Issues

 / 

2022

 / 

February

  

Methodological notes


Compressible vortex structures and their role in the onset of hydrodynamic turbulence

  a, b,   c, d, b, §  e, *  b, f
a P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, ul. Krasikova 23, Moscow, 117218, Russian Federation
b Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
e Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, CEP 22460-320, Brasil
f Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Institutskaya str., 4/1, Novosibirsk, 630090, Russian Federation

We study the formation of quasi-two-dimensional (thin pancake) vortex structures in three-dimensional flows and of quasi-one-dimensional structures in two-dimensional hydrodynamics. These structures are formed at large Reynolds numbers, when their evolution is described in the leading order by the Euler equations for an ideal incompressible fluid. We show numerically and analytically that the compression of these structures and, as a consequence, the increase in their amplitudes are due to the compressibility of the frozen-in-fluid fields: the field of continuously distributed vortex lines in the three-dimensional case and the field of vorticity rotor lines (divorticity) for two-dimensional flows. We find that the growth of vorticity and divorticity can be considered to be a process of overturning the corresponding fields. At high intensities, this process demonstrates a Kolmogorov-type scaling relating the maximum amplitude to the corresponding thicknesses-to-width ratio of the structures. The possible role of these coherent structures in the formation of the Kolmogorov turbulent spectrum, as well as in the Kraichnan spectrum corresponding to a constant flux of enstrophy in the case of two-dimensional turbulence, is analyzed.

Fulltext pdf (1.1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038875
Keywords: vortex lines, divorticity, overturning, turbulence, frozen-in-fluid fields
PACS: 47.10.−g, 47.27.−i, 47.32.−y (all)
DOI: 10.3367/UFNe.2020.11.038875
URL: https://ufn.ru/en/articles/2022/2/d/
000805351300005
2-s2.0-85129834016
2022PhyU...65..189A
Citation: Agafontsev D S, Kuznetsov E A, Mailybaev A A, Sereshchenko E V "Compressible vortex structures and their role in the onset of hydrodynamic turbulence" Phys. Usp. 65 189–208 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 31st, August 2020, 18th, November 2020

Оригинал: Агафонцев Д С, Кузнецов Е А, Майлыбаев А А, Серещенко Е В «Сжимаемые вихревые структуры и их роль в зарождении гидродинамической турбулентности» УФН 192 205–225 (2022); DOI: 10.3367/UFNr.2020.11.038875

References (75) Cited by (3) Similar articles (20) ↓

  1. A.A. Abrashkin, E.N. Pelinovsky “Gerstner waves and their generalizations in hydrodynamics and geophysics65 453–467 (2022)
  2. A.A. Abrashkin, E.N. Pelinovsky “On the relation between Stokes drift and the Gerstner wave61 307–312 (2018)
  3. A.G. Bershadskii “Large-scale fractal structure in laboratory turbulence, astrophysics, and the ocean33 (12) 1073–1075 (1990)
  4. G.I. Broman, O.V. Rudenko “Submerged Landau jet: exact solutions, their meaning and application53 91–98 (2010)
  5. P.S. Landa, D.I. Trubetskov, V.A. Gusev “Delusions versus reality in some physics problems: theory and experiment52 235–255 (2009)
  6. A.F. Gutsol “The Ranque effect40 639–658 (1997)
  7. P.N. Svirkunov, M.V. Kalashnik “Phase patterns of dispersive waves from moving localized sources57 80–91 (2014)
  8. A.G. Zagorodnii, A.V. Kirichok, V.M. Kuklin “One-dimensional modulational instability models of intense Langmuir plasma oscillations using the Silin—Zakharov equations59 669–688 (2016)
  9. P.K. Volkov “Similarity in problems related to zero-gravity hydromechanics41 1211–1217 (1998)
  10. O.G. Bakunin “Correlation and percolation properties of turbulent diffusion46 733–744 (2003)
  11. L.A. Rivlin “Photons in a waveguide (some thought experiments)40 291–303 (1997)
  12. M.V. Lebedev, O.V. Misochko “On the question of a classical analog of the Fano problem65 627–640 (2022)
  13. Yu.A. Ageeva, P.K. Petrov “Unitarity relation and unitarity bounds for scalars with different sound speeds66 1134–1141 (2023)
  14. A.V. Nedospasov “On an estimate of turbulent transport in a magnetized plasma (to the 90th anniversary of the birth of B.B. Kadomtsev)61 1079–1081 (2018)
  15. V.E. Antonov “A rule for a joint of three boundary lines in phase diagrams56 395–400 (2013)
  16. G.A. Markov, A.S. Belov “Demonstration of nonlinear wave phenomena in the plasma of a laboratory model of an ionospheric-magnetospheric density duct53 703–712 (2010)
  17. V.I. Klyatskin, K.V. Koshel’ “Simple example of the development of cluster structure of a passive tracer field in random flows43 717–723 (2000)
  18. L.Kh. Ingel’ “Self-action of a heat-releasing admixture in a liquid medium41 95–99 (1998)
  19. B.M. Bolotovskii, A.V. Serov “On the force line representation of radiation fields40 1055–1059 (1997)
  20. S.G. Arutyunyan “Electromagnetic field lines of a point charge moving arbitrarily in vacuum29 1053–1057 (1986)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions