Issues

 / 

2025

 / 

November

  

60th anniversary of the L.D. Landau Institute for Theoretical Physics RAS. Reviews of topical problems


Toroid, altermagnetic, and noncentrosymmetric ordering in metals

 
Landau Institute for Theoretical Physics, Russian Academy of Sciences, prosp. Akademika Semenova 1A, Chernogolovka, Moscow Region, 142432, Russian Federation

This article is dedicated to the 60th anniversary of the Landau Institute for Theoretical Physics and presents a review of normal and superconducting properties of toroidal, altermagnetic, and noncentrosymmetric metals. Metals with toroidal order are compounds not possessing symmetry in respect of space and time inversion but are symmetric in respect of the product of these operations. An electric current propagating through samples of such a material causes its magnetization. Superconducting states in toroidal metals are a mixture of singlet and triplet states. Superconductivity is gapless even in ideal crystals without impurities. Altermagnets are antiferromagnetic metals that have a specific spin splitting of electron bands determined by time inversion in combinations with rotations and reflections of a crystal lattice. Similar splitting takes place in metals whose symmetry does not have a spatial inversion operation. Both of these types of materials have an anomalous Hall effect. A current propagating through a noncentrosymmetric metal causes magnetization, but this is not the case in altermagnets. On the other hand, in altermagnets, there is a specific piezomagnetic Hall effect. Superconducting pairing in noncentrosymmetric metals occurs between electrons occupying states in one zone, whereas, in altermagnets, we are dealing with interband pairing, which is unfavorable for the formation of a superconducting state.

Fulltext pdf (427 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.06.039944
Keywords: magnetism, superconductivity, strongly correlated electronic systems
PACS: 71.27.+a, 74.20.−z, 75.85.+t (all)
DOI: 10.3367/UFNe.2025.06.039944
URL: https://ufn.ru/en/articles/2025/11/g/
Citation: Mineev V P "Toroid, altermagnetic, and noncentrosymmetric ordering in metals" Phys. Usp. 68 1151–1160 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 27th, March 2025, 8th, June 2025

Оригинал: Минеев В П «Тороидальный, альтермагнитный и нецентросимметричный порядок в металлах» УФН 195 1221–1231 (2025); DOI: 10.3367/UFNr.2025.06.039944

References (37) ↓

  1. Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1960); Translated from Russian, Landau L D, Lifshitz E M Elektrodinamika Sploshnysh Sred (Moscow: Gostekhizdat, 1957); see also, Landau L D, Lifshitz E M Electrodynamics Of Continuous Media 2nd rev. ed. (Oxford: Pergamon Press, 1984)
  2. Dzyaloshinskii I E Sov. Phys. JETP 10 628 (1960); Dzyaloshinskii I E Zh. Eksp. Teor. Fiz. 37 881 (1959)
  3. Astrov D N Sov. Phys. JETP 13 729 (1961); Astrov D N Zh. Eksp. Teor. Fiz. 40 1035 (1961)
  4. Brown W F (Jr.), Shtrikman S, Treves D J. Appl. Phys. 34 1233 (1963)
  5. Muthukumar V N, Valentí R, Gros C Phys. Rev. Lett. 75 2766 (1995)
  6. Graham E B, Raab R E J. Phys. Condens. Matter 9 1863 (1997)
  7. Krichevtsov B B et al J. Phys. Condens. Matter 5 8233 (1993)
  8. Kopaev Yu V Phys. Usp. 52 1111 (2009); Kopaev Yu V Usp. Fiz. Nauk 179 1175 (2009)
  9. Hayami S, Kusunose H, Motome Y Phys. Rev. B 90 024432 (2014)
  10. Mineev V P JETP Lett. 120 241 (2024); Mineev V P Pis’ma Zh. Eksp. Teor. Fiz. 120 247 (2024)
  11. Fedchenko O et al J. Phys. Condens. Matter 34 425501 (2022)
  12. Furukawa T et al Nature Commun. 8 954 (2017)
  13. Saito H et al J. Phys. Soc. Jpn. 87 033702 (2018)
  14. Ota K et al arXiv:2205.05555v1
  15. Tavger B A, Zaitsev V M Sov. Phys. JETP 3 430 (1956); Tavger B A, Zaitsev V M Zh. Eksp. Teor. Fiz. 30 564 (1956)
  16. Dzyaloshinskii I E Sov. Phys. JETP 6 621 (1958); Dzyaloshinskii I E Zh. Eksp. Teor. Fiz. 33 807 (1957)
  17. Borovik-Romanov A S Sov. Phys. JETP 9 1390 (1960); Borovik-Romanov A S Zh. Eksp. Teor. Fiz. 36 1954 (1959)
  18. Erickson R A Phys. Rev. 90 779 (1953)
  19. Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistic Theory (Oxford: Pergamon Press, 1977); Translated from Russian, Landau L D, Lifshitz E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (Moscow: Nauka, 1989)
  20. Zhu Z H et al Phys. Rev. Lett. 122 017202 (2019)
  21. Samokhin K V, Mineev V P Phys. Rev. B 77 104520 (2008)
  22. Rashba E I Phys. Rev. B 68 241315 (2003)
  23. Rashba E I Phys. Rev. B 70 161201 (2004)
  24. Mineev V P J. Low Temp. Phys. 158 615 (2010)
  25. Mineev V P J. Exp. Theor. Phys. 129 700 (2019); Mineev V P Zh. Eksp. Teor. Fiz. 156 750 (2019); Mineev V P J. Exp. Theor. Phys. 130 955 (2020), Erratum; Mineev V P Zh. Eksp. Teor. Fiz. 157 1131 (2020), Erratum
  26. Silin V P Sov. Phys. JETP 6 945 (1958); Silin V P Zh. Eksp. Teor. Fiz. 33 1227 (1957)
  27. Mineev V P J. Exp. Theor. Phys. 132 472 (2021); Mineev V P Zh. Eksp. Teor. Fiz. 159 563 (2021)
  28. Ivchenko E L, Pikus G E JETP Lett. 27 604 (1978); Ivchenko E L, Pikus G E Pis’ma Zh. Eksp. Teor. Fiz. 27 640 (1978)
  29. Ganichev S D, Ivchenko E L Encyclopedia Of Condensed Matter Physics Vol. 2 (Ed.-in-Chief T Chakraborty) 2nd ed. (New York: Academic Press, 2024) p. 177-185
  30. Edelstein V M Solid State Commun. 73 233 (1990)
  31. Mineev V P J. Low Temp. Phys. 217 223 (2024)
  32. Chang M-C, Niu Q Phys. Rev. Lett. 75 1348 (1995)
  33. Xiao D, Chang M-C, Niu Q Rev. Mod. Phys. 82 1959 (2010)
  34. Mineev V P JETP Lett. 121 421 (2025); Mineev V P Pis’ma Zh. Eksp. Teor. Fiz. 121 441 (2025)
  35. Chen H, Niu Q, MacDonald A H Phys. Rev. Lett. 112 017205 (2014)
  36. Kübler J, Felser C Europhys. Lett. 108 67001 (2014)
  37. Šmejkal L et al Sci. Adv. 6 eaaz8809 (2020)

© 1918–2026 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions