Issues

 / 

2018

 / 

January

  

Reviews of topical problems


Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications

,
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st. 4, Moscow, 119334, Russian Federation

Electronic states in quasi-two-dimensional (2D) metal and semiconductor crystals can have unusual characteristics and thus can exhibit unusual electronic and optical phenomena. In this paper, the results recently obtained for a new class of 2D compounds, transition metal dichalcogenides, are presented, including those on structure, preparation methods, electronic, mechanical and optical properties, defects and their influence on material properties, and conditions facilitating the formation of defects. The paper considers the unique properties of mono- and multilayer materials, examines their dependence on external factors, and discusses their further application prospects. Various applications of 2D transition metal dichalcogenides are described, ranging from nanolubricants, nanocomposites and biosensors to memory cells and supercapacitors to optoelectronic, spin and photovoltaic devices.

Fulltext pdf (1.6 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.02.038065
Keywords: two-dimensional structures, transition metal dichalcogenides, electronic and optical properties, spin polarization, valeytronics, heterostructures, defects
PACS: 73.22.−f
DOI: 10.3367/UFNe.2017.02.038065
URL: https://ufn.ru/en/articles/2018/1/b/
000429883000001
2-s2.0-85045727322
2018PhyU...61....2C
Citation: Chernozatonskii L A, Artyukh A A "Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications" Phys. Usp. 61 2–28 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, December 2016, revised: 5th, February 2017, 7th, February 2017

Оригинал: Чернозатонский Л А, Артюх А А «Квазидвумерные дихалькогениды переходных металлов: структура, синтез, свойства и применение» УФН 188 3–30 (2018); DOI: 10.3367/UFNr.2017.02.038065

References (266) Cited by (52) ↓ Similar articles (20)

  1. Ekimov E A, Nikolaev S N et al Jetp Lett. 118 266 (2023)
  2. Korotaev E V, Syrokvashin M M et al Materials 16 2431 (2023)
  3. Morozova N V, Usik A Yu et al J. Mater. Chem. C 11 6071 (2023)
  4. Abyaz B, Mahdavifar Z, Schreckenbach G Applied Surface Science 621 156892 (2023)
  5. Korotaev E V, Syrokvashin M M et al Magnetochemistry 9 168 (2023)
  6. Kochaev A, Katin K, Maslov M Materials Today Chemistry 30 101512 (2023)
  7. Singh A, Gupta Ja D et al Nanomaterials Chapter 7 (2023) p. 177
  8. ZAITSAU U, MELNIKOVA V et al HERALD OF POLOTSK STATE UNIVERSITY. Series S FUNDAMENTAL SCIENCES (2) 63 (2023)
  9. Tang X-F, Zhu Sh-X et al Chinese Phys. B 31 037103 (2022)
  10. Pimenov N Yu, Lavrov S D et al Rossijskij Tehnologičeskij žurnal 10 56 (2022)
  11. Domozhirova A N, Naumov S V et al IEEE Trans. Magn. 58 1 (2022)
  12. Romanenko A I, Chebanova G E et al J. Phys. D: Appl. Phys. 55 143001 (2022)
  13. Vainberg V V, Pylypchuk O S et al 131 (23) (2022)
  14. Abramov I I, Labunov V A et al International Conference on Micro- and Nano-Electronics 2021, (2022) p. 12
  15. Perevalova A N, Naumov S V, Marchenkov V V Metals 12 2089 (2022)
  16. Chernopitssky M A, Nikolaev S N et al Bull. Lebedev Phys. Inst. 49 252 (2022)
  17. Akmaev M A, Glazov M M et al 119 (11) (2021)
  18. Liu Ya, Zeng Ch et al Chem. Soc. Rev. 50 6401 (2021)
  19. Wu Yu, Sun Y et al Energy Storage Materials 41 108 (2021)
  20. Ryzhikov M R, Kozlova S G Int J Of Quantum Chemistry 121 (23) (2021)
  21. Garg M, Gupta A et al ACS Appl. Bio Mater. 4 5944 (2021)
  22. Garg M, Vishwakarma N et al Advanced Applications of 2D Nanostructures Materials Horizons: From Nature To Nanomaterials Chapter 2 (2021) p. 11
  23. Ryzhov I V, Malikov R F et al J. Opt. 23 115102 (2021)
  24. Marchenkov V V, Irkhin V Yu Phys. Metals Metallogr. 122 1133 (2021)
  25. Petrosyan S G, Khachatryan A M J. Contemp. Phys. 56 234 (2021)
  26. Romanenko A I, Yakovleva G E et al J Am Ceram Soc 103 6289 (2020)
  27. Ponomarenko V P, Popov V S et al J. Commun. Technol. Electron. 65 1062 (2020)
  28. Khashkovsky S V, Perevislov S N Refract Ind Ceram 61 61 (2020)
  29. Sukhanova E V, Popov Z I, Kvashnin D G Jetp Lett. 111 627 (2020)
  30. Yapryntsev A D, Baranchikov A E, Ivanov V K Russ. Chem. Rev. 89 629 (2020)
  31. Makovskaya T I, Danilyuk A L et al Russ Microelectron 49 507 (2020)
  32. Voronina E N, Mankelevich Yu A et al J. Phys.: Condens. Matter 32 445003 (2020)
  33. Evarestov R A Theoretical Modeling of Inorganic Nanostructures NanoScience And Technology Chapter 8 (2020) p. 631
  34. Wang Ya, Zhou Yu et al 10 (12) (2020)
  35. Zeng Ch, Zhong J et al 117 (15) (2020)
  36. Domnin A V, Bandura A V, Evarestov R A J Comput Chem 41 759 (2020)
  37. Pekh P L, Ratnikov P V, Silin A P Jetp Lett. 111 90 (2020)
  38. Akmaev M A, Kochiev M V et al Jetp Lett. 112 607 (2020)
  39. Yakovleva G E, Ledneva A Yu et al J Struct Chem 61 1721 (2020)
  40. Marchenkov V V, Domozhirova A N et al J. Phys.: Conf. Ser. 1695 012144 (2020)
  41. Ratnikov P V Phys. Rev. B 102 (8) (2020)
  42. Marchenkov V V, Domozhirova A N et al J. Exp. Theor. Phys. 128 939 (2019)
  43. Domashevskaya E P, Goloshchapov D L et al Semiconductors 53 923 (2019)
  44. Maskaeva L N, Fedorova E A et al Semiconductors 53 853 (2019)
  45. Kang M J, Kim J-Y et al Physica Rapid Research Ltrs 13 (12) (2019)
  46. Marchenkov V V, Domozhirova A N et al 45 241 (2019)
  47. Kotov O V, Lozovik Yu E Phys. Rev. B 100 (16) (2019)
  48. Pleshchev V G, Selezneva N V Phys. Solid State 61 339 (2019)
  49. Domozhirova A N, Makhnev A A et al J. Phys.: Conf. Ser. 1389 012149 (2019)
  50. Didenko A L, Smirnova V E et al Russ Chem Bull 68 1603 (2019)
  51. Huseynov Ja, Mamedova R et al 73 519 (2019)
  52. Mazalov L N, Fedorenko A D et al Polyhedron 153 268 (2018)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions