Issues

 / 

2025

 / 

November

  

60th anniversary of the L.D. Landau Institute for Theoretical Physics RAS. Reviews of topical problems


From Landau two-fluid model to de Sitter Universe

 
Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

Condensed matter analogs are useful when considering phenomena related to the quantum vacuum. This is because, in condensed matter, we know the physics both in the infrared and in the ultraviolet limits, while, in particle physics and gravity, the physics on the trans-Planckian scale are unknown. One of the cornerstones of the connections between nonrelativistic condensed matter and modern relativistic theories is the two-fluid hydrodynamics of superfluid helium, which was developed by Landau and Khalatnikov (Isaak Markovich Khalatnikov later founded and headed the Landau Institute). The dynamics and thermodynamics of the de Sitter state of the expansion of the Universe bear some features of the multi-fluid system. There are actually three components: the quantum vacuum, the gravitational component, and relativistic matter. The expanding de Sitter vacuum serves as a thermal bath with local temperature, which is twice the Gibbons—Hawking temperature related to the cosmological horizon. This local temperature leads to the heating of the matter component and the gravitational component, which behaves like Zel'dovich stiff matter and represents dark matter. In equilibrium and in the absence of conventional matter, the positive partial pressure of the dark matter compensates the negative partial pressure of the quantum vacuum. That is why, in full equilibrium, the total pressure is zero. This is rather similar to the correspondingly superfluid and normal components of superfluid liquid, which together produce a zero pressure of the liquid in the absence of environment. We propose the phenomenological theory, which describes the dynamics of dark energy and dark matter. If one assumes that, in the dynamics, gravitational dark matter behaves like real Zel'dovich stiff matter, it is shown that both components undergo power law decay due to the energy exchange between these components. It then follows that their values at the present time have the correct order of magnitude. We also consider other problems through the prism of condensed matter physics, including black holes and the Planck constant.

Fulltext pdf (466 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2025.03.039890
Keywords: quantum vacuum, thermodynamics of de Sitter Universe, quantum tunneling, black holes, Unruh effect, Planck constant
PACS: 04.20.−q, 04.70.Dy, 95.36.+x (all)
DOI: 10.3367/UFNe.2025.03.039890
URL: https://ufn.ru/en/articles/2025/11/c/
Citation: Volovik G E "From Landau two-fluid model to de Sitter Universe" Phys. Usp. 68 1074–1091 (2025)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, January 2025, revised: 14th, March 2025, 17th, March 2025

Оригинал: Воловик Г Е «От двухжидкостной модели Ландау к Вселенной де Ситтера» УФН 195 1137–1156 (2025); DOI: 10.3367/UFNr.2025.03.039890

References (140) ↓ Similar articles (1)

  1. Volovik G E JETP Lett. 118 8 (2023); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 118 5 (2023); Volovik G E arXiv:2304.09847
  2. Volovik G E Symmetry 16 763 (2024)
  3. Arkani-Hamed N, Maldacena J arXiv:1503.08043
  4. Reece M, Wang L-T, Xianyu Z-Z Phys. Rev. D 107 L101304 (2023)
  5. Maxfield H, Zahraee Z J. High Energy Phys. 2022 93 (2022)
  6. Gibbons G W, Hawking S W Phys. Rev. D 15 2738 (1977)
  7. ’t Hooft G Universe 8 537 (2022)
  8. ’t Hooft G J. Phys. Conf. Ser. 2533 012015 (2023)
  9. ’t Hooft G The Black Hole Information Paradox. A Fifty-Year Journey (Springer Ser. in Astrophysics and Cosmology, Eds A Akil, C Bambi) (Singapore: Springer, 2025) p. 81; ’t Hooft G arXiv:2410.16891
  10. Hughes J C M, Kusmartsev F V JETP Lett. 122 208 (2025); Hughes J C M, Kusmartsev F V Pis’ma Zh. Eksp. Teor. Fiz. 122 199 (2025); Hughes J C M, Kusmartsev F V arXiv:2505.05814
  11. Volovik G E JETP Lett. 122 450 (2025); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 122 430 (2025); Volovik G E arXiv:2505.20194
  12. Khalatnikov I M Teoriya Sverkhtekuchesti (Theory Of Superfluidity) (Moscow: Nauka, 1971)
  13. Unruh W G Phys. Rev. Lett. 46 1351 (1981)
  14. Hamilton A J S, Lisle J P Am. J. Phys. 76 519 (2008); Hamilton A J S, Lisle J P gr-qc/0411060
  15. Painlevé P C. R. Acad. Sci. Paris 173 677 (1921)
  16. Gullstrand A Arkiv. Mat. Astron. Fys. 16 (8) 1 (1922)
  17. Volovik G E JETP Lett. 69 705 (1999); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 69 662 (1999); Volovik G E gr-qc/9901077
  18. Parikh M K, Wilczek F Phys. Rev. Lett. 85 5042 (2000)
  19. Srinivasan K, Padmanabhan T Phys. Rev. D 60 024007 (1999)
  20. Bilby B A, Smith E Proc. R. Soc. London A 231 263 (1955); Bilby B A, Smith E Proc. R. Soc. London A 236 481 (1956)
  21. Kröner E Arch. Rational Mech. Anal. 4 18 (1960)
  22. Dzyaloshinskii I E, Volovick G E Ann. Physics 125 67 (1980)
  23. Kleinert H, Zaanen J Phys. Lett. A 324 361 (2004)
  24. Vozmediano M A H, Katsnelson M I, Guinea F Phys. Rep. 496 109 (2010)
  25. de Juan F, Cortijo A, Vozmediano M A H Nucl. Phys. B 828 625 (2010)
  26. Mesaros A, Sadri D, Zaanen J Phys. Rev. B 82 073405 (2010)
  27. Abrikosov A A, Beneslavskii S D Sov. Phys. JETP 32 699 (1971); Abrikosov A A, Beneslavskii S D Zh. Eksp. Teor. Fiz. 59 1280 (1970)
  28. Abrikosov A A J. Low Temp. Phys. 5 141 (1971)
  29. Abrikosov A A Phys. Rev. B 58 2788 (1998)
  30. Volovik G E JETP Lett. 104 645 (2016); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 104 660 (2016)
  31. Kedem Y, Bergholtz E J, Wilczek F Phys. Rev. Research 2 043285 (2020); Kedem Y, Bergholtz E J, Wilczek F arXiv:2001.02625
  32. Yang J et al J. High Energ. Phys. 2025 226 (2025)
  33. Volovik G E The Universe In A Helium Droplet (Oxford: Clarendon Press, 2003)
  34. Volovik G E JETP Lett. 46 98 (1987); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 46 81 (1987)
  35. Nissinen J, Volovik G E J. Exp. Theor. Phys. 127 948 (2018); Nissinen J, Volovik G E Zh. Eksp. Teor Fiz. 154 1051 (2018); Nissinen J, Volovik G E arXiv:1803.09234
  36. Nissinen J, Volovik G E Phys. Rev. Research 1 023007 (2019); Nissinen J, Volovik G E arXiv:1812.03175
  37. Nissinen J, Heikkilä T T, Volovik G E Phys. Rev. B 103 245115 (2021); Nissinen J, Heikkilä T T, Volovik G E arXiv:2008.02158
  38. Nissinen J Ann. Physics 447 169139 (2022)
  39. Klinkhamer F R, Volovik G E JETP Lett. 109 364 (2019); Klinkhamer F R, Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 109 369 (2019); Klinkhamer F R, Volovik G E arXiv:1812.07046
  40. Volovik G E Physica B 162 222 (1990)
  41. Akama K Prog. Theor. Phys. 60 1900 (1978)
  42. Diakonov D arXiv:1109.0091
  43. Vladimirov A A, Diakonov D Phys. Part. Nucl. 45 800 (2014); Vladimirov A A, Diakonov D Fiz. Elem. Chast. Atom. Yad. 45 1439 (2014)
  44. Vladimirov A A, Diakonov D Phys. Rev. D 86 104019 (2012)
  45. Obukhov Yu N, Hehl F W Phys. Lett. B 713 321 (2012)
  46. Maiezza A, Nesti F Eur. Phys. J. C 82 491 (2022)
  47. Maitiniyazi Y et al Phys. Rev. D 111 046002 (2025)
  48. Volovik G E arXiv:2411.01892
  49. Padmanabhan T Rep. Prog. Phys. 73 046901 (2010); Padmanabhan T arXiv:0911.5004
  50. Guha S arXiv:2306.04172
  51. Ong Y C Gen. Relativ. Gravit. 54 132 (2022)
  52. Susskind L Universe 7 464 (2021)
  53. Bobev N et al Phys. Rev. X 13 041056 (2023)
  54. Aguilar-Gutierrez S E, Baiguera S, Zenoni N J. High Energy Phys. 2024 201 (2024); Aguilar-Gutierrez S E, Baiguera S, Zenoni N arXiv:2402.01357
  55. Shallue C J, Carroll S M Phys. Rev. D 112 085013 (2025); Shallue C J, Carroll S M arXiv:2501.06609
  56. Klinkhamer F R, Volovik G E Phys. Rev. D 78 063528 (2008); Klinkhamer F R, Volovik G E arXiv:0806.2805
  57. Volovik G E J. Exp. Theor. Phys. 135 388 (2022); Volovik G E Zh. Eksp. Teor. Fiz. 162 449 (2022); Volovik G E arXiv:2108.00419
  58. Volovik G Universe 6 133 (2020); Volovik G arXiv:2003.10331
  59. Zel’dovich Ya B Sov. Phys. JETP 14 1143 (1962); Zel’dovich Ya B Zh. Eksp. Teor. Fiz. 41 1609 (1961)
  60. Volovik G E arXiv:2410.10549
  61. Hawking S W Phys. Lett. B 134 403 (1984)
  62. Volovik G E Analogue Spacetimes: The First Thirty Years. Proc. II Amazonian Symp. on Physics — Analogue Models of Gravity : 30 Years Celebration of the Publication of Bill Unruh’s paper "Experimental Black-Hole Evaporation" (Eds V Cardoso, L C B Crispino, S Liberati, E S de Oliveira, M Visser) (Sao Paulo: Editora Livraria da Fisica, 2013) p. 263; Volovik G E arXiv:1111.1155
  63. Klinkhamer F R, Volovik G E JETP Lett. 105 74 (2017); Klinkhamer F R, Volovik G E Zh. Eksp. Teor. Fiz. 105 62 (2017); Klinkhamer F R, Volovik G E arXiv:1612.02326
  64. Lifshitz I M, Kagan Yu Sov. Phys. JETP 35 206 (1972); Lifshitz I M, Kagan Yu Zh. Eksp. Teor. Fiz. 62 385 (1972)
  65. Iordanskii S V, Finkel’shtein A M Sov. Phys. JETP 35 215 (1972); Iordanskii S V, Finkel’shtein A M Zh. Eksp. Teor. Fiz. 62 403 (1972)
  66. Volovik G E JETP Lett. 15 81 (1972); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 15 116 (1972)
  67. Iordanskii S V, Finkelshtein A M J. Low Temp. Phys. 10 423 (1973)
  68. Iordanskii S V, Rashba E I Sov. Phys. JETP 47 975 (1978); Iordanskii S V, Rashba E I Zh. Eksp. Teor. Fiz. 74 1872 (1978)
  69. Rasetti M, Regge T Physica A 80 217 (1975)
  70. Polyakov A M Phys. Lett. B 103 207 (1981)
  71. Blatter G et al Rev. Mod. Phys. 66 1125 (1994)
  72. Keski-Vakkuri E, Kraus P Nucl. Phys. B 491 249 (1997)
  73. Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Amsterdam: Elsevier, 1980); Translated from Russian, Landau L D, Lifshitz E M Statisticheskaya Fizika Vol. 1 (Moscow: Nauka, 1976)
  74. Volovik G E arXiv:2506.13145; Volovik G E J. Exp. Theor. Phys. (2025), in print; Volovik G E Zh. Eksp. Teor. Fiz. (2025), in print
  75. Hawking S W, Horowitz G T Phys. Rev. D 51 4302 (1995)
  76. Hawking S W, Moss I L Phys. Lett. B 110 35 (1982)
  77. Saito D, Oshita N J. High Energy Phys. 2025 187 (2025); Saito D, Oshita N arXiv:2409.03978
  78. Robledo A, Velarde C Entropy 24 1761 (2022)
  79. Volovik G E JETP Lett. 121 243 (2025); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 121 260 (2025); Volovik G E arXiv:2409.15362
  80. Weinberg S Phys. Rev. A 90 042102 (2014)
  81. Kane J W, Kadanoff L P Phys. Rev. 155 80 (1967)
  82. Berezinskii V L Sov. Phys. JETP 34 610 (1972); Berezinskii V L Zh. Eksp. Teor. Fiz. 61 1144 (1972)
  83. Elizalde E, Nojiri S, Odintsov S D Universe 11 (2) 60 (2025); Elizalde E, Nojiri S, Odintsov S D arXiv:2502.05801
  84. Volovik G E JETP Lett. 93 66 (2011); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 93 69 (2011); Volovik G E arXiv:1011.4665
  85. Henheik J, Poudyal B, Tumulka R Adv. Theor. Math. Phys. 29 2153 (2025); Henheik J, Poudyal B, Tumulka R arXiv:2409.00677
  86. Volovik G E JETP Lett. 90 1 (2009); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 90 3 (2009); Volovik G E arXiv:0905.4639
  87. Akhmedov E T, Akhmedova V, Singleton D Phys. Lett. B 642 124 (2006)
  88. Akhmedov E T et al Int. J. Mod. Phys. A 22 1705 (2007)
  89. Akhmedov E T, Pilling T, Singleton D Int. J. Mod. Phys. D 17 2453 (2008)
  90. Akhmedova V et al Phys. Lett. B 666 269 (2008)
  91. Akhmedova V et al Phys. Lett. B 673 227 (2009)
  92. de Gill A et al Am. J. Phys. 78 685 (2010)
  93. Schwinger J Phys. Rev. 82 664 (1951)
  94. Schwinger J Phys. Rev. 93 615 (1954)
  95. Unruh W G Phys. Rev. D 14 870 (1976)
  96. Parentani R, Massar S Phys. Rev. D 55 3603 (1997)
  97. Kharzeev D, Tuchin K Nucl. Phys. A 753 316 (2005)
  98. Sudhir V, Stritzelberger N, Kempf A Phys. Rev. D 103 105023 (2021)
  99. Teslyk M, Bravina L, Bravina E Particles 5 157 (2022)
  100. Reznik B Phys. Rev. D 57 2403 (1998)
  101. Casadio R, Venturi G Phys. Lett. A 252 109 (1999)
  102. Volovik G E JETP Lett. 118 531 (2023); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 118 546 (2023); Volovik G E arXiv:2307.14370
  103. Klinkhamer F R, Volovik G E Phys. Rev. D 77 085015 (2008)
  104. Klinkhamer F R, Volovik G E JETP Lett. 88 289 (2008); Klinkhamer F R, Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 88 339 (2008); Klinkhamer F R, Volovik G E arXiv:0807.3896
  105. Duff M Phys. Lett. B 226 36 (1989); Wu Z C Phys. Lett. B 659 891 (2008)
  106. Volovik G E JETP Lett. 77 639 (2003); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 77 769 (2003); Volovik G E gr-qc/0304103
  107. Starobinsky A A, Yokoyama J Phys. Rev. D 50 6357 (1994)
  108. Kofman L, Linde A, Starobinsky A A Phys. Rev. D 56 3258 (1997)
  109. Kamenshchik A Yu et al Eur. Phys. J. C 78 200 (2018)
  110. Polyakov A M Nucl. Phys. B 797 199 (2008)
  111. Polyakov A M Nucl. Phys. B 834 316 (2010)
  112. Krotov D, Polyakov A M Nucl. Phys. B 849 410 (2011)
  113. Pimentel G L, Polyakov A M, Tarnopolsky G M Rev. Math. Phys. 30 1840013 (2018); Pimentel G L, Polyakov A M, Tarnopolsky G M arXiv:1803.09168
  114. Weinberg S Rev. Mod. Phys. 61 1 (1989)
  115. Kopnin N Theory Of Nonequilibrium Superconductivity (Oxford: Clarendon Press, 2009)
  116. Leggett A J J. Phys. C 6 3187 (1973)
  117. Bondarenko S, Zubkov M A JETP Lett. 116 54 (2022); Bondarenko S, Zubkov M A Pis’ma Zh. Eksp. Teor. Fiz. 116 60 (2022)
  118. Bondarenko S Universe 8 497 (2022)
  119. Terno D R arXiv:2412.18213
  120. Caro J, Salcedo L L Phys. Rev. A 60 842 (1999)
  121. Volovik G E J. Exp. Theor. Phys. 132 727 (2021); Volovik G E Zh. Eksp. Teor. Fiz. 159 815 (2021); Volovik G E arXiv:2006.16821
  122. Volovik G E J. Exp. Theor. Phys. 135 663 (2022); Volovik G E Zh. Eksp. Teor. Fiz. 162 680 (2022); Volovik G E arXiv:2207.05754
  123. Bekenstein J D Lett. Nuovo Cimento 11 467 (1974)
  124. Mukhanov V F JETP Lett. 44 63 (1986); Mukhanov V F Pis’ma Zh. Eksp. Teor. Fiz. 44 467 (1986)
  125. Kastrup H A Phys. Lett. B 413 267 (1997)
  126. Khriplovich I B Phys. Atom. Nucl. 71 671 (2008); Khriplovich I B Yad. Fiz. 71 695 (2008); Khriplovich I B gr-qc/0506082
  127. Dvali G, Gomez C Fortschr. Phys. 59 579 (2011)
  128. Kiefer C J. Phys. Conf. Ser. 1612 012017 (2020)
  129. Bagchi B, Ghosh A, Sen S Gen. Relativ. Gravit. 56 108 (2024); Bagchi B, Ghosh A, Sen S arXiv:2408.02077
  130. Cvetič M, Gibbons G W, Pope C N Phys. Rev. Lett. 106 121301 (2011)
  131. Visser M J. High Energy Phys. 2012 23 (2012)
  132. Cohen-Tannoudji C, Zambon B, Arimondo E J. Opt. Soc. Am. B 10 2107 (1993)
  133. Fröhlich J, Gang Z, Pizzo A Commun. Math. Phys. 406 195 (2025); Fröhlich J, Gang Z, Pizzo A arXiv:2404.10460
  134. Volovik G E JETP Lett. 117 551 (2023); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 117 556 (2023); Volovik G E arXiv:2302.08894
  135. Bennett D L, Nielsen H B Int. J. Mod. Phys. A 9 5155 (1994)
  136. Nielsen H B, Froggatt C D arXiv:2305.18645
  137. Broinshtein M P Uspekhi Astronomicheskikh Nauk (Advances In Astronomical Sciences) No. 3 (Moscow: ONTI, 1933) p. 3
  138. Duff M J, Okun L B, Veneziano G J. High Energy Phys. 2002 23 (2002); Duff M J, Okun L B, Veneziano G physics/0110060
  139. Ecker F, Fiorucci A, Grumiller D Phys. Rev. D 021901 (2025); Ecker F, Fiorucci A, Grumiller D arXiv:2501.00095
  140. Klinkhamer F R, Volovik G E Phys. Rev. D 79 063527 (2009); Klinkhamer F R, Volovik G E arXiv:0811.4347

© 1918–2026 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions