Issues

 / 

2017

 / 

May

  

Physics of our days


Unusual plasticity and strength of metals at ultra-short load durations

 a,  b,  c,  a,  a
a Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva, Negev, 8410501, Israel
c Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation

This paper briefly reviews recent results on the rate-temperature dependence of flow stresses and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, an approaching to ultimate ("ideal") values of the shear and tensile strength has been realized and anomalous growth of the yield stress with the temperature at high strain rate has been confirmed for some metals. New evidence is obtained for the intense onset of dislocation multiplication immediately in the elastic precursor wave. It is found that under these conditions inclusions and other strengthening factors may reduce the dynamic yield stress. Novel and unexpected features are observed in the evolution of elastic-plastic shock compression waves.

Fulltext pdf (854 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.12.038004
Keywords: shock waves in solids, high-rate deformation, the high-rate fracture, dynamics of dislocations, ideal strength, anomalous thermal hardening, polycrystalline metals and single crystals
PACS: 62.50.−p
DOI: 10.3367/UFNe.2016.12.038004
URL: https://ufn.ru/en/articles/2017/5/c/
000407895100003
2-s2.0-85026903048
2017PhyU...60..490K
Citation: Kanel G I, Zaretsky E B, Razorenov S V, Ashitkov S I, Fortov V E "Unusual plasticity and strength of metals at ultra-short load durations" Phys. Usp. 60 490–508 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 11th, October 2016, 8th, December 2016

Оригинал: Канель Г И, Зарецкий Е Б, Разоренов С В, Ашитков С И, Фортов В Е «Необычные пластичность и прочность металлов при ультракоротких длительностях нагрузки» УФН 187 525–545 (2017); DOI: 10.3367/UFNr.2016.12.038004

References (99) ↓ Cited by (73) Similar articles (7)

  1. Fortov V E Uravnenie Sostoyaniya Veshchestva. Ot Ideal’nogo Gaza do Kvark-glyuonnoi Plazmy (M.: Fizmatlit, 2012)
  2. Fortov V Thermodynamics And Equations Of State For Matter. From Ideal Gas To Quark-Gluon Plasma (Singapore: World Scientific, 2016)
  3. Clifton R J Int. J. Solids Struct. 37 105 (2000)
  4. Meyers M A et al. Mater. Sci. Eng. A 322 194 (2002)
  5. Kanel G I, Razorenov S V, Fortov V E Shock-Wave Phenomena And The Properties Of Condensed Matter (New York: Springer, 2004)
  6. Remington B A et al. Mater. Sci. Technol. 22 474 (2006)
  7. Kanel’ G I, Fortov V E, Razorenov S V Usp. Fiz. Nauk 177 809 (2007); Kanel’ G I, Fortov V E, Razorenov S V Phys. Usp. 50 771 (2007)
  8. Lorenzana H E et al. Sci. Modeling Simulations 15 159 (2008)
  9. Vogler T J, Chhabildas L C Int. J. Impact Eng. 33 812 (2006)
  10. Asay J R et al. J. Appl. Phys. 103 083514 (2008)
  11. Brown J L et al. J. Appl. Phys. 114 223518 (2013)
  12. Jensena B J, Gupta Y M J. Appl. Phys. 104 013510 (2008)
  13. Turneaure S J, Gupta Y M J. Appl. Phys. 109 123510 (2011)
  14. Clifton R J Appl. Mech. Rev. 43 S9 (1990)
  15. Berner R, Kronmüller H "Plastische Verformung von Einkristallen" Moderne Probleme Der Metallphysik. Erster Band Fehlstellen, Plastizität, Strahlenschädigung Und Elektronentheorie (Ed. A Seeger) (Berlin: Springer-Verlag, 1965) p. 35
  16. Ninomura T J. Phys. Soc. Jpn. 36 399 (1974)
  17. Al’shits V I, Indenbom V L Usp. Fiz. Nauk 115 3 (1975); Al’shits V I, Indenbom V L Sov. Phys. Usp. 18 1 (1975)
  18. Nadgornyi E M Usp. Fiz. Nauk 77 201 (1962); Nadgornyi E M Sov. Phys. Usp. 5 462 (1962)
  19. Zel’dovich Ya B, Raizer Yu P Fizika Udarnykh Voln i Vysokotemperaturnykh Gidrodinamicheskikh Yavlenii (M.: Nauka, 1966); Zel’dovich Ya B, Raizer Yu P Physics Of Shock Waves And High-Temperature Hydrodynamic Phenomena Vol. 1, 2 (New York: Academic Press, 1966, 1967)
  20. Kanel’ G I i dr. Udarno-volnovye Yavleniya v Kondensirovannykh Sredakh (M.: Yanus-K, 1996)
  21. Garkushin G V, Kanel’ G I, Razorenov S V Fiz. Tverd. Tela 54 1012 (2012); Garkushi G V, Kanel G I, Razorenov S V Phys. Solid State 54 1079 (2012)
  22. Duvall G E Stress Waves in Anelastic Solids, Symp., Providence, R.I., April 3 - 5, 1963 (Eds H Kolsky, W Prager) (Berlin: Springer, 1964)
  23. Asay J R, Fowles G R, Gupta Y J. Appl. Phys. 43 744 (1972)
  24. Chhabildas L C, Asay J R J. Appl. Phys. 50 2749 (1979)
  25. Swegle J W, Grady D E J. Appl. Phys. 58 692 (1985)
  26. Antoun T et al. Spall Fracture (New York: Springer, 2003)
  27. Kanel G I Int. J. Fract. 163 173 (2010)
  28. Ashitkov S I i dr. Pis’ma ZhETF 92 568 (2010); Ashitkov S I et al. JETP Lett. 92 516 (2010)
  29. Whitley V H et al. J. Appl. Phys. 109 013505 (2011)
  30. Ashitkov S I et al. AIP Conf. Proc. 1426 1081 (2012)
  31. Gupta Y M et al. J. Appl. Phys. 105 036107 (2009)
  32. Winey J M et al. J. Appl. Phys. 106 073508 (2009)
  33. Garkushin G V, Kanel’ G I, Razorenov S V Fiz. Tverd. Tela 52 2216 (2010); Garkushin G V, Kanel’ G I, Razorenov S V Phys. Solid State 52 2369 (2010)
  34. Arvidsson T E, Gupta Y M, Duvall G E J. Appl. Phys. 46 4474 (1975)
  35. Sakino K J. Physique IV 10 (9) 57 (2000)
  36. Kanel’ G I i dr. Fiz. Tverd. Tela 58 1153 (2016); Kanel G I et al. Phys. Solid State 58 1191 (2016)
  37. Kanel’ G I i dr. Teplofiz. Vys. Temp. 55 380 (2017); Kanel G I et al. High Temp. 55 365 (2017)
  38. Krüger L et al. Int. J. Impact Eng. 28 877 (2003)
  39. Kanel’ G I i dr. Fiz. Tverd. Tela 45 625 (2003); Kanel G I et al. Phys. Solid State 45 656 (2003)
  40. Kanel G I, Razorenov S V, Fortov V E J. Phys. Condens. Matter 16 S1007 (2004)
  41. Kanel G I Fatigue Fracture Eng. Mater. Struct. 22 1011 (1999)
  42. Barbee T W et al. J. Mater. 7 393 (1972)
  43. Davison L, Stevens A L J. Appl. Phys. 43 988 (1972)
  44. Johnson J N J. Appl. Phys. 52 2812 (1981)
  45. Curran D R, Seaman L, Shockey D A Phys. Rep. 147 253 (1987)
  46. Kanel G I et al. J. Appl. Phys. 79 8310 (1996)
  47. Kanel G I et al. J. Appl. Phys. 90 136 (2001)
  48. Eliezer S, Moshe E, Eliezer D Laser Part. Beams 20 87 (2002)
  49. Utkin A V Priklad. Matem. Tekh. Fiz. 34 (4) 140 (1993); Utkin A V J. Appl. Mech. Tech. Phys. 34 578 (1993)
  50. Utkin A V Priklad. Matem. Tekh. Fiz. 38 (6) 157 (1997); Utkin A V J. Appl. Mech. Tech. Phys. 38 952 (1997)
  51. Kanel G I et al. Int. J. Impact Eng. 20 467 (1997)
  52. Zhakhovskii V V et al. Appl. Surf. Sci. 255 9592 (2009)
  53. Zhilyaev P A i dr. Fiz. Tverd. Tela 52 1508 (2010); Zhilyaev P A et al. Phys. Solid State 52 1619 (2010)
  54. Sin’ko G V, Smirnov N A Pis’ma ZhETF 75 (7) 217 (2002); Sin’ko G V, Smirnov N A JETP Lett. 75 184 (2002)
  55. Garkushin G V et al. Int. J. Fract. 197 185 (2016)
  56. Zaretsky E B, Kanel G I J. Appl. Phys. 112 053511 (2012)
  57. Kanel’ G I i dr. Pis’ma ZhETF 102 615 (2015); Kanel G I et al. JETP Lett. 102 548 (2015)
  58. Zaretsky E B J. Appl. Phys. 120 025902 (2016)
  59. Ashitkov S I i dr. Pis’ma ZhETF 103 611 (2016); Ashitkov S I et al. JETP Lett. 103 544 (2016)
  60. Bogach A A, Utkin A V Priklad. Matem. Tekh. Fiz. 41 (4) 198 (2000); Bogach A A, Utkin A V J. Appl. Mech. Tech. Phys. 41 752 (2000)
  61. Ashitkov S I et al. J. Phys. Conf. Ser. 500 112006 (2014)
  62. Kanel G I et al. J. Appl. Phys. 106 043524 (2009)
  63. Lang J M (Jr.), Gupta Y M J. Appl. Phys. 107 113538 (2010)
  64. McWilliams R S et al. Phys. Rev. B 81 014111 (2010)
  65. Ashitkov S I i dr. Pis’ma ZhETF 98 439 (2013); Ashitkov S I et al. JETP Lett. 98 384 (2013)
  66. Ashitkov S I i dr. Pis’ma ZhETF 101 294 (2015); Ashitkov S I et al. JETP Lett. 101 276 (2015)
  67. Vorob’ev A A, Dremin A N, Kanel’ G I Priklad. Matem. Tekh. Fiz. 5 94 (1974); Vorob’ev A A, Dremin A N, Kanel’ G I J. Appl. Mech. Tech. Phys. 15 661 (1974)
  68. Clatterbuck D M, Chrzan D C, Morris J W (Jr.) Acta Mater. 51 2271 (2003)
  69. Ogata S et al. Phys. Rev. B 70 104104 (2004)
  70. Crowhurst J C et al. J. Appl. Phys. 115 113506 (2014)
  71. Zaretsky E B, Kanel G I J. Appl. Phys. 114 083511 (2013)
  72. Zaretsky E B, Kanel G I J. Appl. Phys. 115 243502 (2014)
  73. Kanel G I, Razorenov S V, Garkushin G V J. Appl. Phys. 119 185903 (2016)
  74. Zaretsky E B, Kanel G I J. Appl. Phys. 110 073502 (2011)
  75. Mashimo T, Hanaoka Y, Nagayama K J. Appl. Phys. 63 327 (1988)
  76. Arnold W Shock Compression of Condensed Matter 1991. Proc. of the American Physical Society Topical Conf., Williamsburg, Virginia, June 17 - 20, 1991 (Eds S C Schmidt et al.) (Amsterdam: North-Holland, 1992) p. 539
  77. Garkushin G V i dr. Izv. RAN. Mekhanika Tverdogo Tela 45 (4) 155 (2010); Garkushin G V et al. Mech. Solids 45 624 (2010)
  78. Razorenov S V i dr. Fiz. Tverd. Tela 54 742 (2012); Razorenov S V et al. Phys. Solid State 54 790 (2012)
  79. McClintock F A, Argon A S Mechanical Behavior Of Materials (Reading, Mass.: Addison-Wesley, 1966); Per. na russk. yaz., Makklintok F A, Argon A S Deformatsiya i Razrushenie Materialov (M.: Mir, 1970)
  80. Zaretsky E B, Kanel G I J. Appl. Phys. 112 073504 (2012)
  81. Olmsted D L et al. Mater. Sci. Eng. 13 371 (2005)
  82. Kuksin A Yu, Stegailov V V, Yanilkin A V Dokl. Ross. Akad. Nauk 420 467 (2008); Kuksin A Yu, Stegailov V V, Yanilkin A V Dokl. Phys. 53 287 (2008)
  83. Zaretsky E B, Kanel G I J. Appl. Phys. 117 195901 (2015)
  84. Barton N R et al. J. Appl. Phys. 109 073501 (2011)
  85. Pope L E, Johnson J N J. Appl. Phys. 46 720 (1975)
  86. Bogach A A i dr. Fiz. Tverd. Tela 40 1849 (1998); Bogach A A et al. Phys. Solid State 40 1676 (1998)
  87. Bezruchko G S, Kanel’ G I, Razorenov S V Zh. Tekh. Fiz. 75 (5) 92 (2005); Bezruchko G S, Kanel G I, Razorenov S V Tech. Phys. 50 621 (2005)
  88. Kanel G I et al. J. Appl. Phys. 116 143504 (2014)
  89. Winey J M, Renganathan P, Gupta Y M J. Appl. Phys. 117 105903 (2015)
  90. Kanel G I et al. J. Appl. Phys. 74 7162 (1993)
  91. Asay J R et al. J. Appl. Phys. 109 073507 (2011)
  92. Whiteman G, Case S F, Millett J C J. Phys. Conf. Ser. 500 112067 (2014)
  93. Tonks D L et al. J. Physique IV (Pr9) 787 (2000)
  94. Huang H, Asay J R J. Appl. Phys. 101 063550 (2007)
  95. Johnson J N J. Appl. Phys. 43 2074 (1972)
  96. Kuksin A Yu, Yanilkin A V Fiz. Tverd. Tela 55 931 (2013); Kuksin A Yu, Yanilkin A V Phys. Solid State 55 1010 (2013)
  97. Kanel G I et al. J. Appl. Phys. 118 045901 (2015)
  98. Chhabildas L C, Hill C R SNL Report SAND-85-0322C (Albuquerque, NM: Sandia Natl. Lab., 1985)
  99. Nemat-Nasser S, Guo W Mech. Mater. 32 243 (2000)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions