Issues

 / 

2017

 / 

September

  

Methodological notes


Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media


Peter the Great Saint-Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation

Applying a quantum-mechanical treatment to a high-frequency macroscopic electromagnetic field and radiative phenomena in a medium, we construct quantum operators for energy—momentum tensor components in dispersive media and find their eigenvalues, which are different in the Minkowski and Abraham representations. It is shown that the photon momentum in a medium resulting from the quantization of the vector potential differs from that defined from Abraham's symmetric energy-momentum tensor but is equal to the momentum defined from the Minkowski tensor. A similar result is obtained by calculating the intrinsic angular moment (spin) of an electromagnetic field in the medium. Only the Minkowski tensor enables experimentally confirmed multiple-of-ħ spin values, providing the grounds for choosing the Minkowski representation as the adequate form for the momentum density of a transverse electromagnetic field in a transparent medium, whether the field is treated classically or quantum mechanically. The Abraham representation is unsuitable for this purpose and leads to contradictions. The conclusion drawn does not apply to quasi-static and static fields.

Fulltext pdf (672 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.04.038138
Keywords: the Minkowski energy—momentum tensor, quantum theory, radiation phenomena, spin and mass of a photon in matter
PACS: 12.20.−m, 41.20.Jb, 41.60.Bq (all)
DOI: 10.3367/UFNe.2017.04.038138
URL: https://ufn.ru/en/articles/2017/9/f/
000417704200006
2-s2.0-85040960645
2017PhyU...60..935T
Citation: Toptygin I N "Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media" Phys. Usp. 60 935–947 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, June 2016, revised: 8th, April 2017, 12th, April 2017

Оригинал: Топтыгин И Н «Квантовое описание поля в макроскопической электродинамике и свойства фотонов в прозрачных средах» УФН 187 1007–1020 (2017); DOI: 10.3367/UFNr.2017.04.038138

References (62) Cited by (4) Similar articles (20) ↓

  1. I.N. Toptygin, K. Levina “Energy—momentum tensor of the electromagnetic field in dispersive mediaPhys. Usp. 59 141–152 (2016)
  2. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham forcePhys. Usp. 61 303–306 (2018)
  3. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction mediumPhys. Usp. 52 649–654 (2009)
  4. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  5. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodiesPhys. Usp. 62 1012–1030 (2019)
  6. V.M. Grishin “Vavilov—Cherenkov radiation and radiation energy lossPhys. Usp. 65 641–647 (2022)
  7. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)
  8. K.Yu. Platonov, I.N. Toptygin, G.D. Fleishman “Emission of radiation by particles in media with inhomogeneities and coherent bremsstrahlungSov. Phys. Usp. 33 (4) 289–295 (1990)
  9. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic mediaPhys. Usp. 51 363–374 (2008)
  10. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic fieldPhys. Usp. 52 937–943 (2009)
  11. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)Phys. Usp. 62 487–495 (2019)
  12. A.A. Kolokolov, G.V. Skrotskii “Interference of reactive components of an electromagnetic fieldSov. Phys. Usp. 35 (12) 1089–1093 (1992)
  13. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  14. N.N. Rosanov “Unipolar pulse of an electromagnetic field with uniform motion of a charge in a vacuumPhys. Usp. 66 1059–1064 (2023)
  15. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic wavesPhys. Usp. 51 355–361 (2008)
  16. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic mediaPhys. Usp. 55 147–160 (2012)
  17. E.H. Lock “Angular beam width of a slit-diffracted wave with noncollinear group and phase velocitiesPhys. Usp. 55 1239–1254 (2012)
  18. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic mediaPhys. Usp. 54 145–165 (2011)
  19. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  20. A.V. Vashkovskii, E.H. Lock “Negative refractive index for a surface magnetostatic wave propagating through the boundarybetween a ferrite and ferrite-insulator-metal mediaPhys. Usp. 47 601–605 (2004)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions