Issues

 / 

2025

 / 

March

  

Reviews of topical problems


State-of-the-art and prospective materials for thermal barrier coatings

 
Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, ul. Pervomayskaya 91, Ekaterinburg, 620219, Russian Federation

Gas-turbine engines are widely used in the electric power and aircraft industries. To reduce the extreme high-temperature load on combustion chamber elements, thermal barrier coatings are used: refractory ceramics sputtered on heat-resistant nickel alloys, which enables a significant reduction in the substrate temperature. An urgent task is to further increase the operating temperature of gas-turbine engines to enhance their efficiency. Due to the combination of physicochemical properties such as low thermal conductivity, the moderate thermal-expansion coefficient, and high thermal resistance and hardness, zirconium dioxide stabilized with yttrium oxide is conventionally used in industry. However, due to a phase transition in yttrium-stabilized zirconium dioxide (YSZ) occurring at operating temperatures, the working temperatures of gas-turbine engines cannot be further increased. To solve this problem, two major approaches are applied: further modification of zirconium dioxide (its doping) and the search for new alternative materials. By now, a vast set of candidates has been explored, including various complex oxides such as perovskites (SrCeO3), pyrochlores (La2Zr2O7), and fluorites (La2Ce2O7). None of the examined materials in their original form can substitute for YSZ in gas-turbine engines. To optimize properties of new refractory materials, doping is used, the boundary case of which is the creation of high-entropy materials. By mixing five or more cations in the equiatomic proportion, extremely low thermal conductivity and enhanced thermal stability can be attained, so such materials are considered the most promising candidates for obtaining thermal-barrier coatings for next-generation gas-turbine engines. Basic materials and high-entropy oxides based on them, considered alternatives to YSZ, are reviewed.

Typically, an English full text is available in about 1 month from the date of publication of the original article.

Correspondence should be addressed to  shishkin@ihim.uran.ru
Keywords: thermal barrier coatings, zirconium dioxide, thermal conductivity, high-entropy oxides
PACS: 65.40.−b
DOI: 10.3367/UFNe.2024.07.039716
URL: https://ufn.ru/en/articles/2025/3/b/
Citation: Shishkin R A "State-of-the-art and prospective materials for thermal barrier coatings" Phys. Usp. 68 (3) (2025)

Received: 27th, December 2023, revised: 5th, July 2024, 8th, July 2024

Оригинал: Шишкин Р А «Современные и перспективные материалы для термобарьерных покрытий» УФН 195 245–259 (2025); DOI: 10.3367/UFNr.2024.07.039716

References (151) ↓ Similar articles (6)

  1. Aleksashina A A, Podgornyi A V Naukosfera (5(2)) 32 (2022)
  2. Cherezov A V, Grabchak E P Nadezhnost’ Bezopasnost’ Energetiki 10 92 (2017)
  3. GOST 5632-2014. Mezhgosudarstvennyi standart. Nerzhaveyushchie stali i splavy korrozionno-stoikie, zharostoikie i zharoprochnye. Marki. Izmenennaya redaktsiya. Izmenenie №1, s Popravkoi, https://docs.cntd.ru/document/1200113778?ysclid=lpqk1nlo9p576066714, accessed December 4, 2023
  4. Xiang H et al J. Adv. Ceram. 10 385 (2021)
  5. Liu B et al J. Mater. Sci. Technol. 35 833 (2019)
  6. Padture N P, Gell M, Jordan E H Science 296 280 (2002)
  7. Guy O et al "Rapid Nanomechanical Property Mapping of Thermal Barrier Coatings" (2022) https://www.azonano.com/article.aspx?ArticleID=6229, accessed December 26, 2023
  8. Vaßen R et al Surf. Coat. Technol. 205 938 (2010)
  9. Bun’kova O I, Bogatova T F "Vliyanie vpryska para v gazovuyu turbinu na effektivnost’ tsikla" Energo- i Resursosberezhenie. Energoobespechenie. Netraditsionnye i Vozobnovlyaemye Istochniki Energii. Atomnaya Energetika (Pod red. V Yu Baldina, G I Nikitinoi, I S Seleznevoi) (Ekaterinburg: UrFU, 2018) p. 794-797
  10. Yuan J et al J. Alloys Compd. 740 519 (2018)
  11. Zhang J et al Surf. Coat. Technol. 323 18 (2017)
  12. Ozgurluk Y et al Surf. Coat. Technol. 411 126969 (2021)
  13. Yang P et al Ceram. Int. 46 21367 (2020)
  14. Dudnik E V et al Powder Metallurgy Metal Ceram. 59 179 (2020)
  15. Chen D et al J. Therm. Spray Technol. 32 1327 (2023)
  16. Fan W et al J. Eur. Ceram. Soc. 38 4502 (2018)
  17. Xue Z et al J. Mater. Res. Technol. 26 7237 (2023)
  18. Boissonnet G et al Surf. Coat. Technol. 389 125566 (2020)
  19. Keyvani A et al J. Asian Ceram. Soc. 8 336 (2020)
  20. Zhao P et al Ceram. Int. 49 19402 (2023)
  21. Thakare J G et al Met. Mater. Int. 27 1947 (2021)
  22. Chellaganesh D, Khan M A, Jappes J T W Mater. Today Proc. 45 1529 (2021)
  23. Sharma P, Dwivedi V K, Kumar D Advances In Fluid And Thermal Engineering. Select Proc. Of FLAME 2020 (Lecture Notes in Mechanical Engineering, Eds B S Sikarwar, B Sundén, Q Wang) (Singapore: Springer, 2021) p. 77
  24. Uchida N Int. J. Engine Res. 23 3 (2020)
  25. Yuan J et al Ceram. Int. 47 14515 (2021)
  26. Zhang H et al Ceram. Int. 46 18114 (2020)
  27. Li F et al J. Adv. Ceram. 8 576 (2019)
  28. Zhou L et al J. Eur. Ceram. Soc. 40 5731 (2020)
  29. Sun M et al Ceram. Int. 45 12101 (2019)
  30. Zheng Q et al J. Alloys Compd. 855 157408 (2021)
  31. Che J e al. Ceram. Int. 47 6996 (2021)
  32. Ma W et al J. Alloys Compd. 660 85 (2016)
  33. Ren K et al J. Eur. Ceram. Soc. 41 1720 (2021)
  34. Parchovianská I et al Materials 15 4007 (2022)
  35. Praveen K et al Corros. Sci. 195 109948 (2022)
  36. Zhong X et al J. Mater. Sci. Technol. 85 141 (2021)
  37. Ok K M et al J. Eur. Ceram. Soc. 37 281 (2017)
  38. Dharuman N et al Bull. Mater. Sci. 44 8 (2021)
  39. Liu Y et al Mater. Res. Lett. 7 145 (2019)
  40. Ma W et al J. Therm. Spray Technol. 17 831 (2008)
  41. Ma W et al J. Am. Ceram. Soc. 91 2630 (2008)
  42. Xiaoge C et al Ceram. Int. 46 14273 (2020)
  43. Liu Y et al J. Am. Ceram. Soc. 101 3527 (2018)
  44. Yamanaka S et al J. Am. Ceram. Soc. 88 1496 (2005)
  45. Yamanaka S et al J. Nucl. Mater. 344 61 (2005)
  46. Liu Y et al Ceram. Int. 44 16475 (2018)
  47. Carlsson L Acta Cryst. 23 901 (1967)
  48. Ahtee M, Glazer A M, Hewat A W Acta Cryst. B 34 752 (1978)
  49. Yamanaka S et al J. Alloys Compd. 352 52 (2003)
  50. Shishkin R A et al Ceram. Int. 48 27003 (2022)
  51. Li C et al Ceram. Int. 44 18213 (2018)
  52. Li C et al Ceram. Int. 45 21467 (2019)
  53. Yu Y et al Ceram. Int. 49 25875 (2023)
  54. Ren K et al Scr. Mater. 178 382 (2020)
  55. Liu D et al J. Adv. Ceram. 11 961 (2022)
  56. Zhu S et al J. Am. Ceram. Soc. 106 6279 (2023)
  57. Guo Y et al J. Eur. Ceram. Soc. 42 6614 (2022)
  58. Zhang Z et al J. Mater. Res. Technol. 26 4179 (2023)
  59. Matovic B et al Ceram. Int. 44 16972 (2018)
  60. Yang P et al Ceram. Int. 46 21367 (2020)
  61. Vassen R et al J. Am. Ceram. Soc. 83 2023 (2000)
  62. Shishkin R A Ceram. Int. 49 31539 (2023)
  63. Marrero-López D et al J. Alloys Compd. 422 249 (2006)
  64. Sun Z et al J. Eur. Ceram. Soc. 28 2895 (2008)
  65. Sun Z, Li M, Zhou Y J. Eur. Ceram. Soc. 29 551 (2009)
  66. Sun Z et al J. Am. Ceram. Soc. 90 2535 (2007)
  67. Sun Z et al J. Am. Ceram. Soc. 91 2623 (2008)
  68. Jiang B et al Mater. Res. Bull. 45 1506 (2010)
  69. Xu Q-L et al Surf. Coat. Technol. 398 126093 (2020)
  70. Jadhav M et al J. Alloys Compd. 783 662 (2019)
  71. Shahbazi H et al J. Therm. Spray Technol. 33 430 (2024)
  72. Wellman R G, Deakin M J, Nicholls J R Wear 258 349 (2005)
  73. Dong H et al Surf. Coat. Technol. 467 129694 (2023)
  74. Raza A et al Materials 15 6329 (2022)
  75. Chen D J. Therm. Spray Technol. 31 429 (2022)
  76. Chevallier J et al Emergent Mater. 4 1499 (2021)
  77. Pakseresht A H et al Mater. Chem. Phys. 173 395 (2016)
  78. Shi J et al Chem. Eng. J. 412 128613 (2021)
  79. Getto E et al Heliyon 9 e16583 (2023)
  80. Sehhat M H, Chandler J, Yates Z Int. J. Refract. Metals Hard Mater. 103 105764 (2022)
  81. Lashmi P G et al J. Eur. Ceram. Soc. 40 2731 (2020)
  82. Mittal G, Paul S J. Therm. Spray Technol. 31 1443 (2022)
  83. Pawlowski L Surf. Coat. Technol. 203 2807 (2009)
  84. Ganvir A et al J. Eur. Ceram. Soc. 39 470 (2019)
  85. Jordan E H et al J. Therm. Spray Technol. 13 57 (2004)
  86. Ma K, Tang X, Schoenung J M J. Wuhan Univ. Technol. Mater. Sci. Ed. 31 35 (2016)
  87. Bons J P J. Turbomach. 132 021004 (2010)
  88. Pu J "Experimental simulations of effects of surface roughness level of TBC on overall effectiveness of film cooling model" SSRN (2022)
  89. Rajasekaran B, Mauer G, Vaßen R J. Therm. Spray Technol. 20 1209 (2011)
  90. Sivakumar R, Mordike B L Surf. Eng. 4 127 (1988)
  91. Leyens C et al Surf. Coat. Technol. 120-121 68 (1999)
  92. Nicholls J R et al Surf. Coat. Technol. 151-152 383 (2002)
  93. Sidhu T S, Prakash S, Agrawal R D Marine Technol. Soc. J. 39 (2) 53 (2005)
  94. Mahade S et al Coatings 11 86 (2021)
  95. Liu L et al Phys. Procedia 18 206 (2011)
  96. Kulkarni A et al Mater. Sci. Eng. A 359 100 (2003)
  97. Luo J, Stevens R Ceram. Int. 25 281 (1999)
  98. Movchan B A, Lemkey F D Surf. Coat. Technol. 165 90 (2003)
  99. Lima R S J. Therm. Spray Technol. 31 396 (2022)
  100. Bernard B et al Surf. Coat. Technol. 318 122 (2017)
  101. Dobbins T A, Knight R, Mayo M J J. Therm. Spray Technol. 12 214 (2003)
  102. Zotov N et al Surf. Coat. Technol. 205 452 (2010)
  103. Rätzer-Scheibe H-J, Schulz U, Krell T Surf. Coat. Technol. 200 5636 (2006)
  104. Li H et al Surf. Coat. Technol. 182 227 (2004)
  105. Urbina M et al Manufacturing Rev. 5 9 (2018)
  106. Owoseni T A "Development of nanostructured ceramic coatings from suspension and solution precursor thermal spraying process" PhD Thesis (Nottingham: Univ. Nottingham, 2021)
  107. Akrami S et al Mater. Sci. Eng. R 146 100644 (2021)
  108. Banerjee R et al ACS Sustainable Chem. Eng. 8 17022 (2020)
  109. Wright A J, Luo J J. Mater. Sci. 55 9812 (2020)
  110. Zhang P et al J. Alloys Compd. 898 162858 (2022)
  111. Spiridigliozzi L et al Acta Mater. 202 181 (2021)
  112. Hutterer P, Lepple M J. Am. Ceram. Soc. 106 1547 (2023)
  113. Yang H et al Ceram. Int. 48 6956 (2022)
  114. Rost C M et al Nat. Commun. 6 8485 (2015)
  115. Oses C, Toher C, Curtarolo S Nat. Rev. Mater. 5 295 (2020)
  116. Harrington T J et al Acta Mater. 166 271 (2019)
  117. Gild J et al J. Eur. Ceram. Soc. 38 3578 (2018)
  118. Zhang Y et al Scr. Mater. 164 135 (2019)
  119. Zhou L et al J. Eur. Ceram. Soc. 40 5731 (2020)
  120. Zhao Z et al J. Adv. Ceram. 9 303 (2020)
  121. Zhang D et al Ceram. Int. 50 2490 (2024)
  122. Lu Y et al Crystals 13 445 (2023)
  123. Zhang S et al Ceram. Int. 50 4573 (2024)
  124. Biesuz M et al J. Asian Ceram. Soc. 7 127 (2019)
  125. Ren K et al Scr. Mater. 178 382 (2020)
  126. Cong L et al J. Mater. Sci. Technol. 101 199 (2022)
  127. Wright A J et al J. Eur. Ceram. Soc. 40 2120 (2020)
  128. Deng S et al J. Mater. Sci. Technol. 107 259 (2022)
  129. Zhao Z et al J. Mater. Sci. Technol. 35 2647 (2019)
  130. Vayer F et al J. Alloys Compd. 883 160773 (2021)
  131. Yang H et al Ceram. Int. 48 6956 (2022)
  132. Cong L et al J. Mater. Sci. Technol. 101 199 (2022)
  133. Lilin L et al Ceram. Int. 48 14980 (2022)
  134. Tang A et al Ceram. Int. 48 5574 (2022)
  135. Haoming Z et al Ceram. Int. 48 8380 (2022)
  136. Zhang H et al Ceram. Int. 48 1512 (2022)
  137. Liu K et al Mater. Sci. Eng. A 625 177 (2015)
  138. Zhang D et al Ceram. Int. 48 1349 (2022)
  139. Yao Y, Yang F, Zhao X J. Am. Ceram. Soc. 105 35 (2021)
  140. Liew S L et al J. Alloys Compd. 904 164097 (2022)
  141. Zhang F et al J. Mater. Sci. Technol. 105 122 (2022)
  142. Sun G, Wang W, Sun X Ceram. Int. 48 8589 (2022)
  143. Li C et al Ceram. Int. 48 11124 (2022)
  144. Jiang S et al Scr. Mater. 142 116 (2018)
  145. Yu P et al Ceram. Int. 48 15992 (2022)
  146. Zhou S et al Chem. Eng. J. 427 131684 (2022)
  147. Lou Z et al J. Eur. Ceram. Soc. 42 3480 (2022)
  148. Zhan H et al Int. J. Appl. Ceram. Technol. 20 1764 (2022)
  149. Zhang P et al J. Mater. Sci. Technol. 97 182 (2022)
  150. Sharma Y et al Phys. Rev. Materials 2 060404 (2018)
  151. Tang L et al J. Am. Ceram. Soc. 104 1953 (2021)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions