Issues

 / 

2020

 / 

June

  

Methodological notes


Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at rest


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

The $k$ coefficient method proposed by H Bondi is extended to a general case when the angle $\alpha$ between the velocity of a signal from a distant source at rest and the velocity of an observer does not coincide with 0 or $\pi$, as considered by Bondi, but takes an arbitrary value in the interval $0\le \alpha \le \pi$, and to the opposite case, when the source is moving and the observer is at rest, while the angle $\alpha$ between the source velocity and the direction of the signal to the observer takes any value between 0 and $\pi $. Functions $k_*(\beta,\alpha)$ and $k_+(\beta,\alpha)$ of the angle and relative velocity are introduced for the ratio $\omega /\omega^{'}$ of proper frequencies of the source and observer. Their explicit expressions are obtained from the condition of the invariance of the ray beam coherence in passing from the source frame to that of the observer without using the Lorentz transform. Owing to the analyticity of these functions in $\alpha$, the ratio of frequencies in the cases mentioned is given by the formulas $\omega /\omega ^{'}=k_*(\beta,\alpha)$ and $\omega /\omega^{'}=k_+(\beta,\pi -\alpha )\equiv 1/k_*(\beta,\alpha)$, which coincide with those for the Doppler effect, in which the angle $\alpha$, velocity $\beta$, and one of the frequencies are measured in a rest reference frame. A ray emitted by the source at angle $\alpha$ to the observer velocity in the source frame is directed at the angle $\alpha^{'}$ to the same velocity in the observer frame. Owing to light aberration, the angles $\alpha$ and $\alpha^{'}$ are functionally related through $k_*(\beta,\alpha)=k_+(\beta,\alpha^{'})$. The functions $\alpha^{'}(\alpha,\beta)$ and $\alpha (\alpha ^{'},\beta)$ are expressed as antiderivatives of the functions $k_*(\beta,\alpha)$ and $k_*(\beta,\pi -\alpha ^{'})$. The analyticity of functions $k_*(\beta, z)$ and $k_+(\beta, z)$ in $z\equiv \alpha$ in the interval $0\le z\le \pi $ is continued into the entire plane of complex $z$, where $k_*$ has poles at $z^\pm _n=2\pi n\mp \rm i \ln \cos \alpha _1$ (see (17)), and $k_+$ has zeros in the same points shifted by $\pi$. The spatiotemporal asymmetry of the Doppler and light aberration effects is explained by the closeness of these singularities to the real axis.

Fulltext pdf (587 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.12.038703
Keywords: special relativity theory, invariance of coherence, invariance of phase, Doppler effect, aberration of light, analyticity in angle, conjugate poles and aberration scale
PACS: 03.30.+p, 42.15.Fr (all)
DOI: 10.3367/UFNe.2019.12.038703
URL: https://ufn.ru/en/articles/2020/6/e/
000563842900005
2-s2.0-85092020291
2020PhyU...63..601R
Citation: Ritus V I "Generalization of the k coefficient method in relativity to an arbitrary angle between the velocity of an observer (source) and the direction of the light ray from (to) a faraway source (observer) at rest" Phys. Usp. 63 601–610 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, July 2019, revised: 30th, October 2019, 3rd, December 2019

Оригинал: Ритус В И «Обобщение метода коэффициента k в теории относительности на произвольный угол между скоростью наблюдателя (источника) и направлением луча света от далёкого неподвижного источника (к далёкому неподвижному наблюдателю)» УФН 190 648–657 (2020); DOI: 10.3367/UFNr.2019.12.038703

References (11) Similar articles (20) ↓

  1. V.I. Ritus “Permutation asymmetry of the relativistic velocity addition law and non-Euclidean geometryPhys. Usp. 51 709–721 (2008)
  2. Yu.I. Hovsepyan “Some notes on the relativistic Doppler effectPhys. Usp. 41 941–944 (1998)
  3. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodiesPhys. Usp. 62 1012–1030 (2019)
  4. V.I. Ritus “On the difference between Wigner’s and Møller’s approaches to the description of Thomas precessionPhys. Usp. 50 95–101 (2007)
  5. G.B. Malykin “Para-Lorentz transformationsPhys. Usp. 52 263–266 (2009)
  6. N.N. Rozanov “Superluminal localized structures of electromagnetic radiationPhys. Usp. 48 167–171 (2005)
  7. G.B. Malykin “Application of the modified Duguay method for measuring the Lorentz contraction of a moving body lengthPhys. Usp. 64 1058–1062 (2021)
  8. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  9. V.A. Aleshkevich “On special relativity teaching using modern experimental dataPhys. Usp. 55 1214–1231 (2012)
  10. X.-B. Huang “A rigorous minimum-assumption derivation of the Lorentz transformationPhys. Usp. 54 529–532 (2011)
  11. S.I. Blinnikov, L.B. Okun, M.I. Vysotskii “Critical velocities c/sqrt{3} and c/sqrt{2} in the general theory of relativityPhys. Usp. 46 1099–1103 (2003)
  12. V.I. Ritus “Duality of two-dimensional field theory and four-dimensional electrodynamics leading to finite value of the bare chargePhys. Usp. 56 565–589 (2013)
  13. G.B. Malykin “The Sagnac effect: correct and incorrect explanationsPhys. Usp. 43 1229 (2000)
  14. G.B. Malykin “The relation of Thomas precession to Ishlinskii’s theorem as applied to the rotating image of a relativistically moving bodyPhys. Usp. 42 505–509 (1999)
  15. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  16. V.B. Morozov “On the question of the electromagnetic momentum of a charged bodyPhys. Usp. 54 371–374 (2011)
  17. M.I. Krivoruchenko “Rotation of the swing plane of Foucault’s pendulum and Thomas spin precession: two sides of one coinPhys. Usp. 52 821–829 (2009)
  18. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  19. V.L. Ginzburg, V.P. Frolov “Vacuum in a homogeneous gravitational field and excitation of a uniformly accelerated detectorSov. Phys. Usp. 30 1073–1095 (1987)
  20. G.B. Malykin “Sagnac effect in ring lasers and ring resonators. How does the refraction index of the optical medium influence the sensitivity to rotation?Phys. Usp. 57 714–720 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions