Issues

 / 

2023

 / 

February

  

Instruments and methods of investigation


Diffusive methods of isotope separation in plasma

 ,
National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

Studies of the separation of stable isotopes in plasma are reviewed with a focus on diffusive separation methods. The efficiency of enrichment processes is analyzed using a unified approach to the calculation of diffusive separation processes in a weakly ionized plasma. Various separation mechanisms are discussed, including centrifugal techniques, diffusive friction, thermal diffusion, and isotope cataphoresis. Results of calculations and experiments are compared. Various plasma separation devices are reviewed, and the values of specific energy consumption in different methods are compared. A conclusion is made that plasma separation methods, despite relatively high energy consumption, can be competitive in the case of elements that do not have volatile compounds under normal conditions, for which state-of-the-art centrifugal cascades cannot be used.

Fulltext pdf (693 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.10.039094
Keywords: stable isotopes, plasma, isotope separation, centrifugal effect, ionic wind, thermal diffusion, isotope cataphoresis, separation effect enhancement
PACS: 28.60.+s, 52.20.−j, 52.25.Xz (all)
DOI: 10.3367/UFNe.2021.10.039094
URL: https://ufn.ru/en/articles/2023/2/d/
001097218300004
2-s2.0-85182876815
2023PhyU...66..182D
Citation: Dolgolenko D A, Potanin E P "Diffusive methods of isotope separation in plasma" Phys. Usp. 66 182–194 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, August 2021, revised: 5th, October 2021, 26th, October 2021

Оригинал: Долголенко Д А, Потанин Е П «Диффузионные методы разделения изотопов в плазме» УФН 193 192–205 (2023); DOI: 10.3367/UFNr.2021.10.039094

References (85) Similar articles (12) ↓

  1. D.A. Dolgolenko, Yu.A. Muromkin “Plasma isotope separation based on ion cyclotron resonancePhys. Usp. 52 345–357 (2009)
  2. A. Khorshidi “Molybdenum-99 production via lead and bismuth moderators and milli-structure-98Mo samples by indirect production technique using Monte Carlo methodPhys. Usp. 62 931–940 (2019)
  3. A.B. Dyachkov, A.A. Gorkunov et alIsotopically selective photoionization for the production of the medical radioisotope 177LuPhys. Usp. 66 518–533 (2023)
  4. V.N. Ochkin “Spectroscopy of small gas components of a nonequilibrium low-temperature plasmaPhys. Usp. 65 1071–1103 (2022)
  5. A.V. Timofeev “On the theory of plasma processing of spent nuclear fuelPhys. Usp. 57 990–1021 (2014)
  6. Yu.V. Bogomolov, V.V. Alekseev et alReview of unfolding methodsPhys. Usp. 66 628–642 (2023)
  7. A.I. Vorob’eva “Equipment and techniques for carbon nanotube researchPhys. Usp. 53 257–277 (2010)
  8. N.N. Kudryavtsev, O.A. Mazyar, A.M. Sukhov “Apparatus and techniques for the investigation of methods of generating molecular beamsPhys. Usp. 36 (6) 513–528 (1993)
  9. M.A. Proskurnin, V.R. Khabibullin et alPhotothermal and optoacoustic spectroscopy: state of the art and prospectsPhys. Usp. 65 270–312 (2022)
  10. K.B. Fritzler, V.Ya. Prinz “3D printing methods for micro- and nanostructuresPhys. Usp. 62 54–69 (2019)
  11. Yu.V. Gulyaev, V.F. Kravchenko, A.A. Kuraev “Vavilov-Cherenkov amplifiers with irregular electrodynamic structuresPhys. Usp. 47 583–599 (2004)
  12. V.S. Grechishkin, N.Ya. Sinyavskii “New technologies: nuclear quadrupole resonance as an explosive and narcotic detection techniquePhys. Usp. 40 393–406 (1997)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions