Issues

 / 

2020

 / 

June

  

Physics of our days


Silhouettes of invisible black holes

 a, b,  c, d
a Institute for Nuclear Research, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya 7a, Moscow, 117312, Russian Federation
b National Research Nuclear University ‘MEPhI’, Kashirskoe shosse 31, Moscow, 115409, Russian Federation
c The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
d Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, 265, Trieste, 34136, Italy

In general relativity, isolated black holes are invisible objects due to their intrinsic physical properties. Nevertheless, the dark silhouettes of astrophysical black holes may be visible to a distant observer as a result of emitting matter lensing in the gravitational field of black holes. The most probable astrophysical conditions for the experimental detection of a dark black hole silhouette are either the stationary luminous background behind the black hole or nonstationary hot matter plunging into the black hole and having emissions approaching the black hole horizon. The black hole shadow is observed in the case of a stationary luminous background, which is a projection on the celestial sphere of the photon capture cross section in the black hole gravitational field. Meanwhile, in the case of nonstationary emitting matter in the inner part of the thin accretion disk adjoining the event horizon, a dark silhouette of the event horizon itself would be seen. This dark silhouette of the event horizon is seen in the first image of the supermasive black hole M87* presented by the Event Horizon Telescope international collaboration. The brightness of accretion matter is much higher than the corresponding one of the usual astrophysical stationary background in the form of numerous stars or extensive hot gas clouds. For this reason, it is improbable that a black hole shadow can be observed in the presence of very luminous accretion matter.

Fulltext pdf (958 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.01.038717
Keywords: gravitation theory, general relativity, black holes, event horizon, gravitational lensing
PACS: 04.70.Bw, 98.35.Jk, 98.62.Js (all)
DOI: 10.3367/UFNe.2020.01.038717
URL: https://ufn.ru/en/articles/2020/6/d/
000563842900004
2-s2.0-85092023307
2020PhyU...63..583D
Citation: Dokuchaev V I, Nazarova N O "Silhouettes of invisible black holes" Phys. Usp. 63 583–600 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, November 2019, revised: 4th, December 2019, 15th, January 2020

Оригинал: Докучаев В И, Назарова Н О «Силуэты невидимых чёрных дыр» УФН 190 627–647 (2020); DOI: 10.3367/UFNr.2020.01.038717

References (339) Cited by (49) ↓ Similar articles (11)

  1. Mikheeva E V, Repin S V, Lukash V N Astronomičeskij žurnal 101 2 (2024)
  2. Pedrotti D, Vagnozzi S Phys. Rev. D 110 (8) (2024)
  3. Mafuz M G, Diwan R et al Eur. Phys. J. Plus 139 (3) (2024)
  4. Pantig R C Physics Of The Dark Universe 45 101550 (2024)
  5. Kobialko K, Bogush I, Gal’tsov D Phys. Rev. D 109 (2) (2024)
  6. Theodosopoulos D P, Karakasis T et al Eur. Phys. J. C 84 (6) (2024)
  7. Pugliese D, Stuchlík Z Eur. Phys. J. Plus 139 (6) (2024)
  8. Gao Yu-X, Xie Y Phys. Rev. D 109 (6) (2024)
  9. Övgün A, Sese L J F, Pantig R C Annalen Der Physik 536 (4) (2024)
  10. Pantig R C Chinese Journal Of Physics 87 49 (2024)
  11. Mikheeva E V, Repin S V, Lukash V N Astron. Rep. 68 1 (2024)
  12. Övgün A, Pantig R C, Rincón Á Annals Of Physics 463 169625 (2024)
  13. Pugliese D, Quevedo H Nuclear Physics B 1008 116700 (2024)
  14. Dokuchaev V I Gravit. Cosmol. 30 246 (2024)
  15. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 193 686 (2023)
  16. [Eroshenko Yu N Phys. Usp. 66 645 (2023)]
  17. Marongwe S Int. J. Mod. Phys. D 32 (07) (2023)
  18. Bogush I, Kobialko K, Gal’tsov D Phys. Rev. D 108 (4) (2023)
  19. Ishkaeva V A, Sushkov S V Phys. Rev. D 108 (8) (2023)
  20. Wen Sh, Hong W, Tao Ju Eur. Phys. J. C 83 (4) (2023)
  21. Hendi S H, Nemati A Physics Letters B 843 138059 (2023)
  22. Dvornikov M Class. Quantum Grav. 40 015002 (2023)
  23. Dokuchaev V I Astronomy 2 141 (2023)
  24. Beissen N, Abishev M et al Int. J. Mod. Phys. D 32 (16) (2023)
  25. Bisnovatyi-Kogan G S, Tsupko O Yu Phys. Rev. D 105 (6) (2022)
  26. Kobialko K, Bogush I, Gal’tsov D Phys. Rev. D 106 (2) (2022)
  27. Perlick V, Tsupko O Yu Physics Reports 947 1 (2022)
  28. Bogush I, Gal’tsov D et al Phys. Rev. D 106 (2) (2022)
  29. Roy R, Vagnozzi S, Visinelli L Phys. Rev. D 105 (8) (2022)
  30. Kobialko K, Bogush I, Gal’tsov D Phys. Rev. D 106 (8) (2022)
  31. Dokuchaev V I Astronomy 1 93 (2022)
  32. Zeng X-X, Li G-P, He K-J Nuclear Physics B 974 115639 (2022)
  33. Pantig R C, Mastrototaro L et al Eur. Phys. J. C 82 (12) (2022)
  34. Tsupko O Yu Phys. Rev. D 106 (6) (2022)
  35. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 192 696 (2022)
  36. [Eroshenko Yu N Phys. Usp. 65 648 (2022)]
  37. Dokuchaev V I Moscow Univ. Phys. 77 327 (2022)
  38. Kruglov S I Universe 7 249 (2021)
  39. Simonetti J H, Kavic M J et al Phys. Rev. D 104 (8) (2021)
  40. Aratore F, Bozza V J. Cosmol. Astropart. Phys. 2021 054 (2021)
  41. Novikov I D, Likhachev S F et al Phys.-Usp. 64 386 (2021)
  42. Dokuchaev V I, Nazarova N O Gen Relativ Gravit 53 (8) (2021)
  43. Hu Z, Zhong Zh et al Phys. Rev. D 103 (4) (2021)
  44. Dvornikov M J. Cosmol. Astropart. Phys. 2021 005 (2021)
  45. Chael A, Johnson M D, Lupsasca A ApJ 918 6 (2021)
  46. Tsupko O Yu Phys. Rev. D 103 (10) (2021)
  47. Dokuchaev V I, Nazarova N O Universe 6 154 (2020)
  48. Khodadi M, Allahyari A et al J. Cosmol. Astropart. Phys. 2020 026 (2020)
  49. Guo H, Liu H et al Phys. Rev. D 102 (12) (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions