Issues

 / 

2017

 / 

June

  

Methodological notes


On the spin-statistics theorem


Herzen Russian State Pedagogical University, nab. r. Moiki 48, St. Petersburg, 191186, Russian Federation

The possibility of proving the theorem on the connection between spin and statistics in the nonrelativistic quantum mechanical framework is examined.

Fulltext pdf (387 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.02.038061
Keywords: identical particles, spin and statistics, the Pauli exclusion principle, irreducible representations of the rotation group, spinor fields
PACS: 02.20.−a, 03.65.−w, 31.15.xh (all)
DOI: 10.3367/UFNe.2017.02.038061
URL: https://ufn.ru/en/articles/2017/6/e/
000409222900005
2-s2.0-85029143865
2017PhyU...60..621T
Citation: Trifonov E D "On the spin-statistics theorem" Phys. Usp. 60 621–622 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, February 2016, revised: 13th, January 2017, 1st, February 2017

Оригинал: Трифонов Е Д «К теореме о связи спина и статистики» УФН 187 667–668 (2017); DOI: 10.3367/UFNr.2017.02.038061

References (15) Cited by (1) Similar articles (20) ↓

  1. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ionsPhys. Usp. 62 186–197 (2019)
  2. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particlePhys. Usp. 57 891–896 (2014)
  3. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  4. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)Phys. Usp. 63 721–724 (2020)
  5. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  6. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  7. P. Paradoksov “How quantum mechanics helps us understand classical mechanicsSov. Phys. Usp. 9 618–620 (1967)
  8. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  9. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elementsPhys. Usp. 36 (9) 851–853 (1993)
  10. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theoryPhys. Usp. 63 407–411 (2020)
  11. I.F. Ginzburg “Particles in finite and infinite one-dimensional chainsPhys. Usp. 63 395–406 (2020)
  12. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  13. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  14. V.K. Ignatovich “The neutron Berry phasePhys. Usp. 56 603–604 (2013)
  15. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  16. A.V. Burenin “On the importance of the Born-Oppenheimer approximation in intramolecular dynamicsPhys. Usp. 53 713–724 (2010)
  17. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  18. E.D. Trifonov “On quantum statistics for ensembles with a finite number of particlesPhys. Usp. 54 723–727 (2011)
  19. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  20. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions