikimedia.org/wiki/File:Glan-foucault.png?uselang=ru
  52. Fan J-Y, Li H-X, Wu F-Q Opt. Commun. 223 11 (2003)
  53. Vardaxoglou J C Frequency Selective Surfaces: Analysis And Design (Electronic and Electrical Engineering Research Studies. Antennas Ser.) Vol. 10 (Taunton: Research Studies Press, New York: J. Wiley, 1997)
  54. Munk B A Frequency Selective Surfaces: Theory And Design (New York: John Wiley, 2000)
  55. Wu T-K Encyclopedia Of RF And Microwave Engineering (Ed. K Chang) (Hoboken, NJ: John Wiley, 2005)
  56. Suresh Kumar N et al Crystals 11 518 (2021)
  57. Yen T J et al Science 303 1494 (2004)
  58. Moser H O et al Phys. Rev. Lett. 94 063901 (2005)
  59. Peralta X G et al Opt. Express 17 773 (2009)
  60. Pisano G et al Appl. Opt. 55 10255 (2016)
  61. Acuna G et al Opt. Express 16 18745 (2008)
  62. Strikwerda A C et al Opt. Express 17 136 (2009)
  63. Masson J-B, Gallot G Opt. Lett. 31 265 (2006)
  64. Zhang X et al Opt. Mater. Express 10 282 (2020)
  65. Cong L et al Laser Photon. Rev. 8 626 (2014)
  66. Kawada Y et al Opt. Lett. 39 2794 (2014)
  67. Nagai M et al Opt. Lett. 39 146 (2014)
  68. Kanda N, Konishi K, Kuwata-Gonokami M Opt. Express 15 11117 (2007)
  69. Hsieh C-F et al Opt. Lett. 31 1112 (2006)
  70. Tsai T-R et al Appl. Opt. 42 2372 (2003)
  71. Pan R-P et al Mol. Cryst. Liquid Cryst. 409 137 (2004)
  72. Chen C-Y et al Appl. Phys. Lett. 83 4497 (2003)
  73. Chen C-Y et al Opt. Express 12 2625 (2004)
  74. Tsai T-R et al IEEE Microwave Wireless Comp. Lett. 14 77 (2004)
  75. Zhang B, Gong Y Opt. Express 23 14897 (2015)
  76. Drysdale T D et al Electron. Lett. 37 149 (2001)
  77. Drysdale T D et al IEEE Trans. Antennas Propag. 51 3072 (2003)
  78. Savini G, Pisano G, Ade P A R Appl. Opt. 45 8907 (2006)
  79. Pancharatnam S Proc. Indian Acad. Sci. 41 130 (1955)
  80. Ma J et al Chin. J. Astron. Astrophys. 8 349 (2008)
  81. Kang G et al Opt. Express 18 1695 (2010)
  82. Chen Z et al Opt. Commun. 311 1 (2013)
  83. Kaveev A K et al Appl. Opt. 52 B60 (2013)
  84. TYDEX. THz Broad-Band Phase Transformers, https://www.tydexoptics.com/products/thz_polarizers/thz_converters/
  85. Yariv A, Yeh P Optical Waves In Crystal: Propagation And Control Of Laser Radiation (New York: John Wiley and Sons, 1984) p. 132-158
  86. Clark Jones R J. Opt. Soc. Am. 31 488 (1941)
  87. Kirkpatrick S, Gelatt C D (Jr.), Vecchi M P Science 220 671 (1983)
  88. Press W H et al The Art Of Scientific Computing (Cambridge: Cambridge Univ. Press, 1997)
  89. Schneider P et al J. Appl. Phys. 96 420 (2004)
  90. Kvon Z-D et al Physica E 40 1885 (2008)
  91. Ganichev S, Prettl W Intense Terahertz Excitation Of Semiconductors (Oxford: Oxford Univ. Press, 2006)
  92. Darsht M "Vliyanie sredy i vneshnikh vozdeistvii na rasprostranenie polyarizovannogo sveta’’ (Effect of a medium and external influences on propagation of polarized light)" PhD Thesis (Phys.-Math. Sci.) (Chelyabinsk: Chelyabinsk State Technical Univ., 1996)
  93. Kaveev A K et al Appl. Opt. 53 5410 (2014)
  94. TYDEX. Tunable THz Polarization Converter, https://www.tydexoptics.com/products/thz_polarizers/tunable_thz_polarization_converter/
  95. Zhang T, Popov D, Khodzitsky M Proc. of the 46th Intern. Conf. on Infrared, Millimeter and Terahertz Waves, IRMMW-THz, 29 August 2021 - 03 September 2021, Chengdu, China
  96. Rosenberg W J, Title A M Proc. SPIE 0307 120 (1982)
  97. Zhang T, Kropotov G, Khodzitsky M Opt. Continuum 2 1597 (2023)
  98. Tikhonov A N, Arsenin V Ya Solutions Of Ill-Posed Problems (Washington, DC: Halsted Press, 1977); Translated from Russian, Tikhonov A N, Arsenin V Ya Metody Resheniya Nekorrektnykh Zadach (Moscow: Nauka, 1979)
  99. Zhiglinskii A G, Kuchinskii V V Real’nyi Interferometr Fabri-Pero (Real Fabry-Perot Interferometer) (Moscow: Mashinostroenie, 1983)
  100. Ikram M, Hussain G Appl. Opt. 38 113 (1999)
  101. Deyanov R Z, Shchedrin B M Prikl. Matem. Inform. (30) 46 (2008)
  102. Malakhov A N Kumulyantnyi Analiz Sluchainykh Negaussovykh Protsessov I Ikh Preobrazovanii (Cumulant Analysis Of Random Non-Gaussian Processes And Their Transformations) (Moscow: Soviet Radio, 1978)
  103. Tikhonov A N, Samarskii A A Equations Of Mathematical Physics (Oxford: Pergamon Press, 1990), translated from 5th Russian ed.; Tikhonov A N, Samarskii A A Uravneniya Matematicheskoi Fiziki 7th ed. (Moscow: Nauka, 2004)
  104. Zhdanov A I Comput. Math. Math. Phys. 52 194 (2012); Zhdanov A I Zh. Vychisl. Matem. Matem. Fiz. 52 205 (2012)
  105. Bloom A L J. Opt. Soc. Am. 64 447 (1974)
  106. Kobtsev S M Opt. Spectrosc. 63 672 (1987); Kobtsev S M Opt. Spektrosk. 63 1139 (1987)
  107. Lee Y L et al Opt. Lett. 32 2813 (2007)
  108. Evans J W J. Opt. Soc. Am. 48 142 (1958)
  109. Zhou Y et al J. Opt. Soc. Am. A 20 733 (2003)
  110. Shabtay G et al Opt. Express 10 1534 (2002)
  111. Yang X et al J. Opt. Soc. Am. A 22 752 (2005)
  112. Wang X, Yao J Appl. Opt. 31 4505 (1992)
  113. Preuss D R, Gole J L Appl. Opt. 19 702 (1980)
  114. Mentel J, Schmidt E, Mavrudis T Appl. Opt. 31 5022 (1992)
  115. Title A M Appl. Opt. 15 2871 (1976)
  116. von Willisen F K Appl. Opt. 5 97 (1966)
  117. Title A M Appl. Opt. 14 445 (1975)
  118. Melich R, Melich Z, Šolc I Proc. SPIE 7018 701854 (2008)
  119. Melich R, Melich Z, Šolc I The Physics Of Chromospheric Plasmas (ASP Conf. Ser.) Vol. 368 (Eds P Heinzel, I Dorotovič, R J Rutten) (San Francisco, CA: Astronomical Society of the Pacific, 2007) p. 621
  120. Yu X J et al Displays 23 145 (2002)
  121. Yeh P Opt. Commun. 29 1 (1979)
  122. Pinnow D A et al Appl. Phys. Lett. 34 391 (1979)
  123. Tarry H A Electron. Lett. 11 471 (1975)
  124. Šolc I J. Opt. Soc. Am. 55 621 (1965)
  125. Vasil’ev N, Zelevinskii A "Mnogochleny Chebysheva i rekurrentnye sootnosheniya (Chebyshev polynomials and recurrence relations)" Kvant (1) 12 (1982)
  126. Ho I-C et al Opt. Lett. 33 1401 (2008)
  127. Chen C-Y et al Appl. Phys. Lett. 88 101107 (2006)
  128. Ghosh A, Chakraborty A K Opt. Acta 29 1407 (1982)
  129. Jung H Int. J. Opt. Hindawi 2010 1 (2010)
  130. Hong H-G et al Opt. Express 17 15455 (2009)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions