Issues

 / 

2017

 / 

September

  

From the current literature


On the retrograde motion of a rolling disk

 a, b, c,  c,  c, d
a Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
b Institute of Computer Science, ul. Universitetskaya 1, Izhevsk, 426034, Russian Federation
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russian Federation
d Izhevsk State Technical University, Studencheskaya st. 7, Izhevsk, 426069, Russian Federaion

This paper presents theoretical and experimental research explaining the retrograde final-stage rolling of a disk under certain relations between its mass and geometric parameters. Modifying the no-slip model of a rolling disk by including viscous rolling friction provides a qualitative explanation for the disk's retrograde motion. At the same time, the simple experiments described in the paper fully compromise the drag moment as a key reason for the retrograde motion considered, thus disproving some recent hypotheses.

Fulltext pdf (450 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.01.038049
Keywords: retrograde turn, rolling disk, nonholonomic model, rolling friction
PACS: 02.60.Cb, 05.45.−a, 45.40.−f (all)
DOI: 10.3367/UFNe.2017.01.038049
URL: https://ufn.ru/en/articles/2017/9/e/
000417704200005
2-s2.0-85020235209
2017PhyU...60..931B
Citation: Borisov A V, Kilin A A, Karavaev Yu L "On the retrograde motion of a rolling disk" Phys. Usp. 60 931–934 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, December 2016, revised: 10th, January 2017, 17th, January 2017

Îðèãèíàë: Áîðèñîâ À Â, Êèëèí À À, Êàðàâàåâ Þ Ë «Î ïîïÿòíîì äâèæåíèè êàòÿùåãîñÿ äèñêà» ÓÔÍ 187 1003–1006 (2017); DOI: 10.3367/UFNr.2017.01.038049

References (26) Cited by (21) ↓ Similar articles (3)

  1. VINTELER E Rom. J. Phys. 70 (3-4) 105 (2025)
  2. Khorrami M, Aghamohammadi A, Aghamohammadi C Indian J Phys 98 (3) 1031 (2024)
  3. Liu Y Math. Model. Nat. Phenom. 18 31 (2023)
  4. Kilin A A, Pivovarova E N Regul. Chaot. Dyn. 28 (1) 78 (2023)
  5. Collins B W, Hall C L, Hogan S J SIAM J. Appl. Dyn. Syst. 22 (4) 3358 (2023)
  6. Ivanova T B, Karavaev Yu L, Kilin A A Arch Appl Mech 92 (1) 137 (2022)
  7. Kilin A A, Karavaev Yu L, Ivanova T B Lecture Notes In Networks And Systems Vol. Robotics for Sustainable FutureRolling Resistance Model and Control of Spherical Robot324 Chapter 35 (2022) p. 396
  8. Kilin A, Karavaev Yu, Yefremov K Lecture Notes In Networks And Systems Vol. Robotics for Sustainable FutureExperimental Investigations of the Controlled Motion of the Roller Racer Robot324 Chapter 38 (2022) p. 428
  9. Cross R Phys. Educ. 57 (1) 015022 (2022)
  10. Kilin A A, Pivovarova E N Nonlinear Dyn 103 (1) 419 (2021)
  11. Kilin A A, Pivovarova E N International Journal Of Non-Linear Mechanics 129 103666 (2021)
  12. Ivanova T B Z Angew Math Mech 100 (12) (2020)
  13. Sailer S, Eugster S R, Leine R I Regul. Chaot. Dyn. 25 (6) 553 (2020)
  14. Wheatland M S, Cross R C et al American Journal of Physics 88 (6) 465 (2020)
  15. Antali M, Stepan G Nonlinear Dyn 97 (3) 1799 (2019)
  16. Borisov A, Kilin A, Mamaev I Int. J. Bifurcation Chaos 29 (03) 1930008 (2019)
  17. Cross R Eur. J. Phys. 40 (5) 055003 (2019)
  18. Kilin A A, Pivovarova E N Regul. Chaot. Dyn. 24 (2) 212 (2019)
  19. Ivanov A P Dokl. Phys. 64 (3) 129 (2019)
  20. Borisov A V, Ivanova T B et al Eur. J. Phys. 39 (6) 065001 (2018)
  21. Kilin A A, Pivovarova E N Regul. Chaot. Dyn. 23 (7-8) 887 (2018)

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions