Issues

 / 

2018

 / 

March

  

Reviews of topical problems


Escape of planetary atmospheres: physical processes and numerical models

 a,  b
a Institute of Astronomy, Russian Academy of Sciences, ul. Pyatnitskaya 48, Moscow, 119017, Russian Federation
b V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygina str. 19, Moscow, 119991, Russian Federation

In addressing the problem of the dissipation (escape) of planetary atmospheres, this paper discusses the physical mechanisms controlling the nature of the occurring processes and reviews the mathematical models and numerical methods used in the analysis of this phenomenon taking into account the limitations imposed by available experimental data. Structural and dynamic features of the aeronomy of the Earth and terrestrial planets are discussed in detail that are key in determining the energy absorption rate and the atmospheric escape rate. A kinetic Monte Carlo method developed by the authors for investigating the thermal and nonthermal processes of atmospheric escape is presented. Using this approach and spacecraft data, atomic loss rates from the Venusian and Martian atmospheres through a variety of escape processes are estimated, and their role at the current and early evolutionary stages of these planets is discussed. The discovery of exosolar planets, the model studies of the dissipation of their gas envelopes, and the likely impact of the dissipation mechanisms on the planetary atmosphere and climate evolution stimulated the field reviewed and made it a subject of current topical interest.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.09.038212
Keywords: planetary atmosphere, aeronomy, modeling, suprathermal atoms, thermal and nonthermal escape processes, kinetic Monte Carlo method
PACS: 02.70.−c, 92.60.−e, 96.30.Ea, 96.30.Gc (all)
DOI: 10.3367/UFNe.2017.09.038212
URL: https://ufn.ru/en/articles/2018/3/a/
000435395400001
2-s2.0-85048446140
2018PhyU...61..217S
Citation: Shematovich V I, Marov M Ya "Escape of planetary atmospheres: physical processes and numerical models" Phys. Usp. 61 217–246 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, March 2017, revised: 15th, September 2017, 21st, September 2017

Оригинал: Шематович В И, Маров М Я «Диссипация планетных атмосфер: физические процессы и численные модели» УФН 188 233–265 (2018); DOI: 10.3367/UFNr.2017.09.038212

References (137) Cited by (18) Similar articles (20) ↓

  1. D.V. Bisikalo, V.I. Shematovich et alGas envelopes of exoplanets—hot JupitersPhys. Usp. 64 747–800 (2021)
  2. M.Ya. Marov, I.I. Shevchenko “Exoplanets: nature and modelsPhys. Usp. 63 837–871 (2020)
  3. A.D. Kuz’min “Results of radio observations of Mercury, Venus, and MarsSov. Phys. Usp. 9 759–766 (1967)
  4. V.E. Panchuk, Yu.Yu. Balega et alStudy of exoplanets by spectroscopic methodsPhys. Usp. 63 562–582 (2020)
  5. M.Ya. Marov, S.I. Ipatov “Migration processes in the Solar System and their role in the evolution of the Earth and planetsPhys. Usp. 66 2–31 (2023)
  6. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheresPhys. Usp. 51 577–589 (2008)
  7. E.S. Belenkaya “Magnetospheres of planets with an intrinsic magnetic fieldPhys. Usp. 52 765–788 (2009)
  8. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo “Wavelets and their usesPhys. Usp. 44 447–478 (2001)
  9. A.S. Monin, Yu.A. Shishkov “Climate as a problem of physicsPhys. Usp. 43 381–406 (2000)
  10. D.K. Belashchenko “Does the embedded atom model have predictive power?Phys. Usp. 63 1161–1187 (2020)
  11. I.K. Gainullin “Resonant charge transfer during ion scattering on metallic surfacesPhys. Usp. 63 888–906 (2020)
  12. M.V. Kalashnik, M.V. Kurgansky, O.G. Chkhetiani “Baroclinic instability in geophysical fluid dynamicsPhys. Usp. 65 1039–1070 (2022)
  13. D.K. Belashchenko “Computer simulation of liquid metalsPhys. Usp. 56 1176–1216 (2013)
  14. N.M. Astaf’eva “Wavelet analysis: basic theory and some applicationsPhys. Usp. 39 1085–1108 (1996)
  15. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flowsSov. Phys. Usp. 33 (7) 495–520 (1990)
  16. V.I. Moroz “The atmosphere of VenusSov. Phys. Usp. 14 317–340 (1971)
  17. A.G. Zhilkin, D.V. Bisikalo, A.A. Boyarchuk “Flow structure in magnetic close binary starsPhys. Usp. 55 115–136 (2012)
  18. A.V. Slunyaev, D.E. Pelinovsky, E.N. Pelinovsky “Rogue waves in the sea: observations, physics, and mathematicsPhys. Usp. 66 148–172 (2023)
  19. A.V. Tutukov, S.V. Vereshchagin “Destruction of astronomical systems: theory and observationsPhys. Usp. 66 859–884 (2023)
  20. A.I. Zhmakin “Physical aspects of cryobiologyPhys. Usp. 51 231–252 (2008)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions