Issues

 / 

2020

 / 

November

  

From the history of physics


Two-dimensional ferroelectrics and homogeneous switching. On the 75th anniversary of the Landau—Ginzburg theory of ferroelectricity

 a,  b
a Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Prof. Vitkevich str. 1, Pushchino, Moscow Region, 142290, Russian Federation
b Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii prosp 59, Moscow, 119333, Russian Federation

Within the framework of the Landau—Ginzburg (LG) theory, the kinetics of polarization switching in ferroelectric crystals and the transition from domain switching to homogeneous switching in nanosized single-crystal films are considered. It is shown that homogeneous (nondomain) switching can be described in LG theory terms only for two-dimensional ferroelectrics. A review of the experimental results for two-dimensional films of a ferroelectric polymer and barium titanate is given. For ultrathin polymer films, these results are also confirmed by first principles calculations.

Fulltext pdf (626 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.09.038841
Keywords: ferroelectricity, Landau—Ginzburg—Devonshire theory, domains, two-dimensional ferroelectrics, homogeneous switching
PACS: 77.55.−g, 77.80.Dj, 77.84.Cg (all)
DOI: 10.3367/UFNe.2020.09.038841
URL: https://ufn.ru/en/articles/2020/11/e/
000613920600005
2-s2.0-85101587644
2020PhyU...63.1140B
Citation: Bystrov V S, Fridkin V M "Two-dimensional ferroelectrics and homogeneous switching. On the 75th anniversary of the Landau—Ginzburg theory of ferroelectricity" Phys. Usp. 63 1140–1147 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 13th, March 2020, revised: 11th, August 2020, 23rd, September 2020

Оригинал: Быстров В С, Фридкин В М «Двумерные сегнетоэлектрики и однородное переключение. К 75-летию теории сегнетоэлектричества Ландау—Гинзбурга» УФН 190 1217–1224 (2020); DOI: 10.3367/UFNr.2020.09.038841

References (51) ↓ Cited by (4) Similar articles (4)

  1. Valasek J Phys. Rev. 15 537 (1920)
  2. Valasek J Phys. Rev. 17 475 (1921)
  3. Vul B M, Gol’dman I M Dokl. Akad. Nauk SSSR 46 154 (1945)
  4. Acosta M et al Appl. Phys. Rev. 4 041305 (2017)
  5. Ginzburg V L Zh. Eksp. Teor. Fiz. 15 739 (1945); Ginzburg V J. Phys. USSR 10 107 (1946)
  6. Ginzburg V L Zh. Eksp. Teor. Fiz. 19 36 (1949)
  7. Landau L D Zh. Eksp. Teor. Fiz. 7 627 (1937); Landau L Phys. Z. Sowjetunion 11 545 (1937)
  8. Klassen-Neklyudova M V, Chernyshova M A, Shtenberg A A Dokl. Akad. Nauk SSSR 18 527 (1948)
  9. Merz W J Phys. Rev. 91 513 (1953)
  10. Ishibashi Y Jpn. J. Appl. Phys. 31 2822 (1992)
  11. Kolmogorov A N Izv. AN SSSR. Ser. Matem. 1 355 (1937)
  12. Avrami M J. Chem. Phys. 8 212 (1940)
  13. Tagantsev A K, Cross L E, Fousek J Domains In Ferroic Crystals And Thin Films (New York: Springer, 2010)
  14. Shin Y-H et al Nature 449 881 (2007)
  15. Miller R C, Weinreich G Phys. Rev. 117 1460 (1960)
  16. Onsager L Phys. Rev. 65 117 (1944)
  17. Landau L D, Lifshits E M Statisticheskaya Fizika (M.: Nauka, 1964); Per. na angl. yaz., Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
  18. Bune A V et al Nature 391 874 (1998)
  19. Fridkin V, Ducharme S Ferroelectricity At The Nanoscale. Basic And Applications (New York: Springer, 2014)
  20. Fridkin V M, Dyusharm S Usp. Fiz. Nauk 184 645 (2014); Fridkin V M, Ducharme S Phys. Usp. 57 597 (2014)
  21. Blinov L M i dr Usp. Fiz. Nauk 170 247 (2000); Blinov L M et al Phys. Usp. 43 243 (2000)
  22. Palto S et al Ferroelectr. Lett. 19 65 (1995)
  23. Bune A et al Appl. Phys. Lett. 67 3975 (1995)
  24. Palto S et al Ferroelectrics 184 127 (1996)
  25. Bune A V et al J. Appl. Phys. 85 7869 (1999)
  26. Vizdrik G, Ducharme S, Fridkin V M, Yudin S G Phys. Rev. B 68 094113 (2003)
  27. Ievlev A, Verkhovskaya K, Fridkin V Ferroelectr. Lett. 33 147 (2006)
  28. Ricinschi D et al J. Phys. Condens. Matter 10 477 (1998)
  29. Landau L D, Khalatnikov I T Dokl. Akad. Nauk SSSR 96 469 (1954); Per. na angl. yaz., Landau L D, Khalatnikov I M Collected Papers Of L.D. Landau (Ed. D ter Haar) (London: Pergamon Press, 1965)
  30. Gaynutdinov R V, Mitko S, Yudin S G, Fridkin V M, Ducharne S Appl. Phys. Lett. 99 142904 (2011)
  31. Gaynutdinov R, Yudin S, Ducharme S, Fridkin V J. Phys. Condens. Matter 24 015902 (2012)
  32. Wang J L et al Appl. Phys. Lett. 104 182907 (2014)
  33. Ducharme S, Fridkin V M cond-mat/0307293
  34. Gu Z et al Phys. Rev. Lett. 118 096601 (2017)
  35. Stolichnov I et al ACS Appl. Mater. Interfaces 10 30514 (2018)
  36. Buragohain P et al Appl. Phys Lett. 112 222901 (2018)
  37. Hoffmann M et al Nature 565 464 (2019)
  38. Bystrov V S Physica B 432 21 (2014)
  39. Paramonova E V et al Ferroelectrics 509 143 (2017)
  40. Bystrov V S et al Math. Biol. Bioinform. 10 372 (2015)
  41. Gevorkyan V E, Paramonova E V, Avakyan L A, Bystrov V S Math. Biol. Bioinform. 10 131 (2015)
  42. Murrell J N, Harget A J Semi-Empirical Self-Consistent-Field Molecular Orbital Theory Of Molecules (London: Wiley-Intersci., 1972)
  43. Stewart J J P J. Comput. Chem. 10 209 (1989)
  44. Stewart J J P J. Computer-Aided Mol. Design 4 1 (1990)
  45. HyperChem (TM) 7.51, Tools for Molecular Modeling, HyperChem 8.0, Professional Edition, Gainesville, Hypercube. Inc., 2002 and 2010, Accessed 27.02.2020, http://www.hyper.com/?tabidD360
  46. Bystrov V S et al J. Phys. Condens. Matter. 19 456210 (2007)
  47. Bystrov V S et al J. Appl. Phys. 111 104113 (2012)
  48. Bystrov V S et al J. Mol. Mod. 19 3591 (2013)
  49. Nakhmanson S M et al Phys. Rev. B 81 174120 (2010)
  50. Duan C et al Europhys. Lett. 61 81 (2003)
  51. Yamada K et al Jpn. J. Appl. Phys. 40 4829 (2001)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions