Issues

 / 

2017

 / 

November

  

In memory of Leonid Veniaminovich Keldysh. Reviews of topical problems


Orbital physics in transition metal compounds: new trends

 a, b,  c
a Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation
b Ural Federal University named after the First President of Russia B N Yeltsin, prosp. Mira 19, Ekaterinburg, 620002, Russian Federation
c II Physikalisches Institut, Universität zu Köln, Zuelpicher Str. 77, Köln, 50937, Germany

In the present review different effects related to the orbital degrees of freedom are discussed. Leaving aside such aspects as the superexchange mechanism of the cooperative Jahn--Teller distortions and different properties of "Kugel—Khomskii"-like models, we mostly concentrate on other phenomena, which are in the focus of modern condensed matter physics. After a general introduction, we start with the discussion of the concept of effective reduction of dimensionality due to orbital degrees of freedom and consider such phenomena as the orbitally-driven Peierls effect and the formation of small clusters of ions in the vicinity of the Mott transition, which behave like "molecules" embedded in a solid. The second large section is devoted to the orbital-selective effects such as the orbital-selective Mott transition and the suppression of magnetism due to the fact that part of the orbital start to form singlet molecular orbitals. At the end the rapidly growing field of the so-called "spin-orbit-dominated" transition metal compounds is briefly reviewed including such topics as the interplay between the spin-orbit coupling and Jahn—Teller effect, the formation of the spin-orbit driven Mott and Peierls states, the role of orbital degrees of freedom in generation of the Kitaev exchange coupling, and the singlet (excitonic) magnetism in 4d and 5d transition metal compounds.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.08.038196
Keywords: orbital ordering, spin-orbit coupling, transition-metal oxides
PACS: 71.20.Be, 71.70.−d, 75.10.−b (all)
DOI: 10.3367/UFNe.2017.08.038196
URL: https://ufn.ru/en/articles/2017/11/d/
000424395100004
2-s2.0-85042164461
2017PhyU...60.1121S
Citation: Streltsov S V, Khomskii D I "Orbital physics in transition metal compounds: new trends" Phys. Usp. 60 1121–1146 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, July 2017, revised: 1st, August 2017, 16th, August 2017

Оригинал: Стрельцов С В, Хомский Д И «Орбитальная физика в соединениях переходных металлов: новые тенденции» УФН 187 1205–1235 (2017); DOI: 10.3367/UFNr.2017.08.038196

References (153) ↓ Cited by (147) Similar articles (2)

  1. Khomskii D I Transition Metal Compounds (Cambridge: Cambridge Univ. Press, 2014)
  2. Imada M, Fujimori A, Tokura Y Rev. Mod. Phys. 70 1039 (1998)
  3. Goodenough J B Magnetism And The Chemical Bond (New York: Interscience Publ., 1963)
  4. Fazekas P Lecture Notes On Electron Correlation And Magnetism (Ser. in Modern Condensed Matter Physics) Vol. 5 (Singapore: World Scientific, 1999)
  5. Khomskii D I Basic Aspects Of The Quantum Theory Of Solids: Order And Elementary Excitations (Cambridge: Cambridge Univ. Press, 2010)
  6. Khomskii D I Fiz. Met. Metalloved. 29 31 (1970)
  7. Kugel’ K I, Khomskii D I Usp. Fiz. Nauk 136 621 (1982); Kugel’ K I, Khomskii D I Sov. Phys. Usp. 25 231 (1982)
  8. Zaitsev R O, Kuz’min E V, Ovchinnikov S G Usp. Fiz. Nauk 148 603 (1986); Zaitsev R O, Kuz’min E V, Ovchinnikov S G Sov. Phys. Usp. 29 322 (1986)
  9. Izyumov Yu A Usp. Fiz. Nauk 165 403 (1995); Izyumov Yu A Phys. Usp. 38 385 (1995)
  10. Nussinov Z, van den Brink J Rev. Mod. Phys. 87 1 (2015)
  11. Oleś A M J. Phys. Condens. Matter 24 313201 (2012)
  12. Bulaevskii L N Usp. Fiz. Nauk 115 263 (1975); Bulaevskii L N Sov. Phys. Usp. 18 131 (1975)
  13. Mott N F, Peierls R Proc. Phys. Soc. 49 72 (1937)
  14. Coulson C A, Fischer I Philos. Mag. 40 386 (1949)
  15. Ushakov A V, Streltsov S V, Khomskii D I J. Phys. Condens. Matter 23 445601 (2011)
  16. Korotin M A, Anisimov V I, Khomskii D I, Sawatzky G A Phys. Rev. Lett. 80 4305 (1998)
  17. Señarís-Rodríguez M A, Goodenough J B J. Solid State Chem. 116 224 (1995)
  18. Korotin M A et al. Phys. Rev. B 54 5309 (1996)
  19. Haverkort M W et al. Phys. Rev. Lett. 97 176405 (2006)
  20. Kuneš J, Křápek V Phys. Rev. Lett. 106 256401 (2011)
  21. Streltsov S V, Khomskii D I Phys. Rev. B 86 064429 (2012)
  22. Khalifah P Science 297 2237 (2002)
  23. Wu H et al. Phys. Rev. Lett. 96 256402 (2006)
  24. Zhou H D et al. Phys. Rev. B 85 041201(R) (2012)
  25. Streltsov S V Phys. Rev. B 88 024429 (2013)
  26. Hester J R et al. Acta Cryst. B 53 739 (1997)
  27. Cwik M et al. Phys. Rev. B 68 060401(R) (2003)
  28. Streltsov S V et al. Phys. Rev. B 71 245114 (2005)
  29. Vasiliev A N et al. Phys. Rev. B 72 012412 (2005)
  30. Erickson A S et al. Phys. Rev. Lett. 99 016404 (2007)
  31. Kanamori J Prog. Theor. Phys. 30 275 (1963)
  32. Sugano S, Tanabe Y, Kamimura H Multiplets Of Transition-Metal Ions In Crystals (New York: Academic Press, 1970)
  33. Andersen O K, Klose W, Nohl H Phys. Rev. B 17 1209 (1978)
  34. Harrison W A Elementary Electronic Structure (Singapore: World Scientific, 1999)
  35. Streltsov S V, Khomskii D I Phys. Rev. B 77 064405 (2008)
  36. Kugel K I, Khomskii D I, Sboychakov A O, Streltsov S V Phys. Rev. B 91 155125 (2015)
  37. Khomskii D I, Kugel K I, Sboychakov A O, Streltsov S V Zh. Eksp. Teor. Fiz. 149 562 (2016); Khomskii D I, Kugel K I, Sboychakov A O, Streltsov S V JETP 122 484 (2016)
  38. Daoud-Aladine A et al. Phys. Rev. B 80 220402(R) (2009)
  39. Reynaud M et al. Inorg. Chem. 52 10456 (2013)
  40. Markina M M et al. Phys. Rev. B 89 104409 (2014)
  41. Tokura Y, Tomioka Y J. Magn. Magn. Mater. 200 1 (1999)
  42. Izyumov Yu A, Skryabin Yu N Usp. Fiz. Nauk 171 121 (2001); Izyumov Yu A, Skryabin Yu N Phys. Usp. 44 109 (2001)
  43. Zener S Phys. Rev. 82 403 (1951)
  44. Anderson P W, Hasegawa H Phys. Rev. 100 675 (1955)
  45. Yosida K Phys. Rev. 106 893 (1957)
  46. de Gennes P-G Phys. Rev. 118 141 (1960)
  47. Kubo K, Ohata N J. Phys. Soc. Jpn. 33 21 (1972)
  48. Nagaev E L Zh. Eksp. Teor. Fiz. 57 1274 (1970); Nagaev E L JETP 30 693 (1970)
  49. Kagan M Yu, Khomskii D I, Mostovoy M V Eur. Phys. J. B 12 217 (1999)
  50. Dagotto E Nanoscale Phase Separation And Colossal Magnetoresistance: The Physics Of Manganites And Related Compounds (Springer Series in Solid-State Sciences) Vol. 136 (New York: Springer, 2003)
  51. Nishimoto S, Ohta Y Phys. Rev. Lett. 109 076401 (2012)
  52. Streltsov S V, Khomskii D I Proc. Natl. Acad. Sci. USA 113 10491 (2016)
  53. Longuet-Higgins H C et al. Proc. R. Soc. London A 244 1 (1958)
  54. Liechtenstein A I, Anisimov V I, Zaanen J Phys. Rev. B 52 R5467 (1995)
  55. Streltsov S V, Khomskii D I Phys. Rev. B 86 035109 (2012)
  56. Streltsov S V, Khomskii D I Phys. Rev. B 89 201115(R) (2014)
  57. Pavarini E, Koch E, Lichtenstein A Phys. Rev. Lett. 101 266405 (2008)
  58. Leonov I et al. Phys. Rev. Lett. 101 096405 (2008)
  59. Pavarini E, Koch E Phys. Rev. Lett. 104 086402 (2010)
  60. Abragam A, Bleaney B Electron Paramagnetic Resonance Of Transition Ions (Oxford: Clarendon Press, 1970); Per. na russk. yaz., Abragam A, Blini B Elektronnyi Paramagnitnyi Rezonans Perekhodnykh Ionov (M.: Mir, 1972, 1973)
  61. Landau L D, Lifshits E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (M.: Fizmatlit, 2004); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistic Theory (Oxford: Pergamon Press, 1965)
  62. Matsuura H, Miyake K J. Phys. Soc. Jpn. 82 073703 (2013)
  63. Taylor A E et al. Phys. Rev. Lett. 118 207202 (2017)
  64. Kohn W Rev. Mod. Phys. 71 1253 (1999); Kon V Usp. Fiz. Nauk 172 336 (2002)
  65. Friedel J Electrons The Physics Of Metals Vol. 1 (Ed. J M Ziman) (Cambridge: Cambridge Univ. Press, 1969) p. 340
  66. van Wezel J, van den Brink J Europhys. Lett. 75 957 (2006)
  67. Seidel A et al. Phys. Rev. B 67 020405(R) (2003)
  68. Kobayashi K, Kosuge K, Kachi S Mater. Res. Bull. 4 95 (1969)
  69. Katayama N et al. Phys. Rev. Lett. 103 146405 (2009)
  70. Horibe Y et al. Phys. Rev. Lett. 96 086406 (2006)
  71. Uehara A, Shinaoka H, Motome Y Phys. Rev. B 92 195150 (2015)
  72. Radaelli P G et al. Nature 416 155 (2002)
  73. Khomskii D I, Mizokawa T Phys. Rev. Lett. 94 156402 (2005)
  74. Schmidt M et al. Phys. Rev. Lett. 92 056402 (2004)
  75. Kugel’ K I, Khomskii D I Zh. Eksp. Teor. Fiz. 64 1429 (1973); Kugel K I, Khomskii D I Sov. Phys. JETP 37 725 (1973)
  76. Satija S K et al. Phys. Rev. B 21 2001 (1980)
  77. Lee S et al. Nature Mater. 5 471 (2006)
  78. Gehring G A, Gehring K A Rep. Prog. Phys. 38 1 (1975)
  79. Tokura Y, Nagaosa N Science 288 462 (2000)
  80. Haldane F D M Phys. Rev. Lett. 50 1153 (1983)
  81. Affleck I J. Phys. Condens. Matter 1 3047 (1989)
  82. Reehuis M et al. Eur. Phys. J. B 35 311 (2003)
  83. Lee S-H et al. Phys. Rev. Lett. 93 156407 (2004)
  84. Tsunetsugu H, Motome Y Phys. Rev. B 68 060405(R) (2003)
  85. Tchernyshyov O Phys. Rev. Lett. 93 157206 (2004)
  86. Maitra T, Valentí R Phys. Rev. Lett. 99 126401 (2007)
  87. Pardo V et al. Phys. Rev. Lett. 101 256403 (2008)
  88. Streltsov S V J. Magn. Magn. Mater. 383 27 (2015)
  89. Anderson D L New Theory Of The Earth (Cambridge: Cambridge Univ. Press, 2007)
  90. Isobe M et al. J. Phys. Soc. Jpn. 71 1423 (2002)
  91. Pen H F et al. Phys. Rev. Lett. 78 1323 (1997)
  92. Straumanis M E, James W J, Custead W C J. Electrochem. Soc. 107 502 (1960)
  93. Korotin M A et al. Phys. Rev. Lett. 83 1387 (1999)
  94. Abd-Elmeguid M M et al. Phys. Rev. Lett. 93 126403 (2004)
  95. Harris S Polyhedron 8 2843 (1989)
  96. Fabrizio M, Tosatti E Phys. Rev. B 55 13465 (1997)
  97. Palstra T T M et al. Solid State Commun. 93 327 (1995)
  98. Streltsov S, Mazin I I, Foyevtsova K Phys. Rev. B 92 134408 (2015)
  99. Mazin I I et al. Phys. Rev. Lett. 109 197201 (2012)
  100. Foyevtsova K et al. Phys. Rev. B 88 035107 (2013)
  101. Pchelkina Z V, Streltsov S V, Mazin I I Phys. Rev. B 94 205148 (2016)
  102. Hiley C I et al. Phys. Rev. B 92 104413 (2015)
  103. Tian W et al. Phys. Rev. B 92 100404(R) (2015); Tian W et al. arXiv:1504.03642
  104. Biffin A et al. Phys. Rev. B 90 205116 (2014)
  105. Miura Y et al. J. Phys. Soc. Jpn. 76 033705 (2007)
  106. Miura Y et al. J. Phys. Soc. Jpn. 78 094706 (2009)
  107. Jackeli G, Khomskii D I Phys. Rev. Lett. 100 147203 (2008)
  108. Kimber S A J et al. Phys. Rev. B 89 081408(R) (2014)
  109. Arapova I Yu et al. Pis’ma ZhETF 105 356 (2017); Arapova I Yu et al. JETP Lett. 105 375 (2017)
  110. Park J et al. Sci. Rep. 6 25238 (2016)
  111. Sachdev S Quantum Phase Transitions (Cambridge: Cambridge Univ. Press, 2011)
  112. Tocchio L F et al. J. Phys. Condens. Matter 28 105602 (2016)
  113. Anisimov V I et al. Eur. Phys. J. B 25 191 (2002)
  114. de’ Medici L et al. Phys. Rev. Lett. 102 126401 (2009)
  115. Biermann S, de’ Medici L, Georges A Phys. Rev. Lett. 95 206401 (2005)
  116. Koga A et al. Phys. Rev. Lett. 92 216402 (2004)
  117. Li S, Khatami E, Johnston S Phys. Rev. B 95 121112(R) (2017); Li S, Khatami E, Johnston S arXiv:1703.03985
  118. Efremov D V, Khomskii D I Phys. Rev. B 72 012402 (2005)
  119. Castellani C, Natoli C R, Ranninger J Phys. Rev. B 18 4967 (1978)
  120. Larson M L, Moore F W Inorg. Chem. 3 285 (1964)
  121. Kepert D L, Mandyczewsky R Inorg. Chem. 7 2091 (1968)
  122. Korotin D M, Anisimov V I, Streltsov S V Sci. Rep. 6 25831 (2016)
  123. Torardi C C et al. J. Solid State Chem. 60 332 (1985)
  124. Chi L, Britten J F, Greedan J E J. Solid State Chem. 172 451 (2003)
  125. Doi Y et al. J. Solid State Chem. 161 113 (2001)
  126. Senn M S et al. Phys. Rev. B 87 134402 (2013)
  127. Rijssenbeek J et al. Phys. Rev. B 58 10315 (1998)
  128. Doi Y, Matsuhira K, Hinatsu Y J. Solid State Chem. 165 317 (2002)
  129. Ziat D et al. Phys. Rev. B 95 184424 (2017)
  130. Streltsov S V, Khomskii D I Phys. Rev. B 89 161112(R) (2014)
  131. Tran T T et al. J. Am. Chem. Soc. 137 636 (2015)
  132. Terzic J et al. Phys. Rev. B 91 235147 (2015)
  133. Streltsov S V, Cao G, Khomskii D I Phys. Rev. B 96 014434 (2017)
  134. Kanamori J Prog. Theor. Phys. 17 197 (1957)
  135. Plotnikova E M et al. Phys. Rev. Lett. 116 106401 (2016)
  136. Khomskii D, van den Brink J Phys. Rev. Lett. 85 3329 (2000)
  137. Matsuno J et al. Phys. Rev. Lett. 93 167202 (2004)
  138. Kim B J et al. Phys. Rev. Lett. 97 106401 (2006)
  139. Crawford M K et al. Phys. Rev. B 49 9198 (1994)
  140. Kim B J et al. Phys. Rev. Lett. 101 076402 (2008)
  141. Gunnarsson O, Koch E, Martin R M Phys. Rev. B 54 R11026 (1996)
  142. Hirai D et al. Phys. Rev. Lett. 110 166402 (2013)
  143. Streltsov S V et al. Phys. Rev. B 94 241101(R) (2016)
  144. Jackeli G, Khaliullin G Phys. Rev. Lett. 102 017205 (2009)
  145. Kitaev A Ann. Physics 321 2 (2006)
  146. Trebst S Lecture Notes of the 48th IFF Spring School "Topological Matter — Topological Insulators, Skyrmions and Majoranas", Forschungszentrum Julich, Julich, 2017
  147. Kitaev A Yu Usp. Fiz. Nauk 1 (Suppl.) 131 (2001); Kitaev A Yu Phys. Usp. 44 (Suppl.) 131 (2001)
  148. Braden M et al. Phys. Rev. B 58 847 (1998)
  149. Wang J C et al. Phys. Rev. B 90 161110(R) (2014)
  150. Khaliullin G Phys. Rev. Lett. 111 197201 (2013)
  151. Kunkemöller S et al. Phys. Rev. Lett. 115 247201 (2015)
  152. Kunkemöller S et al. Phys. Rev. B 95 214408 (2017)
  153. Jain A et al. Nature Phys. 13 633 (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions