Issues

 / 

2025

 / 

November

  

Methodological notes


Noether formalism for constructing conserved quantities in teleparallel equivalents of general relativity

  a, b,   c, §  c
a Department of Physics, Ariel University, Ramat HaGolan Str. 65, Ariel, 40700, Israel
b Department of Physics, Bar Ilan University, Max ve-Anna Webb Str. 1, Ramat Gan, 5290002, Israel
c Lomonosov Moscow State University, Shternberg State Astronomical Institute, Universitetskii prosp. 13, Moscow, 119234, Russian Federation

This paper has a methodological character, where we present a comprehensive formalism for constructing conserved quantities in the Teleparallel Equivalent of General Relativity (TEGR) and Symmetric Teleparallel Equivalent of General Relativity (STEGR). It was developed in a series of our earlier studies. and here, we combine them into a complete form. By employing the Noether method within a tensor formalism, conserved currents, superpotentials, and charges are constructed. These are shown to be covariant under coordinate transformations and local Lorentz rotations in TEGR, while, in STEGR, they are covariant under coordinate transformations. The teleparallel (flat) connections in both theories are defined using the 'turning off gravity' principle. Uniting such defined flat connections with the tetrad in TEGR and metric in STEGR, a new notion — 'gauge' — fruitful in applications, is introduced. The choice of various initial tetrads in TEGR or initial coordinates in STEGR leads to different gauges, giving different conserved quantities. Finally, we discuss an appropriate choice of gauges from a possible set of them.

Fulltext pdf (398 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.05.039924
Keywords: teleparallel gravity, Noether theorem, conserved currents, superpotentials, conserved charges, gauges
PACS: 04.20.−q, 04.20.Cv, 04.50.Kd (all)
DOI: 10.3367/UFNe.2025.05.039924
URL: https://ufn.ru/en/articles/2025/11/i/
Citation: Emtsova E D, Petrov A N, Toporensky A V "Noether formalism for constructing conserved quantities in teleparallel equivalents of general relativity" Phys. Usp. 68 1164–1172 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, February 2025, 20th, May 2025

Оригинал: Емцова Е Д, Петров А Н, Топоренский А В «Формализм Нётер в построении сохраняющихся величин в телепараллельных эквивалентах общей теории относительности» УФН 195 1235–1244 (2025); DOI: 10.3367/UFNr.2025.05.039924

References (31) ↓ Similar articles (20)

  1. Jiménez J B, Heisenberg L, Koivisto T S Universe 5 (7) 173 (2019)
  2. Heisenberg L Phys. Rep. 796 1 (2019)
  3. Aldrovandi R, Pereira J G Teleparallel Gravity: An Introduction (Fundamental Theories of Physics) Vol. 173 (Dordrecht: Springer, 2013)
  4. Bahamonde S et al Rep. Prog. Phys. 86 026901 (2023)
  5. Adak M et al Int. J. Geom. Meth. Mod. Phys. 20 2350215 (2023)
  6. Maluf J W, Faria F F, Ulhoa S C Class. Quantum Grav. 24 2743 (2007)
  7. Lucas T G, Obukhov Yu N, Pereira J G Phys. Rev. D 80 064043 (2009)
  8. Obukhov Yu N, Rubilar G F Phys. Rev. D 73 124017 (2006)
  9. Obukhov Yu N, Rubilar G F, Pereira J G Phys. Rev. D 74 104007 (2006)
  10. Bahamonde S, Järv L Eur. Phys. J. C 82 963 (2022)
  11. Gomes D A, Jiménez J B, Koivisto T S arXiv:2205.09716
  12. Obukhov Yu N, Rubilar G F Phys. Rev. D 74 064002 (2006)
  13. Heisenberg L Phys. Rep. 1066 1 (2024)
  14. Emtsova E D, Petrov A N, Toporensky A V Class. Quantum Grav. 37 095006 (2020)
  15. Emtsova E D, Petrov A N, Toporensky A V J. Phys. Conf. Ser. 1557 012017 (2020)
  16. Emtsova E D, Krššák M, Petrov A N, Toporensky A V Eur. Phys. J. C 81 743 (2021)
  17. Emtsova E D, Krššák M, Petrov A N, Toporensky A V J. Phys. Conf. Ser. 2081 012017 (2021)
  18. Emtsova E D, Petrov A N Space Time Fundamental Interactions (39) 18 (2022)
  19. Emtsova E D, Petrov A N Gen. Relativ. Gravit. 54 114 (2022)
  20. Emtsova E D, Petrov A N, Toporensky A V Eur. Phys. J. C 83 366 (2023)
  21. Emtsova E D, Petrov A N, Toporensky A V Eur. Phys. J. C 84 215 (2024)
  22. Emtsova E D, Petrov A N, Toporensky A V Eur. Phys. J. C 85 23 (2025)
  23. Landau L D, Lifshits E M Teoriya Polya 7-e izd., ispr. (M.: Nauka, 1988); Per. na angl. yaz., Landau L D, Lifshitz E M The Classical Theory Of Fields 4th rev. ed. (Oxford: Pergamon Press, 1975)
  24. Mitskevich N V Fizicheskie Polya v Obshchei Teorii Otnositel’nosti (M.: Nauka, 1969)
  25. Petrov A N, Lompay R R Gen. Relativ. Gravit. 45 545 (2013)
  26. Petrov A N et al Metric Theories Of Gravity: Perturbations And Conservation Laws (De Gruyter Studies in Mathematical Physics) Vol. 38 (Berlin: De Gruyter, 2017)
  27. Klein F Gesammelte Mathematische Abhandlungen Vol. 1 (Hrsg. R Fricke, A Ostrowski) (Berlin: J. Springer, 1921) p. 568-585
  28. Golovnev A, Koivisto T, Sandstad M Class. Quantum Grav. 34 145013 (2017)
  29. Pala C, Adak M J. Phys. Conf. Ser. 2191 012017 (2022)
  30. Jiménez J B, Koivisto T S Int. J. Geom. Meth. Mod. Phys. 19 2250108 (2022)
  31. Katz J, Bičák J, Lynden-Bell D Phys. Rev. D 55 5957 (1997)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions