Issues

 / 

2022

 / 

July

  

Reviews of topical problems


The SMEFT formalism: the basis for finding deviations from the Standard Model


Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation

The search for manifestations of physics beyond the Standard Model (SM) is one of the main directions of research at the LHC and future colliders under discussion. The effects caused by the new physics can consist in the direct detection of new particles if their masses are less than the characteristic energies available at colliders and their interactions with the SM particles are strong enough. But if the masses of new particles are too large, or the interactions with SM particles are too weak, then new particles cannot be detected directly. In this case, the new physics can lead to a modification of the interactions of SM particles, to subthreshold effects. We present„ the current status of an approach or formalism called the Standard Model Effective Field Theory (SMEFT), which allows„ us to describe and model deviations from the SM predictions in a theoretically consistent manner. The advantages of and serious problems with this approach are discussed.

Fulltext pdf (488 KB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.02.038916
Keywords: Standard Model, effective field theory, top quark, Higgs boson, higher-dimensional operators, unitarity, renormalizability
PACS: 12.15.−y, 12.60.−i, 14.80.Bn (all)
DOI: 10.3367/UFNe.2021.02.038916
URL: https://ufn.ru/en/articles/2022/7/b/
Citation: Boos E E "The SMEFT formalism: the basis for finding deviations from the Standard Model" Phys. Usp. 65 653–676 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, December 2020, revised: 18th, January 2021, 12th, February 2021

Оригинал: Боос Э Э «Формализм SMEFT — основа поиска отклонений от Стандартной модели» УФН 192 697–721 (2022); DOI: 10.3367/UFNr.2021.02.038916

References (96) ↓ Similar articles (20)

  1. Lee B W, Quigg C, Thacker H B Phys. Rev. Lett. 38 883 (1977)
  2. Lee B W, Quigg C, Thacker H B Phys. Rev. D 16 1519 (1977)
  3. Chanowitz M S "Universal W , Z scattering theorems and no-Lose corollary for the SSC" Preprint LBL-21973 (Berkeley, CA: Lawrence Berkeley Laboratory. Univ. of California, 1986); Chanowitz M S Proc. of the 23rd Intern. Conf. on High-Energy Physics, ICHEP’86, 16-23 July 1986, Berkeley, CA, USA (Ed. S C Loken) (Singapore: World Scientific, 1987) p. 445
  4. Dicus D A, Mathur V S Phys. Rev. D 7 3111 (1973)
  5. Aad G et al (ATLAS Collab.) Phys. Lett. B 716 1 (2012); Aad G et al (ATLAS Collab.) arXiv:1207.7214
  6. Chatrchyan S et al (CMS Collab.) Phys. Lett. B 716 30 (2012); Chatrchyan S et al (CMS Collab.) arXiv:1207.7235
  7. Beacham J et al J. Phys. G 47 010501 (2020); Beacham J et al arXiv:1901.09966
  8. Additional plots of the ATLAS Exotic physics group, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS
  9. CMS Exotica Public Physics Results, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
  10. Weinberg S Phys. Rev. Lett. 43 1566 (1979)
  11. Buchmüller W, Wyler D Nucl. Phys. B 268 621 (1986)
  12. Appelquist T, Carazzone J Phys. Rev. D 11 2856 (1975)
  13. Bogoliubow N N, Parasiuk O S Acta Math. 97 227 (1957)
  14. Grzadkowski B et al J. High Energy Phys. 2010 (10) 85 (2010); Grzadkowski B et al arXiv:1008.4884
  15. Alonso R et al J. High Energy Phys. 2014 (04) 159 (2014); Alonso R et al arXiv:1312.2014
  16. Gripaios B arXiv:1506.05039
  17. Aguilar Saavedra J A et al. arXiv:1802.07237
  18. Boos E et al Int. J. Mod. Phys. A 32 1750008 (2017); Boos E et al arXiv:1607.00505
  19. Boos E E et al Phys. Rev. D 79 104013 (2009); Boos E E et al arXiv:0710.3100
  20. Kazakov D I Phys. Lett. B 797 134801 (2019); Kazakov D I arXiv:1904.08690
  21. Jenkins E E, Manohar A V, Trott M J. High Energy Phys. 2013 (10) 87 (2013); Jenkins E E, Manohar A V, Trott M arXiv:1308.2627
  22. Jenkins E E, Manohar A V, Trott M J. High Energy Phys. 2014 (01) 35 (2014); Jenkins E E, Manohar A V, Trott M arXiv:1310.4838
  23. Zhang C, Maltoni F Phys. Rev. D 88 054005 (2013); Zhang C, Maltoni F arXiv:1305.7386
  24. Mebane H et al Phys. Rev. D 88 015028 (2013); Mebane H et al arXiv:1306.3380
  25. Chen C-Y, Dawson S, Zhang C Phys. Rev. D 89 015016 (2014); Chen C-Y, Dawson S, Zhang C arXiv:1311.3107
  26. Zhang C Phys. Rev. D 90 014008 (2014); Zhang C arXiv:1404.1264
  27. Franzosi D B, Zhang C Phys. Rev. D 91 114010 (2015); Franzosi D B, Zhang C arXiv:1503.08841
  28. Gröber R et al J. High Energy Phys. 2015 (09) 92 (2015); Gröber R et al arXiv:1504.06577
  29. Hartmann C, Trott M Phys. Rev. Lett. 115 191801 (2015); Hartmann C, Trott M arXiv:1507.03568
  30. Hartmann C, Trott M J. High Energy Phys. 2015 (07) 151 (2015); Hartmann C, Trott M arXiv:1505.02646
  31. Zhang C Phys. Rev. Lett. 116 162002 (2016); Zhang C arXiv:1601.06163
  32. Bessidskaia Bylund O et al J. High Energy Phys. 2016 (05) 52 (2016); Bessidskaia Bylund O et al arXiv:1601.08193
  33. Maltoni F, Vryonidou E, Zhang C J. High Energy Phys. 2016 (10) 123 (2016); Maltoni F, Vryonidou E, Zhang C arXiv:1607.05330
  34. Gauld R, Pecjak B D, Scott D J Phys. Rev. D 94 074045 (2016); Gauld R, Pecjak B D, Scott D J arXiv:1607.06354
  35. Degrande C et al Eur. Phys. J. C 77 262 (2017); Degrande C et al arXiv:1609.04833
  36. Hartmann C, Shepherd W, Trott M J. High Energy Phys. 2017 (03) 60 (2017); Hartmann C, Shepherd W, Trott M arXiv:1611.09879
  37. de Florian D, Fabre I, Mazzitelli J J. High Energy Phys. 2017 (10) 215 (2017); de Florian D, Fabre I, Mazzitelli J arXiv:1704.05700
  38. Deutschmann N et al J. High Energy Phys. 2017 (12) 63 (2017); Deutschmann N et al J. High Energy Phys. 2018 (02) 159 (2018), Erratum; Deutschmann N et al arXiv:1708.00460
  39. Baglio J, Dawson D, Lewis I M Phys. Rev. D 96 073003 (2017); Baglio J, Dawson D, Lewis I M arXiv:1708.03332
  40. Dawson D, Giardino P P Phys. Rev. D 97 093003 (2018); Dawson D, Giardino P P arXiv:1801.01136
  41. Degrande C et al J. High Energy Phys. 2018 (10) 5 (2018); Degrande C et al arXiv:1804.07773
  42. Vryonidou E, Zhang C J. High Energy Phys. 2018 (08) 36 (2018); Vryonidou E, Zhang C arXiv:1804.09766
  43. Dedes A et al J. High Energy Phys. 2018 (08) 103 (2018); Dedes A et al arXiv:1805.00302
  44. Dawson S, Giardino P P Phys. Rev. D 98 095005 (2018); Dawson S, Giardino P P arXiv:1807.11504
  45. Dawson S, Ismail A Phys. Rev. D 98 093003 (2018); Dawson S, Ismail A arXiv:1808.05948
  46. Dawson S, Giardino P P, Ismail A Phys. Rev. D 99 035044 (2019); Dawson S, Giardino P P, Ismail A arXiv:1811.12260
  47. Baglio J, Dawson D, Lewis I M Phys. Rev. D 99 035029 (2019); Baglio J, Dawson D, Lewis I M arXiv:1812.00214
  48. Cullen J M, Pecjak B D, Scott D J J. High Energy Phys. 2019 (08) 173 (2019); Cullen J M, Pecjak B D, Scott D J arXiv:1904.06358
  49. Neumann T, Sullivan Z J. High Energy Phys. 2019 (06) 22 (2019); Neumann T, Sullivan Z arXiv:1903.11023
  50. Kinoshita T J. Math. Phys. 3 650 (1962)
  51. Lee T D, Nauenberg M Phys. Rev. 133 B1549 (1964)
  52. Grinstein B, Wise M B Phys. Lett. B 265 326 (1991)
  53. Peskin M E, Takeuchi T Phys. Rev. D 46 381 (1992)
  54. Ellis J et al J. High Energy Phys. 2018 (06) 146 (2018); Ellis J et al arXiv:1803.03252
  55. Falkowski A, Riva R J. High Energy Phys. 2015 (02) 39 (2015); Falkowski A, Riva R arXiv:1411.0669
  56. Heinemeyer S et al (LHC Higgs Cross Section Working Group) CERN-2013-004 (Geneva: CERN, 2013); Heinemeyer S et al (LHC Higgs Cross Section Working Group) arXiv:1307.1347
  57. Cepeda M et al CERN Yellow Rep. Monogr. 7 221 (2019); Cepeda M et al arXiv:1902.00134
  58. Aad G et al (ATLAS Collab.) Phys. Rev. D 101 012002 (2020); Aad G et al (ATLAS Collab.) arXiv:1909.02845
  59. Sirunyan A M et al (CMS Collab.) Eur. Phys. J. C 79 421 (2019); Sirunyan A M et al (CMS Collab.) arXiv:1809.10733
  60. CMS Collab. "Combined Higgs boson production and decay measurements with up to 137 fb of proton-proton  collision data at √s 13 TeV" CMS-PAS-HIG-19-005
  61. Buckley A et al (The TopFitter Collab.) J. High Energy Phys. 2016 (04) 15 (2016); Buckley A et al (The TopFitter Collab.) arXiv:1512.03360
  62. Gunion J F et al Front. Phys. 80 1 (2000)
  63. Djouadi A Phys. Rep. 457 1 (2008); Djouadi A hep-ph/0503172
  64. Marciano W J, Zhang C, Willenbrock S Phys. Rev. D 85 013002 (2012); Marciano W J, Zhang C, Willenbrock S arXiv:1109.530
  65. Kane G L, Ladinsky G A, Yuan C-P Phys. Rev. D 45 124 (1992)
  66. Whisnant K et al Phys. Rev. D 56 467 (1997); Whisnant K et al hep-ph/9702305
  67. Boos E et al Eur. Phys. J. C 16 269 (2000); Boos E et al hep-ph/0001048
  68. Aguilar-Saavedra J A Nucl. Phys. B 804 160 (2008); Aguilar-Saavedra J A arXiv:0803.3810
  69. Birman J L et al Phys. Rev. D 93 113021 (2016); Birman J L et al arXiv:1605.02679
  70. Boos E, Bunichev V Phys. Rev. D 101 055012 (2020); Boos E, Bunichev V arXiv:1910.00710
  71. Khachatryan V et al (CMS Collab.) J. High Energy Phys. 2017 (02) 28 (2017); Khachatryan V et al (CMS Collab.) arXiv:1610.03545
  72. Czakon M, Fiedler P, Mitov A Phys. Rev. Lett. 110 252004 (2013); Czakon M, Fiedler P, Mitov A arXiv:1303.6254
  73. Czakon M et al J. High Energy Phys. 2017 (10) 186 (2017); Czakon M et al arXiv:1705.04105
  74. Kidonakis N PoS 247 170 (2015); Kidonakis N arXiv:1506.04072
  75. Sirunyan A M et al (CMS Collab.) Eur. Phys. J. C 79 886 (2019); Sirunyan A M et al (CMS Collab.) arXiv:1903.11144
  76. Sirunyan A M et al (CMS Collab.) J. High Energy Phys. 2020 (03) 56 (2020); Sirunyan A M et al (CMS Collab.) arXiv:1907.11270
  77. Martin A D et al Eur. Phys. J. C 63 189 (2009); Martin A D et al arXiv:0901.0002
  78. Kulesza A et al Eur. Phys. J. C 79 249 (2019); Kulesza A et al arXiv:1812.08622
  79. Aaboud M et al (ATLAS Collab.) Phys. Rev. D 99 072009 (2019); Aaboud M et al (ATLAS Collab.) arXiv:1901.03584
  80. Sirunyan A M et al (CMS Collab.) J. High Energy Phys. 2019 (11) 82 (2019); Sirunyan A M et al (CMS Collab.) arXiv:1906.02805
  81. Aad G et al (ATLAS Collab.) Eur. Phys. J. C 80 1085 (2020); Aad G et al (ATLAS Collab.) arXiv:2007.14858
  82. Bevilacqua G, Worek M J. High Energy Phys. 2012 (07) 111 (2012); Bevilacqua G, Worek M arXiv:1206.3064
  83. Alwall J et al J. High Energy Phys. 2014 (07) 79 (2014); Alwall J et al arXiv:1405.0301
  84. Frederix R, Pagani D, Zaro M J. High Energy Phys. 2018 (02) 31 (2018); Frederix R, Pagani D, Zaro M arXiv:1711.02116
  85. Hartland N P et al J. High Energy Phys. 2019 (04) 100 (2019); Hartland N P et al arXiv:1901.05965
  86. Biekoetter A, Corbett T, Plehn T SciPost Phys. 6 (6) 064 (2019); Biekoetter A, Corbett T, Plehn T arXiv:1812.07587
  87. Sirunyan A M et al (CMS Collab.) J. High Energy Phys. 08 11 (2018); Sirunyan A M et al (CMS Collab.) arXiv:1711.02547
  88. Zhang C, Greiner N, Willenbrock S Phys. Rev. D 86 014024 (2012); Zhang C, Greiner N, Willenbrock S arXiv:1201.6670
  89. Brivio I et al J. High Energy Phys. 2020 (02) 131 (2020); Brivio I et al arXiv:1910.03606
  90. Lafaye R et al Eur. Phys. J. C 54 617 (2008); Lafaye R et al arXiv:0709.3985
  91. Lafaye R et al J. High Energy Phys. 2009 (08) 009 (2009); Lafaye R et al arXiv:0904.3866
  92. Dawson S, Homiller S, Lane S D Phys. Rev. D 102 055012 (2020); Dawson S, Homiller S, Lane S D arXiv:2007.01296
  93. de Blas J et al J. High Energy Phys. 2015 (04) 78 (2015); de Blas J et al arXiv:1412.8480
  94. Henning B, Lu X, Murayama H J. High Energy Phys. 2016 (01) 23 (2016); Henning B, Lu X, Murayama H arXiv:1412.1837
  95. de Blas J et al J. High Energy Phys. 2018 (03) 109 (2018); de Blas J et al arXiv:1711.10391
  96. Das Bakshi S, Chakrabortty J, Patra S K Eur. Phys. J. C 79 21 (2019); Das Bakshi S, Chakrabortty J, Patra S K arXiv:1808.04403

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions