Issues

 / 

2022

 / 

December

  

On the 100th anniversary of the birth of N G Basov


Methods of quantum logic in ion frequency standards, quantum computers, and modern spectroscopy

 a, b,  a, b,   a, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), ul. Novaya 100, Skolkovo, Moscow Region, 143025, Russian Federation

Today, precise laser control of the quantum states of single ions cooled to low temperatures in traps ensures significant progress in the development of such physical areas as optical and microwave frequency standards, quantum computing, and accurate measurements of transition frequencies to confirm fundamental physical theories. Pioneering ideas about the possibility of using lasers in the development of frequency standards, expressed in the 1960s by the Nobel laureate N’G’Basov, have enjoyed rapid development: the relative accuracy of frequency standards has reached the 18th decimal place, and the experimentally demonstrated coherence time of narrow optical transitions amounts to tens of seconds. The paper presents a selective review, as well as the results of research at the Lebedev Physical Institute, in the area of using elements of quantum logic in the action of coherent laser pulses on single ions. Also discussed is the use of quantum logic methods in optical clocks based on the Al+ ion and the multiply charged Al+ ion, and also in quantum computers based on Ca+ and Yb+ ions.

Fulltext pdf (1.4 MB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2022.10.039270
Keywords: quantum logic, trapped ion, Rabi frequency, frequency standard, quantum computer, laser spectroscopy
PACS: 03.67.−a, 42.50.−p, 42.62.Eh (all)
DOI: 10.3367/UFNe.2022.10.039270
URL: https://ufn.ru/en/articles/2022/12/d/
Citation: Khabarova K Yu, Zalivako I V, Kolachevsky N N "Methods of quantum logic in ion frequency standards, quantum computers, and modern spectroscopy" Phys. Usp. 65 1217–1223 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, October 2022, 3rd, October 2022

Оригинал: Хабарова К Ю, Заливако И В, Колачевский Н Н «Методы квантовой логики в ионных стандартах частоты, квантовых вычислителях и современной спектроскопии» УФН 192 1305–1312 (2022); DOI: 10.3367/UFNr.2022.10.039270

References (79) ↓ Similar articles (1)

  1. Saffman M "Quantum computing with atomic qubits and Rydberg interactions: progress and challenges" J. Phys. B 49 202001 (2016)
  2. Bruzewicz C D et al "Trapped-ion quantum computing: Progress and challenges" Appl. Phys. Rev. 6 021314 (2019)
  3. Flamini F, Spagnolo N, Sciarrino F "Photonic quantum information processing: a review" Rep. Prog. Phys. 82 016001 (2019)
  4. Wolfowicz G et al "Quantum guidelines for solid-state spin defects" Nat. Rev. Mater. 6 906 (2021)
  5. Linke N M et al "Experimental comparison of two quantum computing architectures" Proc. Natl. Acad. Sci. USA 114 3305 (2017)
  6. Kiktenko E O et al "Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits" Phys. Lett. A 379 1409 (2015)
  7. Georgescu I "Trapped ion quantum computing turns 25" Nat. Rev. Phys. 2 278 (2020); Georgescu I "40 years of quantum computing" Nat. Rev. Phys. 4 1 (2022)
  8. Degen C L, Reinhard F, Cappellaro P "Quantum sensing" Rev. Mod. Phys. 89 035002 (2017)
  9. Pirandola S et al "Advances in quantum cryptography" Adv. Opt. Photon. 12 1012 (2020)
  10. Yin J et al "Entanglement-based secure quantum cryptography over 1,120 kilometres" Nature 582 501 (2020)
  11. Beloy K et al "Frequency ratio measurements at 18-digit accuracy using an optical clock network" Nature 591 564 (2021)
  12. Arute F et al "Quantum supremacy using a programmable superconducting processor" Nature 574 505 (2019)
  13. Basov N G, Prokhorov A M "Molekulyarnyi generator i usilitel’" Usp. Fiz. Nauk 57 485 (1955)
  14. Basov N G "Semiconductor lasers" Nobel Lecture, December 11, 1964. The Nobel Foundation, https://www.nobelprize.org/uploads/2018/06/basov-lecture.pdf; Basov N G "Semiconductor lasers" Science 149 821 (1965); Basov N G "Poluprovodnikovye kvantovye generatory" Usp. Fiz. Nauk 85 585 (1965)
  15. Basov N G, Letokhov V S "Opticheskie standarty chastoty" Usp. Fiz. Nauk 96 585 (1968); Basov N G, Letokhov V S "Optical frequency standards" Sov. Phys. Usp. 11 855 (1969)
  16. Basov N G, Krokhin O N "Usloviya razogreva plazmy izlucheniem opticheskogo generatora" Zh. Eksp. Teor. Fiz. 46 171 (1964); Basov N G, Krokhin O N "Conditions for heating up of a plasma by the radiation from an optical generator" Sov. Phys. JETP 19 123 (1964)
  17. Riehle F Frequency Standards: Basics And Applications (Weinheim: Wiley-VCH, 2004); Per. na russk. yaz., Rile F Standarty Chastoty. Printsipy i Prilozheniya (M.: Fizmatlit, 2009)
  18. Meschede D, Walther H, Müller G "One-atom maser" Phys. Rev. Lett. 54 551 (1985)
  19. "Particle control in a quantum world", The Nobel Prize in Physics 2012. Press release. The Nobel Foundation, https://www.nobelprize.org/uploads/2018/06/press-18.pdf; Per. na russk. yaz., "Upravlenie chastitsami v kvantovom mire" Usp. Fiz. Nauk 184 1067 (2014); Wineland D J "Nobel Lecture: Superposition, entanglement, and raising Schrödinger’s cat" Rev. Mod. Phys. 85 1103 (2013); Vainlend D Dzh "O superpozitsii, pereputannosti i o tom, kak vyrastit’ kota Shredingera" Usp. Fiz. Nauk 184 1089 (2014); Haroche S "Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary" Rev. Mod. Phys. 85 1083 (2013); Arosh S "Upravlenie fotonami v yashchike i izuchenie granitsy mezhdu kvantovym i klassicheskim" Usp. Fiz. Nauk 184 1068 (2014)
  20. Schawlow A L, Townes C H "Infrared and optical masers" Phys. Rev. 112 1940 (1958)
  21. Letokhov V S, Chebotaev V P Printsipy Nelineinoi Lazernoi Spektroskopii (M.: Nauka, 1975); Per. na angl. yaz., Letokhov V S, Chebotayev V P Nonlinear Laser Spectroscopy (Berlin: Springer-Verlag, 1977)
  22. Letokhov V Laser Control Of Atoms And Molecules (Oxford: Oxford Univ. Press, 2007)
  23. Alnis J et al "Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry—Pérot cavities" Phys. Rev. A 77 053809 (2008)
  24. Kessler T et al "A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity" Nat. Photon. 6 687 (2012)
  25. Bothwell T et al "Resolving the gravitational redshift across a millimetre-scale atomic sample" Nature 602 420 (2022)
  26. Levine H et al "High-fidelity control and entanglement of Rydberg-atom qubits" Phys. Rev. Lett. 121 123603 (2018)
  27. Kolachevsky N et al "Low phase noise diode laser oscillator for 1S-2S spectroscopy in atomic hydrogen" Opt. Lett. 36 4299 (2011)
  28. Hald J, Ruseva V "Efficient suppression of diode-laser phase noise by optical filtering" J. Opt. Soc. Am. B 22 2338 (2005)
  29. Paul W, Raether M "Das elektrische Massenfilter" Z. Phys. 140 262 (1995)
  30. Wineland D J, Drullinger R E, Walls F L "Radiation-pressure cooling of bound resonant absorbers" Phys. Rev. Lett. 40 1639 (1978)
  31. Diedrich F et al "Observation of a phase transition of stored laser-cooled ions" Phys. Rev. Lett. 59 2931 (1987)
  32. Cirac J I, Zoller P "Quantum computations with cold trapped ions" Phys. Rev. Lett. 74 4091 (1995)
  33. Sørensen A, Mølmer K "Quantum computation with ions in thermal motion" Phys. Rev. Lett. 82 1971 (1999)
  34. Wineland D J, Dehmelt H Bull. Am. Phys. Soc. 20 637 (1975)
  35. Monroe C et al "Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy" Phys. Rev. Lett. 75 4011 (1995)
  36. Larson D J et al "Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma" Phys. Rev. Lett. 57 70 (1986)
  37. Brewer S M et al "27Al+ quantum-logic clock with a systematic uncertainty below 10−18" Phys. Rev. Lett. 123 033201 (2019)
  38. Pino J M et al "Demonstration of the trapped-ion quantum CCD computer architecture" Nature 592 209 (2021)
  39. Kozlov M G et al "Highly charged ions: Optical clocks and applications in fundamental physics" Rev. Mod. Phys. 90 45005 (2018)
  40. Párez P et al "The GBAR antimatter gravity experiment" Hyperfine Interact. 233 21 (2015)
  41. Khabarova K et al "Toward a new generation of compact transportable Yb+ optical clocks" Symmetry 14 2213 (2022)
  42. Burt E A et al "Demonstration of a trapped-ion atomic clock in space" Nature 595 43 (2021)
  43. Lacroˆte C et al "Compact Yb+ optical atomic clock project: design principle and current status" J. Phys. Conf. Ser. 723 012025 (2016)
  44. Herschbach N et al "Linear Paul trap design for an optical clock with Coulomb crystals" Appl. Phys. B 107 891 (2012)
  45. Keller J et al Phys. Rev. A 99 013405 (2019)
  46. Dehmelt H G Bull. Am. Phys. Soc. 18 1521 (1973)
  47. Diddams S A et al "An optical clock based on a single trapped 199Hg+ ion" Science 24 881 (1999)
  48. Barwood G P et al "Agreement between two 88Sr+ optical clocks to 4 parts in 1017" Phys. Rev. A 89 050501 (2014)
  49. Rosenband T et al "Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place" Science 319 1808 (2008)
  50. Huntemann N et al "High-accuracy optical clock based on the octupole transition in 171Yb+" Phys. Rev. Lett. 108 090801 (2012)
  51. Huang Y et al "Frequency comparison of two 40Ca+ optical clocks with an uncertainty at the 10−17 level" Phys. Rev. Lett. 116 013001 (2016)
  52. Chou C W et al "Optical clocks and relativity" Science 329 1630 (2010)
  53. Fischer M et al "New limits on the drift of fundamental constants from laboratory measurements" Phys. Rev. Lett. 92 230802 (2004)
  54. Lange R et al "Improved limits for violations of local position invariance from atomic clock comparisons" Phys. Rev. Lett. 126 11102 (2021)
  55. Schmidt P O et al "Spectroscopy using quantum logic" Science 309 749 (2005)
  56. Golovizin A et al "Inner-shell clock transition in atomic thulium with a small blackbody radiation shift" Nat. Commun. 10 1724 (2019)
  57. Bergquist J C, Itano W M, Wineland D J "Recoilless optical absorption and Doppler sidebands of a single trapped ion" Phys. Rev. A 36 428 (1987)
  58. Chou C W et al "Frequency comparison of two high-accuracy Al+ optical clocks" Phys. Rev. Lett. 104 070802 (2010)
  59. Micke P et al "Coherent laser spectroscopy of highly charged ions using quantum logic" Nature 578 60 (2020)
  60. King S A et al "An optical atomic clock based on a highly charged ion" Nature 611 43 (2022)
  61. Herrmann M et al "Feasibility of coherent xuv spectroscopy on the 1S-2S transition in singly ionized helium" Phys. Rev. A 79 052505 (2009)
  62. Opticloc. BMBF project, https://www.opticlock.de/
  63. Cao J et al "A compact, transportable single-ion optical clock with 7.8×10−17 systematic uncertainty" Appl. Phys. B 123 112 (2017)
  64. Hannig S et al "Towards a transportable aluminium ion quantum logic optical clock" Rev. Sci. Instrum. 90 53204 (2019)
  65. Riehle F "Optical clock networks" Nat. Photon. 11 25 (2017)
  66. Rochat P et al "Atomic clocks and timing systems in global navigation satellite systems" Proc. Of The 2012 European Navigation Conf. 25 (2012)
  67. Wang P et al "Single ion qubit with estimated coherence time exceeding one hour" Nat. Commun. 12 233 (2021)
  68. DiVincenzo D P "The physical implementation of quantum computation" Fortschr. Phys. 48 771 (2000)
  69. Zhang J et al "Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator" Nature 551 601 (2017)
  70. Turchette Q A et al "Deterministic entanglement of two trapped ions" Phys. Rev. Lett. 81 3631 (1998)
  71. Schmidt-Kaler F et al "Realization of the Cirac—Zoller controlled-NOT quantum gate" Nature 422 408 (2003)
  72. Wright K et al "Benchmarking an 11-qubit quantum computer" Nat. Commun. 10 5464 (2019)
  73. Ryan-Anderson C et al. "Implementing fault-tolerant entangling gates on the five-qubit code and the color code" arXiv:2208.01863
  74. Cross A W et al "Validating quantum computers using randomized model circuits" Phys. Rev. A 100 032328 (2019)
  75. Semerikov I A i dr "Mnogochastichnye poteri v lineinoi kvadrupol’noi lovushke Paulya" Kvantovaya Elektronika 46 935 (2016); Semerikov I A et al "Multiparticle losses in a linear quadrupole Paul trap" Quantum Electron. 46 935 (2016)
  76. Semerikov I A i dr "Lineinaya lovushka Paulya dlya zadach kvantovoi logiki" Kratkie Soobshcheniya Po Fizike FIAN 47 385 (2020); Semerikov I A et al "Linear Paul trap for quantum logic experiments" Bull. Lebedev Phys. Inst. 47 385 (2020)
  77. Zalivako I V i dr "Eksperimental’noe issledovanie opticheskogo kubita na kvadrupol’nom perekhode 435 nm v ione 171Yb+" Pis’ma ZhETF 114 53 (2021); Zalivako I V et al "Experimental study of the optical qubit on the 435-nm quadrupole transition in the 171Yb+ ion" JETP Lett. 114 59 (2021)
  78. Semenin N V i dr "Optimizatsiya dostovernosti schityvaniya kvantovogo sostoyaniya opticheskogo kubita v ione itterbiya 171Yb+" Pis’ma ZhETF 114 553 (2021); Semenin N V et al "Optimization of the readout fidelity of the quantum state of an optical qubit in the 171Yb+ ion" JETP Lett. 114 486 (2021)
  79. Semenin N V i dr "Opredelenie skorosti nagreva i temperatury ionnykh tsepochek v lineinoi lovushke Paulya po defazirovke ostsillyatsii Rabi" Pis’ma ZhETF 116 74 (2022); Semenin N V et al "Determination of the heating rate and temperature of an ion chain in a linear Paul trap by the dephasing of Rabi oscillations" JETP Lett. 116 77 (2022)

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions