Issues

 / 

2022

 / 

May

  

Methodological notes


Gerstner waves and their generalizations in hydrodynamics and geophysics

  a, b,   a, c, b
a Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
b National Research University Higher School of Economics, Nizhny Novgorod Branch, B. Pecherskaya str. 25/12, Nizhny Novgorod, 603155, Russian Federation
c Alexeev Nizhnii Novgorod State Technical University, Minina str. 24, Nizhnii Novgorod, 603600, Russian Federation

To mark 220 years since the appearance of Gerstner's paper that proposed an exact solution to the hydrodynamic equations, an overview of exact solutions for water waves is given, each of which is a generalization of the Gerstner wave. Additional factors are coastal geometry, fluid rotation, varying pressure on the free surface, stratification, fluid compressibility, and background flows. Waves on a rotating Earth are studied in the f-plane approximation, and, in the near-equatorial region, also in the β-plane approximation. The flows are described in Lagrangian variables. For all waves in the absence of background flows, the trajectories of liquid particles are circles, as in the Gerstner wave (hence, their common name—Gerstner-like).

Fulltext pdf (761 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.05.038980
Keywords: Gerstner waves, Lagrangian coordinates, vorticity, Cauchy invariants, edge waves, Ptolemaic flows, rotating fluid, f-plane approximation, equatorially trapped waves
PACS: 47.35.Bb
DOI: 10.3367/UFNe.2021.05.038980
URL: https://ufn.ru/en/articles/2022/5/c/
001112520100003
2-s2.0-85160618208
2022PhyU...65..453A
Citation: Abrashkin A A, Pelinovsky E N "Gerstner waves and their generalizations in hydrodynamics and geophysics" Phys. Usp. 65 453–467 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, February 2021, revised: 9th, April 2021, 3rd, May 2021

Оригинал: Абрашкин А А, Пелиновский Е Н «Волны Герстнера и их обобщения в гидродинамике и геофизике» УФН 192 491–506 (2022); DOI: 10.3367/UFNr.2021.05.038980

References (112) ↓ Cited by (7) Similar articles (20)

  1. Scott R J Report On The Fourteenth Meeting Of The British Association For The Advancement Of Science, York, September 1844 (London: John Murray, 1844) p. 311
  2. Korteweg D J, de Vries G Phil. Mag. 39 422 (1895)
  3. Gerstner F "Theorie der Wellen" Abhandlunger Koniglichen Böhmischen Geselschaft Wissenschaften B (1802); Gerstner F Ann. Physik 2 412 (1809)
  4. Lamb H Hydrodynamics (Cambridge: Cambridge Univ. Press, 1932); Translated into Russian, Lamb H Gidrodinamika (Moscow-Leningrad: OGIZ, 1947)
  5. Voronin M I, Voronina M M Franz Anton Gerstner, 1793-1840 (St. Petersburg: Nauka, 1994)
  6. Straub H Die Geschichte Der Bauingenieurkunst (Wissenschaft und Kultur) Vol. 4 (Basel: Springer, 1964)
  7. Stokes G G Cambridge Trans. 8 441 (1847); Stokes G G Mathematical And Physics Papers Vol. 1 (Cambridge: Cambridge Univ. Press, 1880) p. 197
  8. Krylov A N Sobranie Sochinenii (Collected Works) Vol. 11 Kachka Korablya (Ship Pitching) (Moscow-Leningrad: Izd. AN SSSR, 1951) p. 183
  9. Sretenskii L N Teoriya Volnovykh Dvizhenii Zhidkosti (Theory Of Wave Motions In Fluids) (Moscow: Nauka, 1977)
  10. Dubreil-Jacotin M L Atti. Accad. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 6 (15) 814 (1932)
  11. Benjamin T B, Feir J E J. Fluid Mech. 27 417 (1967)
  12. Pollard R T J. Geophys. Res. 75 5895 (1970)
  13. Yih C-S J. Fluid Mech. 24 765 (1966)
  14. Mollo-Christensen E Phys. Fluids 25 586 (1982)
  15. Mollo-Christensen E J. Phys. Ocean. 9 226 (1978)
  16. Constantin A J. Phys. A 34 9723 (2001)
  17. Mollo-Christensen E J. Atmos. Sci. 35 1395 (1978)
  18. Inogamov N A Sov. Phys. Dokl. 29 714 (1984); Inogamov N A Dokl. Akad. Nauk SSSR 278 (1) 57 (1984)
  19. Abrashkin A A J. Appl. Mech. Tech. Phys. 25 411 (1984); Abrashkin A A Prikl. Mekh. Tekh. Fiz. (3) 86 (1984)
  20. Monismith S G et al J. Fluid Mech. 573 131 (2007)
  21. Swan C Proc. of the 22nd Intern. Coastal Engineering Conf., July 2-6, 1990, Delft, The Netherlands (Ed. B L Edge) (New York: American Society of Civil Engineers, 1990) p. 489
  22. Jiang J Y, Street R L S J. Geophys. Res. Oceans 96 2711 (1991)
  23. Thais L Thèse (Toulouse: Inst. Nat. Polytech, 1994)
  24. Smith J A J. Phys. Oceanogr. 36 1381 (2006)
  25. Leblanc S J. Fluid Mech. 506 245 (2004)
  26. Weber J E H Wave Motion 48 301 (2011)
  27. Bennett A Lagrangian Fluid Dynamics (Cambridge: Cambridge Univ. Press, 2006)
  28. Abrashkin A A, Yakubovich E I Vikhrevaya Dinamika V Lagranzhevom Opisanii (Vortex Dynamics In Lagrangian Description) (Moscow: Fizmatlit, 2006)
  29. Pedlosky J Geophysical Fluid Dynamics (New York: Springer-Verlag, 1979); Translated into Russian, Pedlosky J Geofizicheskaya Gidrodinamika Vol. 1 (Moscow: Mir, 1984)
  30. Truesdell C The Kinematics Of Vorticity (Bloomington: Indiana Univ. Press, 1954)
  31. Ovsyannikov L V Zadacha O Neustanovivshemsya Dvizhenii Zhidkosti So Svobodnoi Granitsei (The Problem On Nonstationary Motion Of Fluid With Free Surface) (Novosibirsk: Nauka, 1967) p. 5
  32. Kochin N E, Kibel’ I A, Roze N V Theoretical Hydromechanics Vol. 1 (New York: Interscience Publ., 1964); Translated from Russian, Kochin N E, Kibel’ I A, Roze N V Teoreticheskaya Gidromekhanika Vol. 1 (Moscow: Fizmatlit, 1963)
  33. Froude W Trans. Inst. Naval. Arch. 3 45 (1862)
  34. Rankine W J M Phil. Trans. R. Soc. Lond. A 153 127 (1863)
  35. Reech F C.R. Acad. Sci. Paris 68 1099 (1869)
  36. Abrashkin A A, Pelinovsky E N Phys. Usp. 61 307 (2018); Abrashkin A A, Pelinovsky E N Usp. Fiz. Nauk 188 329 (2018)
  37. Kinsman B Wind Waves: Their Generation And Propagation On The Ocean Surface (New York: Dover, 2002)
  38. Monin A S Dokl. Akad. Nauk SSSR 203 769 (1972)
  39. Constantin A J. Phys. A 34 1405 (2001)
  40. Henry D J. Nonlin. Math. Phys. 15 87 (2008)
  41. Constantin A Nonlinear Water Waves With Applications To Wave-Current Interactions And Tsunamis (CBMS-NSF Conf. Series in Applied Mathematics) Vol. 81 (Philadelphia, PA: SIAM, 2011)
  42. Stokes G G Rep. 16th Brit. Assoc. Adv. Sci. (1846) p. 1; Stokes G G Papers Vol. 1 (Cambridge: Cambridge Univ. Press, 1880) p. 157
  43. Johnson R S Phil. Trans. R. Soc. A 365 2359 (2007)
  44. Dubinina V A et al Izv. Ross. Akad. Nauk Fiz. Atmos. Okeana 40 525 (2004)
  45. Ionescu-Kruse D J. Differ. Equ. 256 3999 (2014)
  46. Dubreil-Jacotin M L J. Math. Pures Appl. 9 13 217 (1934)
  47. Gouyon R Ann. Faculté Sci. L’Univ. Toulouse (4) 221 (1958)
  48. Abrashkin A A, Zen’kovich D A Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 26 (1) 35 (1990)
  49. Abrashkin A A Fluid Dyn. 31 583 (1996); Abrashkin A A Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza (4) 125 (1996)
  50. Abrashkin A A, Pelinovsky E N Nonlin. Proc. Geophys. 24 255 (2017)
  51. Abrashkin A A, Pelinovsky E N Izv. Atmos. Ocean. Phys. 54 (1) 101 (2018); Abrashkin A A, Pelinovsky E N Izv. Ross. Akad. Nauk Fiz. Atmos. Okeana 1 112 (2018)
  52. Lighthill M J J. Inst. Math. Appl. 1 (3) 269 (1965)
  53. Philips O M J. Fluid Mech. 7 340 (1960)
  54. Cao Sun Prikl. Mekh. Tekh. Fiz. (3) 90 (1960)
  55. Abrashkin A A, Yakubovich E I Sov. Phys. Dokl. 29 370 (1984); Abrashkin A A, Yakubovich E I Dokl. Akad. Nauk SSSR 276 (1) 76 (1984)
  56. Abrashkin A A, Yakubovich E I J. Appl. Mech. Tech. Phys. 26 202 (1985); Abrashkin A A, Yakubovich E I Prikl. Mekh. Tekh. Fiz. (2) 57 (1985)
  57. Abrashkin A A Sov. J. Plasma Phys. 10 423 (1984); Abrashkin A A Fiz. Plazmy 10 730 (1984)
  58. Abrashkin A A, Soloviev A G Fluid Dyn. 46 679 (2013); Abrashkin A A, Soloviev A G Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza (5) 125 (2013)
  59. Abrashkin A A, Oshmarina O E Phys. Lett. A 378 2866 (2014)
  60. Abrashkin A A Chaos Solitons Fractals 118 152 (2018)
  61. Abrashkin A A, Oshmarina O E Commun. Nonlin. Sci. Num. Simul. 34 66 (2016)
  62. Abrashkin A A, Soloviev A Phys. Rev. Lett. 110 014501 (2013)
  63. Kharif S, Pelinovsky E, Slunyaev A Rogue Waves In The Ocean (Berlin: Springer, 2009)
  64. Abrashkin A Discrete Contin. Dyn. Syst. 39 4443 (2019)
  65. Abrashkin A Deep Sea Res. Pt. II Topical Studies Oceanography 160 3 (2019)
  66. Abrashkin A A, Zen’kovich D A, Yakubovich E I<?tlsb> Radiophys. Quantum Electron. 39 518 (1996); Abrashkin A A, Zen’kovich D A, Yakubovich E I<?tlsb> Izv. Vyssh. Uchebn. Zaved. Radiofiz. 39 783 (1996)
  67. Zakharov V E, Kuznetsov E A Phys. Usp. 40 1087 (1997); Zakharov V E, Kuznetsov E A Usp. Fiz. Nauk 167 1137 (1997)
  68. Kuznetsov E A J. Nonlin. Math. Phys. 13 (1) 64 (2006)
  69. Frisch U, Villone B Eur. Phys. J. H 39 325 (2014)
  70. Besse N, Frisch U J. Fluid Mech. 825 412 (2017)
  71. Ionescu-Kruse D Phys. Fluids 28 086601 (2016)
  72. Constantin A, Monismith S G J. Fluid Mech. 820 511 (2017)
  73. Matioc A-V J. Phys. A 45 365501 (2012)
  74. Weber J E H J. Geophys. Res. 117 C03048 (2012)
  75. Ionescu-Kruse D Nonlin. Anal. Real World Appl. 24 190 (2015)
  76. Hsu H-C Monatsh. Math. 176 143 (2015)
  77. Kluczek M Appl. Anal. 97 1867 (2018)
  78. Henry D, Hsu H-C Discrete Contin. Dyn. Syst. 35 909 (2015)
  79. Henry D Nonlin. Anal. Real World Appl. 28 284 (2016)
  80. Constantin A J. Geophys. Res. 117 C05029 (2012)
  81. Constantin A, Germain P J. Geophys. Res. Oceans 118 2802 (2013)
  82. Henry D Eur. J. Mech. B 38 18 (2013)
  83. Henry D, Sastre-Gomez S J. Math. Fluid Mech. 18 795 (2016)
  84. Genoud F, Henry D J. Math. Fluid Mech. 16 661 (2014)
  85. Henry D J. Fluid Mech. 804 R1 (2016)
  86. Henry D Phil. Trans. R. Soc. A 376 20170088 (2017)
  87. Ionescu-Kruse D J. Math. Fluid Mech. 17 699 (2015)
  88. Chu J, Ionescu-Kruse D, Yang Y Discrete Contin. Dyn. Syst. 39 4399 (2019)
  89. Chu J, Ionescu-Kruse D, Yang Y J. Math. Fluid Mech. 21 19 (2019)
  90. Stuhlmeier R J. Nonlin. Math. Phys. 18 127 (2011)
  91. Matioc A-V Appl. Anal. 92 2254 (2013)
  92. Godin O A Phys. Rev. Lett. 108 194501 (2012)
  93. Godin O A J. Fluid Mech. 767 52 (2015)
  94. Mollo-Christensen E J. Atmos. Sci. 35 1395 (1978)
  95. Stuhlmeier R Appl. Anal. 93 1451 (2013)
  96. Hsu H-C J. Math. Fluid Mech. 16 463 (2014)
  97. Henry D J. Nonlin. Math. Phys. 22 499 (2015)
  98. Rodriguez-Sanjurjo A Monatsh. Math. 186 685 (2017)
  99. Stuhlmeier R, Stiassnie M Discrete Contin. Dyn. Syst. 34 3171 (2014)
  100. Constantin A J. Phys. Oceanogr. 43 165 (2013)
  101. Constantin A J. Phys. Oceanogr. 44 781 (2014)
  102. Henry D, Hsu H-C J. Differ. Equ. 258 1015 (2015)
  103. Ionescu-Kruse D Ann. Mat. Pura Appl. 195 585 (2016)
  104. Rodríguez-Sanjurjo A Wave Motion 88 144 (2019)
  105. Kluczek M J. Math. Fluid Mech. 19 305 (2017)
  106. Rodríguez-Sanjurjo A, Kluczek M Appl. Anal. 96 2333 (2016)
  107. Kluczek M J. Nonlin. Math. Phys. 26 (1) 133 (2019)
  108. Kluczek M J. Math. Phys. 59 123102 (2018)
  109. Weber J E H Wave Motion 77 186 (2018)
  110. Weber J E H Wave Motion 88 257 (2019)
  111. Filatov S V et al Phys. Rev. Lett. 116 054501 (2016)
  112. Parfenyev V M, Vergeles S S, Lebedev V V Phys. Rev. E 94 052801 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions