Issues

 / 

2023

 / 

January

  

Reviews of topical problems


Quantum turbulence in superfluid helium

 
Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Akademika Osip'yana str. 2, Chernogolovka, Moscow Region, 142432, Russian Federation

Helium at pressures below 25 atm remains liquid at temperatures down to absolute zero, when the number of excitations in the medium and the concentration of the normal component become negligible. This makes it possible to use superfluid helium at low temperatures as a model medium to study the formation and decay of a turbulent system. Describing and modeling the behavior of vortices in superfluid helium at temperatures below 0.1 K, when the amount of the normal component becomes negligible, are greatly simplified due to the quantization of the flow of the superfluid component, and all hydrodynamic properties of helium associated with its rotational motion are determined by quantized vortices. The article reviews experimental methods for the excitation and detection of quantum turbulence presented in experimental studies in recent years, and discusses features of vortex generation by various methods and at different temperatures of the superfluid, the dynamics of change in the concentration of vortices during the generation and decay of the vortex system, and the difference between the behavior of quantized vortices under Kolmogorov turbulence and that under Vinen turbulence.

Fulltext pdf (1.7 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.11.039096
Keywords: superfluidity, quantized vortices, turbulence, helium-4
PACS: 07.20.Mc, 47.27.Cn, 47.32.C−, 67.25.dg, 67.25.dk (all)
DOI: 10.3367/UFNe.2021.11.039096
URL: https://ufn.ru/en/articles/2023/1/d/
001112589600003
2-s2.0-85182871626
2023PhyU...66...59E
Citation: Efimov V B "Quantum turbulence in superfluid helium" Phys. Usp. 66 59–89 (2023)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, July 2021, revised: 17th, October 2021, 4th, November 2021

Оригинал: Ефимов В Б «Квантовая турбулентность в сверхтекучем гелии» УФН 193 63–95 (2023); DOI: 10.3367/UFNr.2021.11.039096

References (193) ↓ Similar articles (20)

  1. Efimov V B Phys. Usp. 61 929 (2018); Efimov V B Usp. Fiz. Nauk 188 1025 (2018)
  2. Donnelly R J, Swanson C E J. Fluid Mech. 173 387 (1986)
  3. Niemetz M, Kerscher H, Schoepe W Quantized Vortex Dynamics And Superfluid Turbulence (Eds C F Barenghi, R J Donnelly, W F Vinen) (Berlin: Springer, 2001) p. 87
  4. Tsubota M (Ed.) Quantum Turbulence (Progress in Low Temperature Physics) Vol. 16 (Amsterdam: Elsevier Science, 2008)
  5. Vinen W F, Niemela J J J. Low Temp. Phys. 128 167 (2002)
  6. Skrbek L J. Phys. Conf. Ser. 318 012004 (2011)
  7. Barenghi C F, Skrbek L, Sreenivasan K R Proc. Natl. Acad. Sci. USA 111 (Suppl. 1) 4647 (2014)
  8. Donnelly R J Quantized Vortices In Helium II (Cambridge: Cambridge Univ. Press, 1991)
  9. Kondaurova L P, Andryushchenko V A Low Temp. Phys. 47 740 (2021); Kondaurova L P, Andryushchenko V A Fiz. Nizk. Temp. 47 804 (2021)
  10. Kapitsa P L Dokl. Akad. Nauk SSSR 18 (1) 21 (1938)
  11. Lifshits E M Usp. Fiz. Nauk 34 512 (1948)
  12. Landau L D Zh. Eksp. Teor. Fiz. 11 592 (1941)
  13. Landau L D Zh. Eksp. Teor. Fiz. 14 112 (1944)
  14. Craig P P, Pellam J R Phys. Rev. 108 1109 (1957)
  15. Allen J F, Misener A D Proc. R. Soc. A 172 467 (1939)
  16. Atkins K R Adv. Phys. 1 169 (1952)
  17. Nemirovskii S K Phys. Rep. 524 85 (2013)
  18. Barenghi C F, Donnelly R J, Vinen W F J. Low Temp. Phys. 52 189 (1983)
  19. Finne A P et al Rep. Prog. Phys. 69 3157 (2006)
  20. Vinen W F Proc. R. Soc. A 260 218 (1961)
  21. Whitmore S C, Zimmermann W Phys. Rev. Lett. 15 389 (1965)
  22. Rayfield G W, Reif F Phys. Rev. 136 A1194 (1964)
  23. Gamota G J. Phys. Colloq. 31 C3-39 (1970)
  24. Barenghi C F et al Phys. Fluids 9 2631 (1997)
  25. Koplik J, Levine H Phys. Rev. Lett. 71 1375 (1993)
  26. Vinen W F, Skrbeck L Proc. Natl. Acad. Sci. USA 111 (Suppl. 1) 4699 (2014)
  27. Zurek W H Nature 317 505 (1985)
  28. Copeland E J, Kibble T W B, Steer D A Phys. Rev. D 58 043508 (1998)
  29. Kibble W B J. Phys. A 9 1387 (1976)
  30. Efimov V B et al Phys. Rev. E 74 056305 (2006)
  31. Tilley D R, Tilley J Superfluidity And Superconductivity (New York: Wiley, 1974); Translated into Russian, Tilley D R, Tilley J Sverkhtekuchest’ I Sverkhprovodimost’ (Moscow: Mir, 1977)
  32. Tkachenko V K Sov. Phys. JETP 22 1282 (1966); Tkachenko V K Zh. Eksp. Teor. Fiz. 49 1875 (1965)
  33. Tkachenko V K Sov. Phys. JETP 23 1049 (1966); Tkachenko V K Zh. Eksp. Teor. Fiz. 50 1573 (1966)
  34. Tkachenko V K Sov. Phys. JETP 29 945 (1969); Tkachenko V K Zh. Eksp. Teor. Fiz. 56 1763 (1969)
  35. Tsakadze S J Fiz. Nizk. Temp. 4 (2) 148 (1978)
  36. Gordon M J V, Williams G A, Packard R E J. Phys. Colloq. 39 C6-17 (1978)
  37. Yarmchuk E J, Gordon M J V, Packard R E Phys. Rev. Lett. 43 214 (1979)
  38. Walmsley P M et al Phys. Rev. Lett. 99 265302 (2007)
  39. Tsubota M et al Phys. Rev. B 69 134515 (2004)
  40. Smith M R et al Phys. Rev. Lett. 71 2583 (1993)
  41. Stalp S R, Skrbek L, Donnelly R J Phys. Rev. Lett. 82 4831 (1999)
  42. Skrbek L, Niemela J J, Donnelly R J Phys. Rev. Lett. 85 2973 (2000)
  43. Maurer J, Tabeling P Europhys. Lett. 43 29 (1998)
  44. Volovik G E JETP Lett. 78 533 (2003); Volovik G E Pis’ma Zh. Eksp. Teor. Fiz. 78 1021 (2003)
  45. Hall H E Liquid Helium, Proc. of the Intern. School of Physics "Enrico Fermi", Course XXI (Ed. G Carreri) (New York: Academic Press, 1963)
  46. Sonin E B Rev. Mod. Phys. 59 87 (1987)
  47. Volovik G E J. Low Temp. Phys. 136 309 (2004); Volovik G E cond-mat/0402035
  48. Skrbek L JETP Lett. 80 474 (2004); Skrbek L Pis’ma Zh. Eksp. Teor. Fiz. 80 541 (2003)
  49. Baehr M L, Opatowsky L B, Tough J T Phys. Rev. Lett. 51 2295 (1983)
  50. Ladner D R, Childers R K, Tough J T Phys. Rev. B 13 2918 (1976)
  51. Chase C E Phys. Rev. 127 361 (1962)
  52. Salort J et al J. Phys. Conf. Ser. 318 042014 (2011)
  53. Donnelly R J, Barenghi C F J. Phys. Chem. Ref. Data 27 1217 (1998)
  54. Baggaley A W et al Phys. Rev. B 86 104501 (2012)
  55. Walmsley P M, Golov A I Phys. Rev. Lett. 100 245301 (2008)
  56. Skrbek L, Sreenivasan K R Ten Chapters In Turbulence (Eds P A Davidson, Y Kaneda, K R Sreenivasan) (New York: Cambridge Univ. Press, 2013)
  57. Vinen W F Proc. R. Soc. Lond. A 240 114 (1957)
  58. Baggaley A W, Barenghi C F, Sergeev Y A Phys. Rev. B 85 060501 (2012)
  59. Finne A P et al Nature 424 1022 (2003)
  60. Vinen W F Proc. R. Soc. Lond. A 240 128 (1957)
  61. Vinen W F Proc. R. Soc. Lond. A 242 493 (1957)
  62. Vinen W F Proc. R. Soc. Lond. A 243 400 (1958)
  63. Hall H E, Vinen W F Proc. R. Soc. Lond. A 238 215 (1956)
  64. Monin A S, Yaglom A M Statistical Fluid Dynamics; Mechanics Of Turbulence Vol. 2 (Cambridge, MA: MIT Press, 1975); Translated from Russian, Monin A S, Yaglom A M Statisticheskaya Gidromekhanika Vol. 2 (Moscow: Nauka, 1967)
  65. Garg D et al Phys. Rev. B 85 144518 (2012)
  66. Donnelly R J Phys. Today 62 (10) 34 (2009)
  67. Efimov V B et al J. Low Temp. Phys. 156 95 (2009)
  68. Ganshin A N et al New J. Phys. 12 083047 (2010)
  69. Snyder H A, Putney Z Phys. Rev. 150 110 (1966)
  70. Mathieu P, Placais B, Simon Y Phys. Rev. B 29 2489 (1984)
  71. Giltrow M et al Meas. Sci. Technol. 14 N69 (2003)
  72. Varga E et al J. Low Temp. Phys. 197 (3/4) 130 (2019)
  73. Jackson M J J. Low Temp. Phys. 183 208 (2016)
  74. Ferrell R A Phys. Rev. 108 167 (1957)
  75. Atkins K R Phys. Rev. 116 1339 (1959)
  76. Marakov A et al Phys. Rev. B 91 094503 (2015)
  77. Gao J et al JETP Lett. 103 648 (2016); Gao J et al Pis’ma Zh. Eksp. Teor. Fiz. 103 732 (2016)
  78. Chase C E Phys. Rev. 131 1898 (1963)
  79. Arp V Cryogenics 10 96 (1970)
  80. Gorter C J, Mellink J H Physica 15 285 (1949)
  81. Schwarz K W Phys. Rev. B 18 245 (1978)
  82. Van Sciver S W Cryogenics 18 521 (1978)
  83. Brewer D F, Edwards D O Philos. Mag. 7 721 (1962)
  84. Iznankin A Yu, Mezhov-Deglin L P Sov. Phys. JETP 84 1378 (1983); Iznankin A Yu, Mezhov-Deglin L P Zh. Eksp. Teor Fiz. 103 732 (2016)
  85. Efimov V B et al Low Temp. Phys. 24 81 (1998); Efimov V B et al Fiz. Nizk. Temp. 24 116 (1998)
  86. Nemirovskii S K, Tsoi A N Cryogenics 29 985 (1989)
  87. Hall H E Adv. Phys. 9 89 (1960)
  88. Kondaurova L, Efimov V, Tsoi A J. Low Temp. Phys. 187 80 (2017)
  89. Tsoi A N, Lutset M O J. Eng. Phys. 51 749 (1986); Tsoi A N, Lutset M O Inzh.-Fiz. Zh. 51 (1) 5 (1985)
  90. Peshkov V P, Tkachenko V K Sov. Phys. JETP 14 1019 (1962); Peshkov V P, Tkachenko V K Zh. Eksp. Teor. Fiz. 41 1427 (1961)
  91. Awschalom D D, Milliken F P, Schwarz K W Phys. Rev. Lett. 53 1372 (1984)
  92. Tough J T Progress In Low Temperature Physics Vol. 8 (Ed. D F Brewer) (Amsterdam: North-Holland, 1982) p. 133
  93. Brewer D F, Edwards D O Philos. Mag. 6 1173 (1961)
  94. Adachi H, Fyjiyama S, Tsubota M Phys. Rev. B 81 104511 (2010)
  95. Melotte D J, Barenghi C F Phys. Rev. Lett. 80 4181 (1998)
  96. Chagovets T V, Skrbek L Phys. Rev. Lett. 100 215302 (2008)
  97. Skrbek L, Vinen W F Quantum Turbulence (Progress in Low Temperature Physics) Vol. 16 (Eds M Tsubota, W P Halperin) (Amsterdam: Elsevier, 2009) p. 195
  98. Vinen W F, Skrbek L Proc. Natl. Acad. Sci. USA 111 (Suppl. 1) 4699 (2014)
  99. Tatsuno M, Bearman P J. Fluid Mech. 211 157 (1990)
  100. Uzunoǧlu B, Tan M, Price W G Int. J. Numer. Meth. Eng. 50 2317 (2001)
  101. Batchelor G K An Introduction To Fluid Dynamics (Cambridge: Cambridge Univ. Press, 1967)
  102. Smith M R et al Phys. Rev. Lett. 71 2583 (1993)
  103. Yang J, Ihas G G J. Phys. Conf. Ser. 969 012004 (2018)
  104. Stalp S R et al Phys. Fluids 14 1377 (2002)
  105. Niemela J J, Sreenivasan K R, Donnelly R J J. Low Temp. Phys. 138 537 (2005)
  106. Rusaouen E et al Phys. Fluids 29 105108 (2017)
  107. Nichol H A et al Phys. Rev. E 70 056307 (2004)
  108. Vinen W F, Skrbek L, Nichol H A J. Low Temp. Phys. 135 423 (2004)
  109. Nichol H A "Experimental investigation of the macroscopic flow of helium II at mK temperatures" PhD Thesis (Lancaster: Lancaster Univ., 2003)
  110. Charalambous D et al Phys. Rev. E 74 036307 (2006)
  111. Efimov V B et al J. Low Temp. Phys. 158 462 (2010)
  112. Jäger J, Schuderer B, Schoepe W Phys. Rev. Lett. 74 566 (1995)
  113. Schoepe W Phys. Rev. Lett. 92 095301 (2004)
  114. Schoepe W J. Low Temp. Phys. 161 526 (2010)
  115. Niemetz M, Kerscher H, Schoepe W J. Low Temp. Phys. 126 287 (2002)
  116. Blaauwgeers R et al J. Low Temp. Phys. 146 537 (2007)
  117. Fisher S N et al Phys. Rev. Lett. 86 244 (2001)
  118. Nago Y et al Phys. Rev. B 82 224511 (2010)
  119. Yano H et al J. Low Temp. Phys. 187 515 (2017)
  120. González M et al Rev. Sci. Instrum. 84 025003 (2013)
  121. Guénault A M et al Phys. Rev. B 100 020506 (2019)
  122. Barquist C S et al J. Low Temp. Phys. 183 307 (2016)
  123. Zheng P et al J. Low Temp. Phys. 183 313 (2016)
  124. Barquist C S et al J. Low Temp. Phys. 201 4 (2020)
  125. Koester D et al PolyMUMPs Design Handbook (Durham, NC: MEMSCAP, 2005); http://www.memscap.com/products/mumps
  126. Guthrie A et al Nat. Commun. 12 2645 (2021)
  127. Guénault A M at al. Phys. Rev. B 101 060503 (2020)
  128. Ahlstrom S L et al Phys. Rev. B 89 014515 (2014)
  129. Bradley D I et al Phys. Rev. B 85 014501 (2012)
  130. Sheshin G et al Low Temp. Phys. 39 823 (2013); Sheshin G et al Fiz. Nizk. Temp. 39 1062 (2013)
  131. Schmoranzer D et al J. Low Temp. Phys. 163 317 (2011)
  132. Bradley D I et al J. Low Temp. Phys. 156 116 (2009)
  133. Yano H et al AIP Conf. Proc. 850 195 (2006)
  134. Luzuriaga J J. Low Temp. Phys. 138 267 (1997)
  135. Bradley D I et al Phys. Rev. Lett. 96 035301 (2006)
  136. Vinen W F J. Low Temp. Phys. 145 7 (2006)
  137. L’vov V, Nazarenko S, Skrbek L J. Low Temp. Phys. 145 125 (2006)
  138. Kozik E V, Svistunov B V J. Low. Temp. Phys. 156 215 (2009)
  139. Bradley D I et al Phys. Rev. Lett. 101 065302 (2008)
  140. Roche P-E et al Europhys. Lett. 77 66002 (2007)
  141. Sasa N et al Phys. Rev. B 84 054525 (2011)
  142. Baggaley A W, Laurie J, Barenghi C F Phys. Rev. Lett. 109 205304 (2012)
  143. Kotsubo V, Swift G W Phys. Rev. Lett. 62 2604 (1989)
  144. Kotsubo V, Swift G W J. Low Temp. Phys. 78 351 (1990)
  145. Hänninen R, Schoepe W J. Low Temp. Phys. 164 1 (2011)
  146. Hänninen R, Schoepe W arXiv:0801.2521
  147. Hänninen R, Schoepe W J. Low Temp. Phys. 153 189 (2008)
  148. Hänninen R, Schoepe W J. Low Temp. Phys. 158 410 (2010)
  149. Vinen W F Phys. Rev. B 61 1410 (2000)
  150. Tsubota M, Araki T, Nemirovskii S K Phys. Rev. B 62 11751 (2000)
  151. Paoletti M S et al J. Phys. Soc. Jpn. 77 111007 (2008)
  152. Meichle D P, Lathrop D P Rev. Sci. Instrum. 85 073705 (2014)
  153. Bewley G P, Sreenivasan K R, Lathrop D P Exp. Fluids 44 887 (2008)
  154. Fonda E et al Proc. Natl. Acad. Sci. USA 111 (Suppl. 1) 4707 (2014)
  155. Fonda E, Sreenivasan K R, Lathrop D P Proc. Natl. Acad. Sci. USA 116 1924 (2019)
  156. Howe M S Acoustics Of Fluid-Structure Interactions (Cambridge: Cambridge Univ. Press, 1998)
  157. Vinen W F Phys. Rev. B 64 134520 (2001)
  158. L’vov V S, Nazarenko S V, Rudenko O Phys. Rev. B 76 024520 (2007)
  159. Niemetz M, Schoepe W J. Low Temp. Phys. 135 447 (2004)
  160. Bradley D I et al J. Low Temp. Phys. 138 493 (2005)
  161. Blažková M, Schmoranzer D, Skrbek L Phys. Rev. E 75 025302 (2007)
  162. Hashimoto N et al Phys. Rev. B 76 020504 (2007)
  163. Yano H et al J. Low Temp. Phys. 150 410 (2008)
  164. Garg D "Experimental investigation of quantized vortices using grid and quartz tuning forks in superfluid helium-4 in the zero temperature limit" PhD Thesis (Lancaster: Depart. of Physics, Lancaster Univ., 2010)
  165. Blažková M et al J. Low Temp. Phys. 148 305 (2007)
  166. Schoepe W, Hänninen R, Niemetz M J. Low Temp. Phys. 178 383 (2015)
  167. Hänninen R, Tsubota M, Vinen W F Phys. Rev. B 75 064502 (2007)
  168. Hall H Phil. Trans. R. Soc. 250 359 (1957)
  169. Kondaurova L P, Nemirovskii S K Low Temp. Phys. 37 413 (2011); Kondaurova L P, Nemirovskii S K Fiz. Nizk. Temp. 37 523 (2011)
  170. Kondaurova L, Nemirovskii S K Phys. Rev. B 86 134506 (2012)
  171. Schwarz K W Phys. Rev. B 38 2398 (1988)
  172. Nakatsuji A, Tsubota M, Yano H J. Low Temp. Phys. 171 519 (2013)
  173. Barenghi C F, Hänninen R, Tsubota M Phys. Rev. E 74 046303 (2006)
  174. Nemirovskii S K Phys. Rev. B 81 064512 (2010)
  175. Popov V N Sov. Phys. JETP 37 341 (1973); Popov V N Zh. Eksp. Teor. Fiz. 64 672 (1973)
  176. Thouless D J, Anglin J R Phys. Rev. Lett. 99 105301 (2007)
  177. Duan J-M Phys. Rev. B 49 12381 (1994)
  178. Nago Y et al J. Low Temp. Phys. 158 443 (2010)
  179. Yano H et al Phys. Rev. B 81 220507 (2010)
  180. Kubo H et al J. Low Temp. Phys. 171 466 (2013)
  181. Yano H et al J. Low Temp. Phys. 156 132 (2009)
  182. Garg D et al Low Temp. Phys. 38 1026 (2012); Garg D et al Fiz. Nizk. Temp. 38 1300 (2012)
  183. Nago Y et al Phys. Rev. B 87 024511 (2013)
  184. Guthrie A et al arXiv:2007.04482
  185. Bewley G et al Proc. Natl. Acad. Sci. USA 105 13707 (2008)
  186. Galantucci L et al Proc. Natl. Acad. Sci. USA 116 12204 (2019)
  187. Bewley G P Cryogenics 49 549 (2009)
  188. Bewley G P, Sreenivasan K R J. Low Temp. Phys. 156 84 (2009)
  189. Nago Y et al J. Low Temp. Phys. 162 322 (2011)
  190. Bao M Analysis And Design Principles Of MEMS Devices (Amsterdam: Elsevier Science, 2005)
  191. Nakagawa T et al Phys. Rev. B 101 184515 (2020); Nakagawa T et al arXiv:2002.05387
  192. Guthrie A et al Appl. Phys. Lett. 115 113103 (2019)
  193. Hendry P C, McClintock P V E Cryogenics 27 131 (1987)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions