Issues

 / 

2022

 / 

November

  

Conferences and symposia. Forum "USPEKHI-2021": Climate change and global energy issues


Sea level rise from melting glaciers and ice sheets caused by climate warming above pre-industrial levels

 
University of California, Irvine, 949-824-5011, Irvine, California, 92697, USA

The ice sheets in Greenland and Antarctica, combined with glaciers and ice caps around the world, are contributing faster and sooner than expected to global sea level rise. Half a century of observations, physical models, and paleoclimate records suggest that sea level rise will exceed 1 meter this century, but more extreme rates of sea level rise can not be ruled out. I review the current state of knowledge on ice sheet and glacier mass balance, its driving physical mechanisms, their impacts on future sea level rise, and whether the most vulnerable sectors of Antarctica and Greenland have passed, or will soon pass, a point of no return. In several sectors of Greenland and Antarctica, I conclude that multi-meter sea level rise is inevitable, but the rate of sea level rise will depend on how urgently we keep climate warming under control and subsequently bring the climate system back toward pre-industrial levels. To reduce the uncertainties of projecting rapid rates of sea level rise in the coming century, significant research investments will be required, orders of magnitude lower than the cost of adapting to sea level rise, to obtain critical observations and develop more reliable atmosphere-ocean-ice coupled models.

Fulltext pdf (405 KB)
To the readers pdf (115 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2021.11.039106
Keywords: climate change, ice sheets, glaciers, sea level, tipping points, instability, impacts
PACS: 92.40.Vg, 92.70.Jw, 92.70.Mn (all)
DOI: 10.3367/UFNe.2021.11.039106
URL: https://ufn.ru/en/articles/2022/11/e/
001098566300002
2-s2.0-85146536082
Citation: Rignot E "Sea level rise from melting glaciers and ice sheets caused by climate warming above pre-industrial levels" Phys. Usp. 65 1129–1138 (2022)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, October 2021, 22nd, November 2021

Оригинал: Риньо Э «Повышение уровня моря в результате таяния ледников и ледяных щитов, вызванного потеплением климата выше доиндустриального уровня» УФН 192 1203–1213 (2022); DOI: 10.3367/UFNr.2021.11.039106

References (80) ↓ Cited by (1) Similar articles (9)

  1. Oppenheimer M et al "Sea level rise and implications for low-lying islands, coasts and communities" IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Eds H-O Portner, D C Roberts, V Masson-Delmotte, P Zhai, M Tignor, E Poloczanska, K Mintenbeck, A Alegria, M Nicolai, A Okem, J Petzold, B Rama, N M Weyer, 2020)
  2. Cazenave A, Meyssignac B, Ablain M, Balmaseda M, Bamber J, Barletta V "Global sea-level budget 1993-present" Earth Syst. Sci. Data 10 (3) 1551 (2018)
  3. Archer D The Global Carbon Cycle (Princeton, NJ: Princeton Univ. Press, 2010)
  4. Deschamps P et al "Ice-sheet collapse and sea-level rise at the B<>ulling warming 14,600 years ago" Nature 483 559 (2012)
  5. Zwally H J, Abdalati W, Herring T, Larson K, Saba J, Steffen K "Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow" Science 297 218 (2002)
  6. Schoof C "Ice-sheet acceleration driven by melt supply variability" Nature 468 803 (2010)
  7. Smith B, Fricker H A, Gardner A S, Medley B, Nilsson J, Paolo F S et al "Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes" Science 368 1239 (2020)
  8. Rignot E, Kanagaratnam P "Changesthe Velocity Structure of the Greenland Ice Sheet" Science 311 986 (2006)
  9. Wood M et al "Ocean forcing drives glacier retreatgreenland" Sci. Adv. 7 eaba7282 (2021)
  10. Rignot E, Mouginot J, Scheuchl B "Ice Flow of the Antarctic Ice Sheet" Science 333 1427 (2011)
  11. Larsen C, Burgess E, Arendt A A, O’Neel S, Johnson A J, Kienholz C "Surface melt dominates Alaska glacier mass balance" Geophys. Res. Lett. 42 5902 (2015)
  12. Millan R, Mouginot J, Rignot E "Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015" Environ. Res. Lett. 12 024016 (2017)
  13. Ciracì E, Velicogna I, Sutterley T C "Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2" Remote Sensing 10 (11) 1817 (2018)
  14. Noël B, Jakobs C, van Pelt W, Lhermitte S, Wouters B, Kohler J "Low elevation of Svalbard glaciers drives high mass loss variability" Nat. Commun. 11 4597 (2020)
  15. Mouginot J, Rignot E "Ice motion of the Patagonian Icefields of South America: 1984-2014" Geophys. Res. Lett. 42 1441 (2015)
  16. Ciracì E, Velicogna I, Swenson S "Continuity of the Mass Loss of the World’s Glaciers and Ice Caps From the GRACE and GRACE Follow-On Missions" Geophys. Res. Lett. 47 e2019GL086926 (2020)
  17. Medley B, McConnell J R, Neumann T A, Reijmer C H, Chellman N, Sigl M, Kipfstuhl S "Temperature and SnowfallWestern Queen Maud Land Increasing Faster Than Climate Model Projections" Geophys. Res. Lett. 45 1472 (2018)
  18. Rignot E, Mouginot J, Scheuchl B "Antarctic grounding line mapping from differential satellite radar interferometry" Geophys. Res. Lett. 38 L10504 (2011)
  19. Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R "Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf" Geophys. Res. Lett. 31 L18401 (2004)
  20. Velicogna I, Sutterley T C, van den Broeke M R "Regional accelerationice mass loss from Greenland and Antarctica using GRACE time-variable gravity data" Geophys. Res. Lett. 41 8130 (2014)
  21. Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I et al (The IMBIE Team) "Mass balance of the Greenland Ice Sheet from 1992 to 2018" Nature 579 233 (2020)
  22. Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem M J, Morlighem M "Four decades of Antarctic Ice Sheet mass balance from 1979-2017" Proc. Natl. Acad. Sci. USA 116 (4) 1095 (2019)
  23. Mouginot J, Rignot E, Bjoslash;rk A A, van den Broeke M, Millan R, Morlighem M et al "Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018" Proc. Natl. Acad. Sci. USA 116 9239 (2019)
  24. Velicogna I "Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE" Geophys. Res. Lett. 36 L19503 (2009)
  25. Rignot E, Velicogna I, van den Broeke M R, Monaghan A, Lenaerts J T M "Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise" Geophys. Res. Lett. 38 L05503 (2011)
  26. He Z, Velicogna I, Ciracì E, Hsu C, Mohajerani Y, Rignot E, Mouginot J "Four decades of observation-based sea level fingerprint of land-ice" Proc. Natl. Acad. Sci. USA (2021), in press
  27. van Wessem J M et al "Modelling the climate and surface mass balance of polar ice sheets using RACMO2 — Part 2: Antarctica (1979-2016)" Cryosphere 12 1479 (2018)
  28. Velicogna I, Mohajerani Y, Landerer F, Mouginot J, Noel B, Rignot E et al "Continuity of Ice Sheet Mass LossGreenland and Antarctica From the GRACE and GRACE Follow-On Missions" Geophys. Res. Lett. 47 e2020EL087291 (2020)
  29. MacGregor J A et al "The Scientific Legacy of NASA s Operation IceBridge" Rev. Geophys. 59 e2020RG000712 (2021)
  30. van de Berg W J, van den Broeke M R, Reijmer C H, van Meijgaard E "Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model" J. Geophys. Res. Atmos. 111 D11104 (2006)
  31. Mohajerani Y, Velicogna I, Rignot E "Evaluation of Regional Climate Models Using Regionally Optimized GRACE Masconsthe Amery and Getz Ice Shelves Basins, Antarctica" Geophys. Res. Lett. 46 13883 (2019)
  32. Warner R C, Budd W K "Modelling the long-term response of the Antarctic ice sheet to global warming" Ann. Glaciology 27 161 (1998)
  33. Holland D M, Nicholls K W, Basinski A "The Southern Ocean and its interaction with the Antarctic Ice Sheet" Science 367 1326 (2020)
  34. Holland D M, Thomas R H, de Young B, Ribergaard M H, Lyberth B "Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters" Nat. Geosci. 1 659 (2008)
  35. Rignot E, Fenty I, Menemenlis D, Xu Y "Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration" Ann. Glaciology 53 (60) 257 (2012)
  36. Jacobs S S, Jenkins A, Giulivi C F, Dutrieux P "Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf" Nat. Geosci. 4 519 (2011)
  37. Jacobs S S, Hellmer H H, Jenkins A "Antarctic Ice Sheet meltingthe southeast Pacific" Geophys. Res. Lett. 23 957 (1996)
  38. Holland D M, Jenkins A "Modeling thermodynamic ice-ocean interactions at the base of an ice shelf" J. Phys. Oceanogr. 29 1787 (1999)
  39. Rignot E "Tidal motion, ice velocity and melt rate of Petermann Gletscher, Greenland, measured from radar interferometry" J. Glaciology 42 (142) 476 (1996)
  40. Rignot E "Fast Recession of a West Antarctic Glacier" Science 281 549 (1998)
  41. Rignot E, Jacobs S S "Rapid Bottom Melting Widespread near Antarctic Ice Sheet Grounding Lines" Science 296 2020 (2002)
  42. Siegert M, Alley R B, Rignot E, Englander J, Corell R "Twenty-first century sea-level rise could exceed IPCC projections for strong-warming futures" One Earth 3 691 (2020)
  43. Spence P, Griffies S M, England M H, Hogg A M, Saenko O A, Jourdain N C "Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds" Geophys. Res. Lett. 41 4601 (2014)
  44. Abram N J, Mulvaney R, Vimeux F, Phipps S J, Turner J, England M H "Evolution of the Southern Annular Mode during the past millennium" Nat. Clim. Change 4 564 (2014)
  45. Thompson D W J, Solomon S "Interpretation of Recent Southern Hemisphere Climate Change" Science 296 895 (2002)
  46. Holland P R, Bracegirdle T J, Dutrieux P, Jenkins A, Steig E J "West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing" Nat. Geosci. 12 718 (2019)
  47. Hanna E, Fettweis X, Hall R J "Brief communication: Recent changessummer greenland blocking captured by none of the cmip5 models" Cryosphere 12 3287 (2018)
  48. Weertman J "Stability of the Junction of an Ice Sheet and an Ice Shelf" J. Glaciology 13 (67) 3 (1974)
  49. Meier M F, Post A "Fast tidewater glaciers" J. Geophys. Res. 92 (B9) 9051 (1987)
  50. Thomas R H "Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbræ, Greenland" J. Glaciology 50 (168) 57 (2004)
  51. Thomas R H, Bentley C R "A Model for Holocene Retreat of the West Antarctic Ice Sheet" Quaternary Res. 10 (2) 150 (1978)
  52. Rignot E, An L, Chauche N, Morlighem M, Jeong S, Wood M et al "Retreat of Humboldt Gletscher, North Greenland, Driven by Undercutting From a Warmer Ocean" Geophys. Res. Lett. 48 e2020GL091342 (2021)
  53. An L, Rignot E, Wood M, Willis J K, Mouginot J, Khan S A "Ocean melting of the Zachariae Isstrom and Nioghalvfjerdsbrae Jorden glaciers, Northeast Greenland" Proc. Natl. Acad. Sci. USA 118 (2) e2015483118 (2021)
  54. Xu Y, Rignot E, Fenty I, Menemenlis D, Flexas M M "Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations" Geophys. Res. Lett. 40 4648 (2013)
  55. Rignot E, Fenty I, Xu Y, Cai C, Kemp C "Undercutting of marine-terminating glaciersWest Greenland" Geophys. Res. Lett. 42 5909 (2015)
  56. Fried M J, Catania G A, Bartholomaus T C, Duncan D, Davis M, Stearns L A et al "Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier" Geophys. Res. Lett. 42 9328 (2015)
  57. Sutherland D A et al "Direct observations of submarine melt and subsurface geometry at a tidewater glacier" Science 365 369 (2019)
  58. Begeman C B, Tulaczyk S, Padman L, King M, Siegfried M R, Hodson T O, Fricker H A "Tidal Pressurization of the Ocean Cavity Near an Antarctic Ice Shelf Grounding Line" J. Geophys. Res. Oceans 125 e2019JC015562 (2020)
  59. Seroussi H et al "ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century" Cryosphere 14 3033 (2020)
  60. Goelzer H et al "The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6" Cryosphere 14 3071 (2020)
  61. DeConto R M, Pollard D, Alley R B, Velicogna I, Gasson E, Gomez N et al "The Paris Climate Agreement and future sea-level rise from Antarctica" Nature 593 83 (2021)
  62. Slater T, Hogg A E, Mottram R "Ice-sheet losses track high-end sea-level rise projections" Nat. Clim. Change 10 879 (2020)
  63. Goyal R, Gupta A S, Jucker M, England M H "Historical and Projected Changesthe Southern Hemisphere Surface Westerlies" Geophys. Res. Lett. 48 e2020GL090849 (2021)
  64. An L, Rignot E, Elieff S, Morlighem M, Millan R, Mouginot J et al "Bed elevation of Jakobshavn Isbr?, West Greenland, from high-resolution airborne gravity and other data" Geophy. Res. Lett. 44 (8) 3728 (2017)
  65. Morlighem M, Rignot E, Binder T, Blankenship D, Drews R, Eagles G et al "Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet" Nat. Geosci. 13 (2) 132 (2020)
  66. Morlighem M, Williams C N, Rignot E, An L, Arndt J E, Bamber J L et al "BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation" Geophys. Res. Lett. 44 (21) 11051 (2017)
  67. Münchow A, Padman L, Washam P, Nicholls K W "The Ice Shelf of Petermann Gletscher, North Greenland, and Its Connection to the Arctic and Atlantic Oceans" Oceanography 29 (4) 84 (2016)
  68. Favier L, Durand G, Cornford S L, Gudmundsson G H, Gagliardini O, Gillet-Chaulet F et al "Retreat of Pine Island Glacier controlled by marine ice-sheet instability" Nat. Clim. Change 4 (2) 117 (2014)
  69. Joughin I, Smith B E, Medley B "Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Bas West Antarctica" Science 344 735 (2014)
  70. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B "Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011" Geophys. Res. Lett. 41 3502 (2014)
  71. Li X, Rignot E, Morlighem M, Mouginot J, Scheuchl B "Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013" Geophys. Res. Lett. 42 8049 (2015)
  72. Brancato V, Rignot E, Milillo P, Morlighem M, Mouginot J, An L, et al "Grounding Line Retreat of Denman Glacier, East Antarctica, Measured With COSMO-SkyMed Radar Interferometry Data" Geophys. Res. Lett. 47 (7) e2019GL086291 (2020)
  73. Rignot E, Mouginot J, Scheuchl B, van den Broeke M, van Wessem M J, Morlighem M "Four decades of Antarctic Ice Sheet mass balance from 1979-2017" Proc. Natl. Acad. Sci. USA 116 (4) 1095 (2019)
  74. Smith B, Fricker H A, Gardner A S, Medley B, Nilsson J, Paolo F "Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes" Science 368 1239 (2020)
  75. Rintoul S R, Silvano A, Peña-Molino B, van Wijk E, Rosenberg M, Greenbaum J S, Blakenship D D "Ocean heat drives rapid basal melt of the Totten Ice Shelf" Sci. Adv. 2 e1601610 (2016)
  76. Hellmer H H, Kauker F, Timmermann R, Determann J, Rae J "Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current" Nature 485 (7397) 225 (2012)
  77. Christianson K et al "Sensitivity of Pine Island Glacier to observed ocean forcing" Geophys. Res. Lett. 43 10817 (2016)
  78. Dutton A, Lambeck K "Ice Volume and Sea Level During the Last Interglacial" Science 337 216 (2012); Sutherland D A et al "Direct observations of submarine melt and subsurface geometry at a tidewater glacier" Science 365 369 (2019)
  79. Kopp R E, Gilmore E A, Little C M, Lorenzo-Trueba J, Ramenzoni V C, Sweet W V "Usable Science for Managing the Risks of Sea-Level Rise" Earth’s Future 7 1235 (2019)
  80. Yu H, Rignot E, Seroussi H, Morlighem M "Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws" Cryosphere 12 3861 (2018)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions