Reviews of topical problems

Hadron physics in magnetic fields

 a,  b, c, a,  a
a National Research Center "Kurchatov Institute", Alikhanov Institute of Theoretical and Experimental Physics, ul. B. Cheremushkinskaya 25, Moscow, 117218, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

We propose a new approach to exploring relativistic compound systems in the external magnetic field. A relativistic Hamiltonian that includes confinement, one-gluon exchange, and spin—spin interaction has been obtained using path integral formalism. The masses of the quark—antiquark states that correspond at zero magnetic field to $\rho$- and $\pi$-meson and neutron mass have been calculated as a function of the magnetic field. The most interesting phenomena occur in super-strong magnetic fields of the order of $10^{18} - 10^{20}$ G that emerge for a short time in peripheral collisions of relativistic heavy ions.

Fulltext is available at IOP
Keywords: relativistic Hamiltonian, quark—antiquark system, magnetic field, pseudo-momentum, color Coulomb and spin—spin interactions, regularization, constituent separation method
PACS: 12.39.−x, 14.40.−n, 11.15.Tk (all)
DOI: 10.3367/UFNe.2019.02.038526
Citation: Andreichikov M A, Kerbikov B O, Simonov Yu A "Hadron physics in magnetic fields" Phys. Usp. 62 319–339 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, December 2017, revised: 30th, January 2019, 8th, February 2019

Оригинал: Андрейчиков М А, Кербиков Б О, Симонов Ю А «Физика адронов в магнитном поле» УФН 189 337–358 (2019); DOI: 10.3367/UFNr.2019.02.038526

References (131) Cited by (1) Similar articles (20) ↓

  1. D.S. Kuz’menko, Yu.A. Simonov, V.I. Shevchenko “Vacuum, confinement, and QCD strings in the vacuum correlator method47 1–15 (2004)
  2. A.Y. Potekhin “Atmospheres and radiating surfaces of neutron stars57 735–770 (2014)
  3. Yu.S. Kalashnikova, A.V. Nefed’ev, J.E.F.T. Ribeiro “Chiral symmetry and the properties of hadrons in the Generalized Nambu—Jona-Lasinio model60 667–693 (2017)
  4. A.Yu. Potekhin “The physics of neutron stars53 1235–1256 (2010)
  5. Yu.S. Kalashnikova, A.V. Nefediev “X(3872) in the molecular model62 568–595 (2019)
  6. B.M. Karnakov, V.D. Mur et alCurrent progress in developing the nonlinear ionization theory of atoms and ions58 3–32 (2015)
  7. L.L. Enkovskii, V.P. Shelest “Description of inelastic processes in dual models (B5 phenomenology)16 630–641 (1974)
  8. V.V. Anisovich “Systematics of quark-antiquark states and scalar exotic mesons47 45–67 (2004)
  9. V.V. Anisovich “The lightest scalar glueball41 419–439 (1998)
  10. N.N. Achasov, S.A. Devyanin, G.N. Shestakov “The problem of scalar mesons27 161–180 (1984)
  11. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theories38 591–607 (1995)
  12. N.N. Achasov, G.N. Shestakov “Light scalar mesons in photon—photon collisions54 799–828 (2011)
  13. V.I. Zakharov “Lattice SU(2) theory projected on scalar particles47 37–44 (2004)
  14. V.V. Kiselev, A.K. Likhoded “Baryons with two heavy quarks45 455–506 (2002)
  15. V.V. Vereshchagin, K.N. Mukhin, O.O. Patarakin “New data on the pion-pion interaction at low energies43 315–347 (2000)
  16. A.V. Batunin “Fractal analysis and Feigenbaum universality in hadron physics38 609–622 (1995)
  17. S.S. Gershtein, V.V. Kiselev et alPhysics of Bc-mesons38 1–37 (1995)
  18. L.G. Landsberg “On some low energy experiments on hadron spectroscopy35 (1) 1–16 (1992)
  19. V.G. Grishin “Hadronization of quarks and gluons into hadron jets at high energies29 126–165 (1986)
  20. I.S. Shapiro “The interaction of slow antinucleons with nucleons and nuclei16 173–184 (1973)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions