Issues

 / 

2022

 / 

February

  

Methodological notes


Compressible vortex structures and their role in the onset of hydrodynamic turbulence

  a, b,   c, d, b, §  e, *  b, f
a P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, ul. Krasikova 23, Moscow, 117218, Russian Federation
b Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
e Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, CEP 22460-320, Brasil
f Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Institutskaya str., 4/1, Novosibirsk, 630090, Russian Federation

We study the formation of quasi-two-dimensional (thin pancake) vortex structures in three-dimensional flows and of quasi-one-dimensional structures in two-dimensional hydrodynamics. These structures are formed at large Reynolds numbers, when their evolution is described in the leading order by the Euler equations for an ideal incompressible fluid. We show numerically and analytically that the compression of these structures and, as a consequence, the increase in their amplitudes are due to the compressibility of the frozen-in-fluid fields: the field of continuously distributed vortex lines in the three-dimensional case and the field of vorticity rotor lines (divorticity) for two-dimensional flows. We find that the growth of vorticity and divorticity can be considered to be a process of overturning the corresponding fields. At high intensities, this process demonstrates a Kolmogorov-type scaling relating the maximum amplitude to the corresponding thicknesses-to-width ratio of the structures. The possible role of these coherent structures in the formation of the Kolmogorov turbulent spectrum, as well as in the Kraichnan spectrum corresponding to a constant flux of enstrophy in the case of two-dimensional turbulence, is analyzed.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038875
Keywords: vortex lines, divorticity, overturning, turbulence, frozen-in-fluid fields
PACS: 47.10.−g, 47.27.−i, 47.32.−y (all)
DOI: 10.3367/UFNe.2020.11.038875
URL: https://ufn.ru/en/articles/2022/2/d/
000805351300005
2-s2.0-85129834016
2022PhyU...65..189A
Citation: Agafontsev D S, Kuznetsov E A, Mailybaev A A, Sereshchenko E V "Compressible vortex structures and their role in the onset of hydrodynamic turbulence" Phys. Usp. 65 189–208 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 31st, August 2020, 18th, November 2020

Оригинал: Агафонцев Д С, Кузнецов Е А, Майлыбаев А А, Серещенко Е В «Сжимаемые вихревые структуры и их роль в зарождении гидродинамической турбулентности» УФН 192 205–225 (2022); DOI: 10.3367/UFNr.2020.11.038875

References (75) Cited by (3) Similar articles (20) ↓

  1. A.A. Abrashkin, E.N. Pelinovsky “Gerstner waves and their generalizations in hydrodynamics and geophysicsPhys. Usp. 65 453–467 (2022)
  2. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wavePhys. Usp. 61 307–312 (2018)
  3. A.G. Bershadskii “Large-scale fractal structure in laboratory turbulence, astrophysics, and the oceanSov. Phys. Usp. 33 (12) 1073–1075 (1990)
  4. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and applicationPhys. Usp. 53 91–98 (2010)
  5. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experimentPhys. Usp. 52 235–255 (2009)
  6. A.F. Gutsol “The Ranque effectPhys. Usp. 40 639–658 (1997)
  7. P.N. Svirkunov, M.V. Kalashnik “Phase patterns of dispersive waves from moving localized sourcesPhys. Usp. 57 80–91 (2014)
  8. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equationsPhys. Usp. 59 669–688 (2016)
  9. P.K. Volkov “Similarity in problems related to zero-gravity hydromechanicsPhys. Usp. 41 1211–1217 (1998)
  10. O.G. Bakunin “Correlation and percolation properties of turbulent diffusionPhys. Usp. 46 733–744 (2003)
  11. L.A. Rivlin “Photons in a waveguide (some thought experiments)Phys. Usp. 40 291–303 (1997)
  12. M.V. Lebedev, O.V. Misochko “On the question of a classical analog of the Fano problemPhys. Usp. 65 627–640 (2022)
  13. Yu.A. Ageeva, P.K. Petrov “Unitarity relation and unitarity bounds for scalars with different sound speedsPhys. Usp. 66 1134–1141 (2023)
  14. A.V. Nedospasov “On an estimate of turbulent transport in a magnetized plasma (to the 90th anniversary of the birth of B.B. Kadomtsev)Phys. Usp. 61 1079–1081 (2018)
  15. V.E. Antonov “A rule for a joint of three boundary lines in phase diagramsPhys. Usp. 56 395–400 (2013)
  16. G.A. Markov, A.S. Belov “Demonstration of nonlinear wave phenomena in the plasma of a laboratory model of an ionospheric-magnetospheric density ductPhys. Usp. 53 703–712 (2010)
  17. V.I. Klyatskin, K.V. Koshel’ “Simple example of the development of cluster structure of a passive tracer field in random flowsPhys. Usp. 43 717–723 (2000)
  18. L.Kh. Ingel’ “Self-action of a heat-releasing admixture in a liquid mediumPhys. Usp. 41 95–99 (1998)
  19. B.M. Bolotovskii, A.V. Serov “On the force line representation of radiation fieldsPhys. Usp. 40 1055–1059 (1997)
  20. S.G. Arutyunyan “Electromagnetic field lines of a point charge moving arbitrarily in vacuumSov. Phys. Usp. 29 1053–1057 (1986)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions