Issues

 / 

2017

 / 

September

  

Methodological notes


Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media


Peter the Great Saint-Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation

Applying a quantum-mechanical treatment to a high-frequency macroscopic electromagnetic field and radiative phenomena in a medium, we construct quantum operators for energy—momentum tensor components in dispersive media and find their eigenvalues, which are different in the Minkowski and Abraham representations. It is shown that the photon momentum in a medium resulting from the quantization of the vector potential differs from that defined from Abraham's symmetric energy-momentum tensor but is equal to the momentum defined from the Minkowski tensor. A similar result is obtained by calculating the intrinsic angular moment (spin) of an electromagnetic field in the medium. Only the Minkowski tensor enables experimentally confirmed multiple-of-ħ spin values, providing the grounds for choosing the Minkowski representation as the adequate form for the momentum density of a transverse electromagnetic field in a transparent medium, whether the field is treated classically or quantum mechanically. The Abraham representation is unsuitable for this purpose and leads to contradictions. The conclusion drawn does not apply to quasi-static and static fields.

Fulltext is available at IOP
Keywords: the Minkowski energy—momentum tensor, quantum theory, radiation phenomena, spin and mass of a photon in matter
PACS: 12.20.−m, 41.20.Jb, 41.60.Bq (all)
DOI: 10.3367/UFNe.2017.04.038138
URL: https://ufn.ru/en/articles/2017/9/f/
Citation: Toptygin I N "Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media" Phys. Usp. 60 935–947 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, June 2016, revised: 8th, April 2017, 12th, April 2017

Оригинал: Топтыгин И Н «Квантовое описание поля в макроскопической электродинамике и свойства фотонов в прозрачных средах» УФН 187 1007–1020 (2017); DOI: 10.3367/UFNr.2017.04.038138

References (62) Cited by (3) Similar articles (20) ↓

  1. I.N. Toptygin, K. Levina “Energy—momentum tensor of the electromagnetic field in dispersive media59 141–152 (2016)
  2. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham force61 303–306 (2018)
  3. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium52 649–654 (2009)
  4. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate53 595–609 (2010)
  5. B.M. Bolotovskii, G.B. Malykin “Visible shape of moving bodies62 1012–1030 (2019)
  6. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  7. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic media51 363–374 (2008)
  8. K.Yu. Platonov, I.N. Toptygin, G.D. Fleishman “Emission of radiation by particles in media with inhomogeneities and coherent bremsstrahlung33 (4) 289–295 (1990)
  9. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  10. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)62 487–495 (2019)
  11. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic media55 147–160 (2012)
  12. S.A. Afanas’ev, D.I. Sementsov “Energy fluxes during the interference of electromagnetic waves51 355–361 (2008)
  13. A.A. Kolokolov, G.V. Skrotskii “Interference of reactive components of an electromagnetic field35 (12) 1089–1093 (1992)
  14. E.H. Lock “Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities55 1239–1254 (2012)
  15. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic media54 145–165 (2011)
  16. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild field58 1118–1123 (2015)
  17. K.S. Vul’fson “Angular momentum of electromagnetic waves30 724–728 (1987)
  18. V.V. Shevchenko “Forward and backward waves: three definitions and their interrelation and applicability50 287–292 (2007)
  19. K.Yu. Bliokh, Yu.P. Bliokh “What are the left-handed media and what is interesting about them?47 393–400 (2004)
  20. A.V. Vashkovskii, E.H. Lokk “Negative refractive index for a surface magnetostatic wave propagating through the boundary between a ferrite and ferrite-insulator-metal media47 601–605 (2004)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions