Issues

 / 

2022

 / 

December

  

Methodological notes


'Anomalous' dissipation of a paraxial wave beam propagating along an absorbing plane

 ,
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

We present solutions of the Leontovich—Fock parabolic equation which describe the structure of a paraxial quasi-optical wave beam in a medium with strong spatial inhomogeneity of the absorption coefficient transverse to the direction of beam propagation. Using as an example the simplest reference problem of a beam propagating along an infinitely narrow plane absorbing layer, it is shown that, in this case, the energy dissipation and refraction of the beam affect each other, so that they should be considered simultaneously, while the application of the perturbation theory can lead to qualitatively incorrect results.

Fulltext pdf (657 KB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.09.039068
Keywords: paraxial wave beam, resonant dissipation, diffraction, parabolic wave equation
PACS: 42.25.−p, 42.25.Bs, 42.25.Fx (all)
DOI: 10.3367/UFNe.2021.09.039068
URL: https://ufn.ru/en/articles/2022/12/h/
001112544300007
2-s2.0-85182895228
2022PhyU...65.1303S
Citation: Shalashov A G, Gospodchikov E D "'Anomalous' dissipation of a paraxial wave beam propagating along an absorbing plane" Phys. Usp. 65 1303–1312 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, August 2021, revised: 8th, September 2021, 24th, September 2021

Оригинал: Шалашов А Г, Господчиков Е Д «"Аномальная" диссипация параксиального волнового пучка, распространяющегося вдоль поглощающей плоскости» УФН 192 1399–1408 (2022); DOI: 10.3367/UFNr.2021.09.039068

References (56) ↓ Similar articles (20)

  1. Vdovin V Fusion Sci. Technol. 59 690 (2001)
  2. Vdovin V L Plasma Phys. Rep. 39 95 (2013); Vdovin V L Fiz. Plazmy 39 115 (2013)
  3. Köhn A et al Plasma Phys. Control. Fusion 55 014010 (2013)
  4. Hammond K C et al Plasma Phys. Control. Fusion 60 025022 (2018)
  5. Sakharov A S Plasma Phys. Rep. 45 289 (2019); Sakharov A S Fiz. Plazmy 45 291 (2019)
  6. Aleynikov P, Marushchenko N B Comput. Phys. Commun. 241 40 (2019)
  7. Litvak A G et al Sov. Tech. Phys. Lett. 1 374 (1975); Litvak A G et al Pis’ma Zh. Tekh. Fiz. 1 858 (1975)
  8. Litvak A G et al Nucl. Fusion 17 659 (1977)
  9. Maekawa T et al Phys. Lett. A 69 414 (1979)
  10. Baranov Yu F, Fedorov V I Sov. J. Plasma Phys. 9 391 (1983); Baranov Yu F, Fedorov V I Fiz. Plazmy 9 677 (1983)
  11. Tereshchenko M et al Plasma Phys. Control. Fusion 55 115011 (2013)
  12. Pereverzev G V Phys. Plasmas 5 3529 (1998)
  13. Poli E, Peeters A G, Pereverzev G V Comput. Phys. Commun. 136 90 (2001)
  14. Poli E et al Comput. Phys. Commun. 225 36 (2018)
  15. Smolyakova O B et al Sov. J. Plasma Phys. 9 688 (1983); Smolyakova O B et al Fiz. Plazmy 9 1194 (1983)
  16. Harvey R W et al Nucl. Fusion 37 69 (1997)
  17. Wolf R C et al Nucl. Fusion 41 1259 (2001)
  18. Günter S et al Nucl. Fusion 45 S98 (2005)
  19. Henderson M A et al Fusion Eng. Des. 82 454 (2007)
  20. Bilato R et al Nucl. Fusion 49 075020 (2009)
  21. Poli E et al Nucl. Fusion 53 01301 (2013)
  22. Farina D "GRAY: a quasi-optical ray tracing code for electron cyclotron absorption and current drive in tokamaks" IFP-CNR Internal Report FP 05/1 (2005); Farina D https://www.ifp.cnr.it/publications/2005/FP05-01.pdf
  23. Tereshchenko M A, Castejón F, Cappa Á "TRUBA user manual" Informes Técnicos CIEMAT, Editorial CIEMAT 1134 (Madrid: Laboratorio Nacional de Fusión por Confinamiento Magnético, 2008); Tereshchenko M A, Castejón F, Cappa Á http://www-fusion.ciemat.es/InternalReport/IR1134.pdf
  24. Prater R et al Nucl. Fusion 48 035006 (2008)
  25. Laqua H P et al Nucl. Fusion 43 1324 (2003)
  26. Timofeev A V Phys. Usp. 47 555 (2004); Timofeev A V Usp. Fiz. Nauk 174 609 (2004)
  27. Balakina M A et al Radiophys. Quantum Electron. 49 617 (2006); Balakina M A et al Izv. Vyssh. Uchebn. Zaved. Radiofiz. 49 686 (2006)
  28. Shalashov A G, Gospodchikov E D Phys. Usp. 54 145 (2011); Shalashov A G, Gospodchikov E D Usp. Fiz. Nauk 181 151 (2011)
  29. Gusakov E Z, Popov A Yu Phys. Usp. 63 365 (2020); Gusakov E Z, Popov A Yu Usp. Fiz. Nauk 190 396 (2020)
  30. Balakin A A et al Plasma Phys. Rep. 34 486 (2008); Balakin A A et al Fiz. Plazmy 34 533 (2008)
  31. Maj O, Balakin A A, Poli E Plasma Phys. Control. Fusion 52 085006 (2010)
  32. Batanov G M et al Plasma Phys. Rep. 39 882 (2013); Batanov G M et al Fiz. Plazmy 39 987 (2013)
  33. Alberti S et al Nucl. Fusion 45 1224 (2005)
  34. Kwak Jong-Gu et al Nucl. Fusion 53 104005 (2013)
  35. Shimozuma T et al Nucl. Fusion 55 063035 (2015)
  36. Kirneva N A et al Vopr. Atom. Nauki Tekh. Ser. Termoyad. Sintez 44 (3) 24 (2021)
  37. Imai T et al Fusion Sci. Technol. 51 (2T) 36 (2007)
  38. Gospodchikov E D et al EPJ Web Conf. 149 03023 (2017)
  39. Balakin A A et al J. Phys. D 40 4285 (2007)
  40. Balakin A A, Balakina M A, Westerhof E Nucl. Fusion 48 065003 (2008)
  41. Balakin A A Radiophys. Quantum Electron. 55 472 (2012); Balakin A A Izv. Vyssh. Uchebn. Zaved. Radiofiz. 55 521 (2012); Balakin A A Radiophys. Quantum Electron. 55 502 (2013); Balakin A A Izv. Vyssh. Uchebn. Zaved. Radiofiz. 55 555 (2012); Balakin A A Radiophys. Quantum Electron. 55 556 (2013); Balakin A A Izv. Vyssh. Uchebn. Zaved. Radiofiz. 55 624 (2012), in three parts
  42. Balakin A A, Gospodchikov E D, Shalashov A G JETP Lett. 104 690 (2016); Balakin A A, Gospodchikov E D, Shalashov A G Pis’ma Zh. Eksp. Teor. Fiz. 104 701 (2016)
  43. Dodin I Y et al Phys. Plasmas 26 072110 (2019); Dodin I Y et al Phys. Plasmas 26 072111 (2019); Dodin I Y et al Phys. Plasmas 26 072112 (2019)
  44. Leontovich M A, Fock V A J. Phys. USSR 10 13 (1946); Leontovich M A, Fock V A Zh. Eksp. Teor. Fiz. 16 557 (1946)
  45. Fock V A Problemy Difraktsii I Rasprostraneniya Elektromagnitnykh Voln (Problems Of Diffraction And Propagation Of Electromagnetic Waves) (Moscow: Sov. Radio, 1970)
  46. Levy M Parabolic Equation Methods For Electromagnetic Wave Propagation (London: Institute of Electrical Engineering, 2000)
  47. Vaganov R B, Katsenelenbaum B Z Osnovy Teorii Difraktsii (Fundamentals Of Diffraction Theory) (Moscow: Nauka, 1982)
  48. Vainshtein L A Elektromagnitnye Volny (Electromagnetic Waves) (Moscow: Radio i Svyaz’, 1988)
  49. Vladimirov V S Obobshchennye Funktsii V Matematicheskoi Fizike (Generalized Functions In Mathematical Physics) (Moscow: Nauka, 1979)
  50. Abramowitz M, Stegun I A Handbook Of Mathematical Functions With Formulas, Graphs, And Mathematical Tables (Washington, DC; New York: United States Department of Commerce, National Bureau of Standards, 1972), Ch. 7
  51. Ginzburg V L Propagation Of Electromagnetic Waves In Plasma (Oxford: Pergamon Press, 1970); Translated from Russian, Ginzburg V L Rasprostranenie Elektromagnitnykh Voln V Plazme (Moscow: Nauka, 1967)
  52. Bornatici M Plasma Phys. 24 629 (1982)
  53. Alikaev V V et al "Electron-cyclotron resonance heation of toroidal plasmas" High-Frequency Plasma Heating (New York: AIP, 1991); Translated from Russian, Alikaev V V et al Vysokochastotnyi Nagrev Plazmy (Gorky: IPF AN SSSR, 1983) p. 6
  54. Brambilla M Kinetic Theory Of Plasma Waves: Homogeneous Plasmas (Oxford: Clarendon Press, 1998)
  55. Shalashov A G et al Phys. Plasmas 23 112504 (2016)
  56. Shalashov A G et al J. Exp. Theor. Phys. 124 325 (2017); Shalashov A G et al Zh. Eksp. Teor. Fiz. 151 379 (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions