Issues

 / 

2018

 / 

February

  

1000th issue of Uspekhi Fizicheskikh Nauk journal. Instruments and methods of investigation


Accurate frequency and time dissemination in the optical domain

 a, b,  a,  a, c, b
a Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
b International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center), Skolkovo Innovation Center, Bolshoi Boulevard, Building 30, Block 1, 3rd floor, sectors G3, G7, Moscow, Moscow Region, 121205, Russian Federation
c National Research Nuclear University ‘MEPhI’, Kashirskoe shosse 31, Moscow, 115409, Russian Federation

The development of the optical frequency comb technique has enabled a wide use of atomic optical clocks by allowing frequency conversion from the optical to the RF range. Today, the fractional instability of such clocks has reached the record eighteenth digit level, two orders of magnitude better than for cesium fountains representing the primary frequency standard. This is paralleled by the development of techniques for transferring accurate time and optical frequency signals, including fiber links. With this technology, the fractional instability of transferred frequency can be lowered to below 10−18 with an averaging time of 1000 s for a 1000 km optical link. At a distance of 500 km, a time signal uncertainty of 250 ps has been achieved. Optical links provide the opportunity for comparing optical clocks and creating a synchronized time and frequency standard network at a new level of precision. Prospects for solving new problems arise, including the determination of the gravitational potential, the measurement of the continental Sagnac effect and the precise testing of fundamental theories.

Fulltext pdf (1.8 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.05.038131
Keywords: fiber links, optical frequency and time dissemination, femtosecond laser, erbium doped laser, frequency stabilization
PACS: 06.20.Jr, 06.30.Ft, 12.20.Fv, 32.10.Fn, 32.30.Jc, 42.62.Fi (all)
DOI: 10.3367/UFNe.2017.05.038131
URL: https://ufn.ru/en/articles/2018/2/e/
000435333700005
2-s2.0-85047546094
2018PhyU...61..203K
Citation: Khabarova K Yu, Kalganova E S, Kolachevsky N N "Accurate frequency and time dissemination in the optical domain" Phys. Usp. 61 203–211 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 3rd, February 2017, revised: 12th, May 2017, 22nd, May 2017

Оригинал: Хабарова К Ю, Калганова Е С, Колачевский Н Н «Передача точных сигналов частоты и времени в оптическом диапазоне» УФН 188 221–230 (2018); DOI: 10.3367/UFNr.2017.05.038131

References (62) ↓ Cited by (11) Similar articles (5)

  1. Udem Th, Holzwarth R, Hänsch T W Nature 416 233 (2002)
  2. Hinkley N et al. Science 341 1215 (2013)
  3. Bloom B J et al. Nature 506 71 (2014)
  4. Bauch A et al. Metrologia 43 109 (2006)
  5. Müller J et al. Space Sci. Rev. 214 5 (2018)
  6. Boucher C, Pearlman M, Sarti P Adv. Space Res. 55 24 (2015)
  7. Riehle F Nature Photon. 11 25 (2017)
  8. Koller S B et al. Phys. Rev. Lett. 118 073601 (2017)
  9. Cao J et al. Appl. Phys. B 123 112 (2017)
  10. ITOC. International Timescales with Optical Clocks. REG Gravity potential for optical clock comparisons, http://projects.npl.co.uk/itoc/project-structure/reg/gravity-potential/
  11. Świerad D et al. Sci. Rep. 6 33973 (2016)
  12. Alnis J et al. Phys. Rev. A 77 053809 (2008)
  13. Wu L et al. Sci. Rep. 6 24969 (2016)
  14. Jiang H et al. J. Opt. Soc. Am. B 25 2029 (2008)
  15. Williams P A, Swann W C, Newbury N R J. Opt. Soc. Am. B 25 1284 (2008)
  16. Grosche G et al. Opt. Lett. 34 2270 (2009)
  17. Predehl K et al. Science 336 441 (2012)
  18. Droste S et al. Phys. Rev. Lett. 111 110801 (2013)
  19. Chiodo N et al. Opt. Express 23 33927 (2015)
  20. Rost M et al. Metrologia 49 772 (2012)
  21. Lopez O et al. Appl. Phys. B 110 3 (2013)
  22. Kodet J, Pánek P, Procházka I Metrologia 53 18 (2016)
  23. Śliwczyński L et al. Metrologia 50 133 (2013)
  24. Zhang H et al. IEEE Photon. J. 7 7600208 (2015)
  25. Deschênes J-D et al. Phys. Rev. X 6 021016 (2016)
  26. Ludlow A D et al. Rev. Mod. Phys. 87 637 (2015)
  27. Brillouin L Ann. Physique 9 (17) 88 (1922)
  28. Ippen E P, Stolen R H Appl. Phys. Lett. 21 539 (1972)
  29. Kobyakov A, Sauer M, Chowdhury D Adv. Opt. Photon. 2 1 (2010)
  30. Terra O, Grosche G, Schnatz H Opt. Express 18 16102 (2010)
  31. Giorgetta F R et al. Nature Photon. 7 434 (2013)
  32. Hocker G B Appl. Opt. 18 1445 (1979)
  33. Allan D W Proc. IEEE 54 221 (1966)
  34. Ghosh G Phys. Rev. B 57 8178 (1998)
  35. Riehle F Frequency Standards — Basics And Applications (Weinheim: Wiley-VCH, 2004); Per. na russk. yaz., Rile F Standarty Chastoty. Printsipy i Prilozheniya (M.: Fizmatlit, 2009)
  36. Foreman S M et al. Rev. Sci. Instrum. 78 021101 (2007)
  37. Lopez O et al. Eur. Phys. J. D 48 35 (2008)
  38. Fedorova D M et al. Measur. Tech. 58 994 (2015)
  39. Marra G et al. Opt. Lett. 35 1025 (2010)
  40. Lessing M et al. Proc. of the Conf. on Lasers and Electro-Optics, CLEO, Science and Innovations, San Jose, Calif., USA, 10 - 15 May 2015, Conf. Papers (OSA Technical Digest) (Washington, DC: Optical Society of America, 2015) p. STh3N.2
  41. Ivanov E N, Diddams S A, Hollberg L IEEE Trans. Ultrason. Ferroelect. Freq. Control 52 1068 (2005)
  42. Ivanov E N, Diddams S A, Hollberg L IEEE J. Select. Top. Quantum Electron. 9 1059 (2003)
  43. Ivanov E N et al. IEEE Trans. Ultrason. Ferroelect. Freq. Control 54 736 (2007)
  44. Ma L-S et al. Opt. Lett. 19 1777 (1994)
  45. Kersey A D et al. Electron. Lett. 27 518 (1991)
  46. Löhl F et al. Phys. Rev. Lett. 104 144801 (2010)
  47. Lopez O et al. Opt. Express 20 23518 (2012)
  48. Piester D, Schnatz H PTB-Mitteilungen 119 33 (2009)
  49. Hanson D W Proc. of the 43rd Annual Symp. on Frequency Control, 31 May - 2 June 1989, Denver, CO, USA (Piscataway, NJ: IEEE, 1989) p. 174
  50. SATRE (Satellite time and ranging equipment) TWSTFT (Twoway satellite time and frequency transfer) TimeTech Gmbh, http://www.Timetech.de
  51. Wang B et al. Sci. Rep. 2 556 (2012)
  52. Chou C W et al. Science 329 1630 (2010)
  53. Takano T et al. Nature Photon. 10 662 (2016)
  54. Mohr P J, Taylor B N, Newell D B Rev. Mod. Phys. 84 1527 (2012)
  55. Lemonde P et al. Frequency Measurement And Control. Advanced Techniques And Future Trends (Topics in Applied Physics) Vol. 79 (Ed. A N Luiten) (Berlin: Springer-Verlag, 2000) p. 131
  56. Niering M et al. Phys. Rev. Lett. 84 5496 (2000)
  57. Fischer M et al. Phys. Rev. Lett. 92 230802 (2004)
  58. Parthey C G et al. Phys. Rev. Lett. 107 203001 (2011)
  59. Matveev A et al. Phys. Rev. Lett. 110 230801 (2013)
  60. Colladay D, Kostelecký V A Phys. Rev. D 58 116002 (1998)
  61. Hohensee M A et al. Phys. Rev. Lett. 111 050401 (2013)
  62. Pruttivarasin T et al. Nature 517 592 (2015)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions